
 

 

 

 

VLSI Design Project Report 
 

MIPS AND FAULT TOLERENCE IN VHDL 

 

LAZARIDIS DIMITRIS 

(thejimi39@hotmail.com) 

 

 

 

 

 

 

 

 

 

 ATHENS 2012 

 

 

 

 

 

 

 



 

 

ABSTRACT 

Implementation microprocessor Mips in hardware, supporting almost all of it’s 

instructions including multiply packet.  

The integration made in the environment of Xilinx in version 13.1 and verified 

in simulation of Xilinx and the project created in VHDL language. 

The whole circuit is implemented in the Xilinx Spartan 3 and Place and Route 

has been made. 

The general purpose of this project is to implement a basic 5 stage MIPS32 

cpu.  Particular attention will be paid to the reduction of clock cycles for lower 

instruction latency as well as taking advantage of high-speed components. 

The error detection is implementing in hardware in compact circuits thus has 

fast execution time. In this method a transient or stack error is detected giving 

in this method high error detection fault coverage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

First steps 

A MIPS-32 compatible Central Processing Unit (CPU) was designed, tested, 

and synthesized.  The processor had the following attributes: 

 

 5 stage  

 Data Forwarding to reduce stall cycles 

 

In the first step the hardware is divided into five stages IF, ID, EXE, MEM, 

WB. (The stages were Instruction Fetch, Instruction Decode, Execute, 

Memory Access, and Write Back.)  

These stages are the total processor which operates under control unit. 

Test benches verify the correction of the instructions result. 

The instructions which are implemented: 

LW, SW, ADD, ADDU, SUB, SUBU, AND,OR, XOR, NOR, MULT, MFLO, 

MFHI, MTHI, MTLO, SLL, SRL, SRA, SLLV, SRLV, SRAV, BEQ, BNE, ADDI, 

ADDIU, ANDI, ORI, CHORI, LUI, SLT, SLTU, SLTI, SLTIU, JR, JALR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

The five stages 
 
 

 
 

The first stage is the Instruction memory, program counter and IR. 

The Instruction Fetch stage is where a program counter will pull the next 

instruction from the correct location in program memory.  In addition the 

program counter was updated with either the next instruction location 

sequentially, or the instruction location as determined by a branch.  

 

The second stage is the Register File, the Ext (zero / s extension). 

The Instruction Decode stage is where the control unit determines what 

values the control lines must be set to depending on the instruction.  In 

addition, hazard detection is implemented in this stage. 

 

The third stage is the execution the Alu with the necessary parts, Alu mux and 

the output registers Alu out, Hi, Lo, M. 

The Execute stage is where the instruction is actually sent to the ALU and 

executed.  If necessary, branch locations are calculated in this stage as well.   

 

The fourth stage is the Data memory, DM control and MDR out. 



The Memory Access stage is where, if necessary, system memory is 

accessed for data.  Also, if a write to data memory is required by the 

instruction it is done in this stage.  In order to avoid additional complications it 

is assumed that a single read or write is accomplished within a single CPU 

clock cycle. 

 

The last stage is the RF mux and NPC mux. 

Finally, the Write Back stage is where any calculated values are written back 

to their proper registers.  The write back to the register bank occurs during the 

first half of the cycle in order to avoid structural and data hazards if this was 

not the case. 

 

 

 

 

 

 

Instruction Fetch Stage 

The instruction fetch stage has multiple responsibilities in that it must properly 

update the CPU's program counter in the normal case as well as the branch 

instruction case.  The instruction fetch stage is also responsible for reading 

the instruction memory and sending the current instruction to the next stage.   

In IR also for the I type instructions some of the decoding is done in this stage 

in order to reduce the complexity in FSM 

Sign Extender 

The sign extender is responsible for two functions.  It takes the immediate 

value and sign extends it if the current instruction is a signed operation.  It 

also has a shifted output for branches.  The sign extender test bench checks 

for accuracy. 

 

 

 

 



Decode Stage 

Describes the stage of the CPU's  where the fetched instruction is decoded, 

and values are fetched from the register bank.  It is responsible for mapping 

the different sections of the instruction into their proper representations 

(based on R or I type instructions).  The Decode stage consists of the Control 

unit, the Sign Extender, and the Register bank, and is responsible for 

connecting all of these components together.  It splits the instruction into its 

various parts and feeds them to the corresponding components.  Regisers Rs 

and Rt are fed to the register bank, the immediate section is fed to the sign 

extender, and the ALU opcode and function codes.  The outputs of these 

corresponding components are then clocked and stored for the next stage. 

Register Bank 

One of the primary pieces of data storage in the CPU is the register bank 

contained within the instruction decode stage.  This bank of registers is 

directly reference from the MIPS instructions and is designed to allow rapid 

access to data and avoid the use of much slower data memory when 

possible.  The register bank contained in the CPU consisted of the MIPS 

standard 32 registers with register 0 being defined as always zero.   

The registers are defined as being red in the first half of the cycle and written 

in the second half.  This is done to avoid structural hazards when one 

instruction is attempting to write to the register bank while another is reading 

it.  Setting the register bank to this configuration also avoids a data hazard 

because a value that was just written can be read out in the same cycle. 

 

 

Execute Stage 

 This stage is responsible for taking the data and actually performing the 

specified operation on it.  The execute stage consists of an ALU, ALU control 

and Multypling function unit.  The execute stage connects these components 

together so that the ALU will process the data properly, given inputs chosen 

by the forwarding unit, and will notify if a branch is indeed to be taken.   

 

 

 

 



Alu control 

The instructions fields of mips have information and have the following 

structure. 

 

 

 

The function field is the information that analyzes the R-type commands and 

implements in the Alu control, which is under the control of the main control 

unit. This was accomplished by a large case statement dependent on the 

input control signals.   

 

ALU 

The alu is responsible for performing the actual calculations specified by the 

instruction.  It takes two 32 bit inputs and some control signals, and gives a 

single 32 bit output along with some information about the output – whether it 

is zero or negative.   

 

 

Memory Stage 

This stage is responsible for taking the output of the alu and committing it to 

the proper memory location if the instruction is a store.  The memory stage 

contains one component: the data_memory object.  It connects the data 

memory to a register bank for the write back stage to read, and also forwards 

on information about the current write back register.  This register's number 

and calculated value are fed back to the forwarding unit in the execute stage 

to allow it to determine which value to pass to the ALU. 

Data memory 

 The DM circuit is only active when there is operation for read or write, 

otherwise freezes, via control signal, improving power reduction circuit. 

 

 

 



WriteBack Stage 

The writeback stage is responsible for writing the calculated value back to the 

proper register.  It has input control lines that tell it whether this instruction 

writes back or not, and whether it writes back ALU output or Data memory 

output.  It then chooses one of these outputs and feeds it to the register bank 

based on these control lines.   

 

 

 

Control Unit 

The Control unit takes the given Opcode, as well as the function code from 

the instruction, and translates it to the individual instruction control lines 

needed by the remaining stages.  This is accomplished via a large case 

statement.   

The control unit generates the control bits for the multiplexers, the Data 

memory and Alu control. 

The inputs are the field op (6 bits), the function field, the signal clk and the 

signal rst. 

The outputs are: RegDst, RegWrite, ALUSrcA, MemRead, MemWrite, 

Mult_en, IorD, IRWrite, PCWrite, EqNq, ALUsw, ALUOp, ALUSrcB, 

PCSource, ALUmux, ALUop_sw, RFmux. 

 

 

 

 

 

 

 

 

 

 

 



FSM diagram 
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I type instructions 

The commands I have the same next state except in the execution cycle, so 

by combining them can achieve the reduction stages. The differences in 

arithmetic operation is specified (in first stage), check carried out by ALu 

control. 
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R type instructions 

They have the same current and next state except arithmetic cycle execution 

like I type commands, the difference in function is specified by Alu control 

where are part decoded and executed. 

 

The instructions Mult, Mtlo, Mthi 

Belong to R type commands but have a different situation in their performance 

in this circle, the result must be recorded in the registers Hi, Lo. 

A separate stage for these commands is made and different function 

performed by Alu control. (Record the Hi and Lo, or Hi or Lo). 

The implementation of  the entire transaction is not lost, even after performing 

the Mult many different instructions are follow, and is achieved through the 

control signal Mult_en. 

The instructions Mflo, Mfhi 

Owned in R type instructions but have a different next state to completion. No 

execution cycle exist it is an empty circle (bubble). Thus, it is possible to 

follow the course of the R type, but separated in the last cycle, reducing 

possible unnecessary stages. 

 

To clk signal in  Xilinx memories  
A numerous simulations and the best result was presented in descending 
pulse execution in memory (Read or Write). 
The advantage of operating in the descending pulse in the memories is that 
there is the availability in the remaining rising pulse (at the same stage of 
operation) to implement any order or circuit (eg pipeline), this creates greater 
flexibility in hardware circuit with multiple variations, thus speed and flexibility 
for multiple implementations. 
 

 

 

 

Performance  

Instructions that are in instruction memory are in the follow order: 

AF890064                     SW $s1,100($s2) Store word (W) 

 8F890064                      LW $s1,100($s2) Load word 

02538820                       ΑDD $s1 $s2 $s3     Addition 



02538821                       ΑDDU $s1,$s2,$s3 Addition 

02538822                       SUB $s1,$s2,$s3 Subtract 

02538823                      SUBU $s1,$s2,$s3 Subtract 

02538824                       ΑND $s1,$s2,$s3 AND 

02538825                       OR $s1,$s2,$s3 OR 

02538826                       ΧΟR $s1,$s2,$s3 XOR 

02538827                       NOR $s1,$s2,$s3 NOR 

02530018                       MULT $s2,$s3 Multiply 

00008812                       MFLO $t1 Move from Lo 

00008810                       MFHI  $t1 Move from  Ηi  

01200011                       MTHI $t1 Move to Hi 

01200013                        MTLO $t1 Move to Lo 

001288C0                        SLL $s1,$s2, 3 Shift left logical 

001288C2                        SRL $s1,$s2, 3 Shift right logical 

001288C3                        SRA $s1,$s2, 3 Shift right arithmetic 

02728804                        SLLV $s1,$s2,$s3 Shift left logical variable 

02728806                        SRLV $s1,$s2,$s3 Shift right logical variable 

02728807                        SRAV $s1,$s2,$s3 Shift right arithmetic variable 

12720001                        BEQ $s1, $s2, label Branch on equal 

16720001                        BNE $s1, $s2, label Branch on not equal 

22290064                        ΑDDI $t1 $s1,3 Addition immediate 

26290064                        ΑDDIU $t1,$s1,3 Addition immediate 

32290064                        ΑNDI $t1,$s1,3 AND immediate 

36290064                        ORI $t1,$s1,3 OR immediate 

3A290064                        ΧΟRI $t1,$s1,3 XOR immediate 

3C090064                       LUI $t1 100 load upper immediate 

0232802A                       SLT $t0, $s0, $s1 Set less than 



0232802A                       SLTU $t0, $s0, $s1 Set less than unsigned 

2A280064                       SLTI $t0, $s0, 10 Set less than immediate 

2D280064                       SLTIU $t0, $s0, 10 Set less than unsi/immediate 

01000008                       JR $t0 Jump register 

0100F809                       JALR $t0 Jump and link register 

At the end an algorithm follows. 

When the pc reaches the jr instruction the next instruction to be executed is 

the beginning of the algorithm fibonacci, and at the end of the execution of the 

next command execution is at x00000000. So the execution sequence of the 

entire program is never-ending cycle. 

Created separate outside door called BUS_W it makes it easier to monitor 

values and good record of execution through the simulator of Xilinx (via test 

benchs and by executing the file main_tst). 

 

 

 

 

The instructions results from  Xilinx simulator 

 

 

AF890064                     SW $s1,100($s2) Store word 



 

8F890064                      LW $s1,100($s2) Load word 

 

02538820                       ΑDD $s1 $s2 $s3     Addition 

 

02538821                       ΑDDU $s1,$s2,$s3 Addition 



 

02538822                       SUB $s1,$s2,$s3 Subtract 

 

02538823                      SUBU $s1,$s2,$s3 Subtract 

 

02538824                       ΑND $s1,$s2,$s3 AND 



 

02538825                       OR $s1,$s2,$s3 OR 

 

02538826                       ΧΟR $s1,$s2,$s3 XOR 

 

02538827                       NOR $s1,$s2,$s3 NOR 



 

00008812                       MFLO $t1 Move from Lo 

 

00008810                       MFHI  $t1 Move from  Ηi  

 

01200011                       MTHI $t1 Move to Hi 



 

01200013                        MTLO $t1 Move to Lo 

 

001288C0                        SLL $s1,$s2, 3 Shift left logical 

 

001288C2                        SRL $s1,$s2, 3 Shift right logical 



 

Error detection 

With continuous scaling in CMOS technology the number of transistors grows 

more and more in a single chip. Chip multiprocessors (CMPs) are an efficient 

way for using this very large number of transistors integrated in a chip. 

Several researches show that high density integration makes modern 

processors prone to the risk of transient or permanent fault. However, the 

increase of temperature and decrease of the voltage in the chip lead to a 

higher susceptibility to faults. As the feature size shrinks the probability of a 

single transistor to become faulty, it increases due to the low threshold 

voltages. 

It is projected that the rate at which the transient errors occur will grow 

exponentially and will soon represent one of the most significant issues in the 

design of future generation high-performance microprocessors. 

This work proposes a fault tolerant architecture that tolerates the high fault 

rates that are expected in future technologies. In this work the multiplication 

block circuit is tested.  

Analyze 

In this method a multiplication is executed and the result is stored following by 

a comparison. It is start with initial value of 00001111…. which this value 

executes a multiplication in multiplication circuit and the result is stored. It 

needs 64 machine cycles to complete this error detection. After the initial 

multiplication the numbers which are executed are subjected a shift one digit, 

following by a multiplication again and the result are stored in previous result. 

This is continuous for 64 machine cycle, where the final result is stored, 

including the previous results. In final stage of error detection the calculated 

result is compared with a correct stored result and if any error exists in 

multiplication array circuit this can be found. In this method the fault coverage 

is approximately 75% and 64 machine cycles are demanded. The error 

detection begins at start up before any execution. It has a high fault coverage 

and nearly fast execution due to hardware implementation, which will be more 

popular method for errors detection in future for the time saving (there is not 

time penalty), reliability, low cost and high presentence to fault coverage, low 

power consumption.  

A slide different circuit implementation but much more powerful:  

 The multiplier circuit device made with and/h/f/adders. 

 



 

C\AB    00   01  11  10 

   0                       

   1 

                       

I treat both exits as one because the point is to detect errors, from the 

karnaugh map we have: 

A’B + AB’ + CB’ If combine the first two we have CB’. 

There is the term +AB (from 111, 110) but I subtract it temporally to simplify 

the procedure. 

To implement it we need to include only one 0 in test vectors. 

 

If we will check a 4X4 bits multiplier with a shift in each clock as: 

1110, 1101, 1011, 0111 in y axes and the same in x axes, we will cover the 

90% error detection in 8 machines cycles. I left one stage of variables out, for 

isolate detection to simplify the procedure, which is the value all -> 1s, which 

needs one machines cycle and cover the remaining 10% of error detection. 

The total procedure needs 10 machines cycles with an addition all -> 0s. The 

total coverage is 98-99%. In multiplier 32X32 bits it needs 66 machines cycles 

for total coverage. This method is fast enough and support total error 

detection with hardware implementation. 

Observing 

The inputs of xor1 and and2 are connected directly, we can take them as 

equal, also xor2 and and1 are connected the same way, if a stack at 0 or 1 

occurs then both inputs gates will be in that stage,  the same. 

0 1 0 1 

1 1c 0 1c 



V000 => if s=0, c=0 then ok else if 

          (s=1) then 

          ((xor1 pin1 or pin2) or (xor2 pin1 or pin2)) = 1 

          Else if 

         (c=1) then 

          ((xor1 pin1 or pin2) or (xor2 pin1 or pin2) or Or) = 1 

V111=> if s=1, c=1 then ok else if 

          (s=0) then 

          ((xor1 pin1 or pin2) or (xor2 pin2)) = 0 

          Else if 

          (c=0) then 

         ((xor1 pin1 or pin2) or (or pin2)) = 0 

V011=> if s=0, c=1 then ok else if 

                    (s=1) then 

                ((xor1 pin2) or (xor2 pin1 or pin2)) = 0 

                  Else if 

                 (c=0) then 

                ((xor2 pin1 or pin2) or (Or pin1)) = 0 

This seems correct in full adder, the same occurs in an array. 

 

Another alternate method: This method is hardware implemented 100% also 

and it is very simple. In first machine cycle a 0000… is executed in 

multiplication circuit and the result is compared with 0, if a 1 stack exists can 

be found here. (This covers the 50% error detection) 

In second cycle a number 1111111111111111111111111111111 is multiplied 

with the 10101010101010101010101010101010 and comparison is done with 

a correct stored value at the end of this cycle. The third and final stage a 

multiplication is done with reversed numbers to cover as much as possible of 

the multiplication array circuit and if any error detection exist is also found 

here. (In a sample multiplier 4X4 bits error detection coverage is about 2%) 



This method has smaller fault coverage about 54% but it is very fast, it is only 

need 3 machines cycles to complete the fault tolerance.  

 

 

Summary and Conclusion 

In conclusion, the experiment was a success.  A fully realized MIPS32 

compliant five stage CPU was developed, implemented, and tested 

successfully.  A bottom up design process was followed in developing the 

CPU.  First the smallest components, such as the program counter, were 

designed and tested.  These functional blocks were then combined to make 

each of the five stages.  Finally these five stages were connected together to 

create the final CPU. Methods that could potentially improve this project would 

be to test different implementations of the design in reducing I type and R type 

instructions, as that was a significant portion of the ALU. The store of Mult 

instruction in useful for compacted algorithms. The rate at which the transient 

errors occur will grow exponentially and error detection in fault coverage it will 

be an important issue. The hardware error detection method has a high fault 

coverage and fast execution, low cost, low consumption.  

 

Further research  

Most error detect methods for fault tolerance check the mips or a circuit at 

start up or at once or periodically to find any errors for fault coverage, but 

what if an error occurs during the tests? A fault data will process as correct. 

To work around with this, a non stop searching method is presented to test 

the mips continuously, it can be implement and find any error as it appears in 

born, further more if the fpga has enough space to relocate the damaged 

place it can be done in another undamaged.   

To implement this error detect method, we can inject in fsm and detect the 

errors for fault tolerance. Knowing the next stage (instruction) through fsm, it 

is easy to start the test for “multiply” block circuits, which error detection circuit 

could test the multiply circuits as long as the next instruction it is not concern 

this circuits, if a multiply instruction is coming up we can stop the process and 

continue when it is free again, thus we can find if an error occurs in this part of 

cpu and cover the fault tolerance. The same process it is possible to test and 

other critical part of mips or central unit and find if an error exist. The 

advantage in this method is that the error detect circuit works continuously. 

This method does not require double cores, but only some additional parts 

(low cost) and which can work in conjunction with fsm without consume the 

microprocessor’s working time but it can work simultaneously.  
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