

VLSI Design Project Report

MIPS AND FAULT TOLERENCE IN VHDL

LAZARIDIS DIMITRIS

(thejimi39@hotmail.com)

 ATHENS 2012

ABSTRACT

Implementation microprocessor Mips in hardware, supporting almost all of it’s

instructions including multiply packet.

The integration made in the environment of Xilinx in version 13.1 and verified

in simulation of Xilinx and the project created in VHDL language.

The whole circuit is implemented in the Xilinx Spartan 3 and Place and Route

has been made.

The general purpose of this project is to implement a basic 5 stage MIPS32

cpu. Particular attention will be paid to the reduction of clock cycles for lower

instruction latency as well as taking advantage of high-speed components.

The error detection is implementing in hardware in compact circuits thus has

fast execution time. In this method a transient or stack error is detected giving

in this method high error detection fault coverage.

First steps

A MIPS-32 compatible Central Processing Unit (CPU) was designed, tested,

and synthesized. The processor had the following attributes:

 5 stage

 Data Forwarding to reduce stall cycles

In the first step the hardware is divided into five stages IF, ID, EXE, MEM,

WB. (The stages were Instruction Fetch, Instruction Decode, Execute,

Memory Access, and Write Back.)

These stages are the total processor which operates under control unit.

Test benches verify the correction of the instructions result.

The instructions which are implemented:

LW, SW, ADD, ADDU, SUB, SUBU, AND,OR, XOR, NOR, MULT, MFLO,

MFHI, MTHI, MTLO, SLL, SRL, SRA, SLLV, SRLV, SRAV, BEQ, BNE, ADDI,

ADDIU, ANDI, ORI, CHORI, LUI, SLT, SLTU, SLTI, SLTIU, JR, JALR.

The five stages

The first stage is the Instruction memory, program counter and IR.

The Instruction Fetch stage is where a program counter will pull the next

instruction from the correct location in program memory. In addition the

program counter was updated with either the next instruction location

sequentially, or the instruction location as determined by a branch.

The second stage is the Register File, the Ext (zero / s extension).

The Instruction Decode stage is where the control unit determines what

values the control lines must be set to depending on the instruction. In

addition, hazard detection is implemented in this stage.

The third stage is the execution the Alu with the necessary parts, Alu mux and

the output registers Alu out, Hi, Lo, M.

The Execute stage is where the instruction is actually sent to the ALU and

executed. If necessary, branch locations are calculated in this stage as well.

The fourth stage is the Data memory, DM control and MDR out.

The Memory Access stage is where, if necessary, system memory is

accessed for data. Also, if a write to data memory is required by the

instruction it is done in this stage. In order to avoid additional complications it

is assumed that a single read or write is accomplished within a single CPU

clock cycle.

The last stage is the RF mux and NPC mux.

Finally, the Write Back stage is where any calculated values are written back

to their proper registers. The write back to the register bank occurs during the

first half of the cycle in order to avoid structural and data hazards if this was

not the case.

Instruction Fetch Stage

The instruction fetch stage has multiple responsibilities in that it must properly

update the CPU's program counter in the normal case as well as the branch

instruction case. The instruction fetch stage is also responsible for reading

the instruction memory and sending the current instruction to the next stage.

In IR also for the I type instructions some of the decoding is done in this stage

in order to reduce the complexity in FSM

Sign Extender

The sign extender is responsible for two functions. It takes the immediate

value and sign extends it if the current instruction is a signed operation. It

also has a shifted output for branches. The sign extender test bench checks

for accuracy.

Decode Stage

Describes the stage of the CPU's where the fetched instruction is decoded,

and values are fetched from the register bank. It is responsible for mapping

the different sections of the instruction into their proper representations

(based on R or I type instructions). The Decode stage consists of the Control

unit, the Sign Extender, and the Register bank, and is responsible for

connecting all of these components together. It splits the instruction into its

various parts and feeds them to the corresponding components. Regisers Rs

and Rt are fed to the register bank, the immediate section is fed to the sign

extender, and the ALU opcode and function codes. The outputs of these

corresponding components are then clocked and stored for the next stage.

Register Bank

One of the primary pieces of data storage in the CPU is the register bank

contained within the instruction decode stage. This bank of registers is

directly reference from the MIPS instructions and is designed to allow rapid

access to data and avoid the use of much slower data memory when

possible. The register bank contained in the CPU consisted of the MIPS

standard 32 registers with register 0 being defined as always zero.

The registers are defined as being red in the first half of the cycle and written

in the second half. This is done to avoid structural hazards when one

instruction is attempting to write to the register bank while another is reading

it. Setting the register bank to this configuration also avoids a data hazard

because a value that was just written can be read out in the same cycle.

Execute Stage

 This stage is responsible for taking the data and actually performing the

specified operation on it. The execute stage consists of an ALU, ALU control

and Multypling function unit. The execute stage connects these components

together so that the ALU will process the data properly, given inputs chosen

by the forwarding unit, and will notify if a branch is indeed to be taken.

Alu control

The instructions fields of mips have information and have the following

structure.

The function field is the information that analyzes the R-type commands and

implements in the Alu control, which is under the control of the main control

unit. This was accomplished by a large case statement dependent on the

input control signals.

ALU

The alu is responsible for performing the actual calculations specified by the

instruction. It takes two 32 bit inputs and some control signals, and gives a

single 32 bit output along with some information about the output – whether it

is zero or negative.

Memory Stage

This stage is responsible for taking the output of the alu and committing it to

the proper memory location if the instruction is a store. The memory stage

contains one component: the data_memory object. It connects the data

memory to a register bank for the write back stage to read, and also forwards

on information about the current write back register. This register's number

and calculated value are fed back to the forwarding unit in the execute stage

to allow it to determine which value to pass to the ALU.

Data memory

 The DM circuit is only active when there is operation for read or write,

otherwise freezes, via control signal, improving power reduction circuit.

WriteBack Stage

The writeback stage is responsible for writing the calculated value back to the

proper register. It has input control lines that tell it whether this instruction

writes back or not, and whether it writes back ALU output or Data memory

output. It then chooses one of these outputs and feeds it to the register bank

based on these control lines.

Control Unit

The Control unit takes the given Opcode, as well as the function code from

the instruction, and translates it to the individual instruction control lines

needed by the remaining stages. This is accomplished via a large case

statement.

The control unit generates the control bits for the multiplexers, the Data

memory and Alu control.

The inputs are the field op (6 bits), the function field, the signal clk and the

signal rst.

The outputs are: RegDst, RegWrite, ALUSrcA, MemRead, MemWrite,

Mult_en, IorD, IRWrite, PCWrite, EqNq, ALUsw, ALUOp, ALUSrcB,

PCSource, ALUmux, ALUop_sw, RFmux.

FSM diagram

0 1 Instr. decode 17

 16 Jalr

 Jr

Instruction fetch Op=Beq

 Op= I types Op= Lw,Sw 12 15 Mult,Mthi/lo

2 4 Op= R types 8

 14 Beq complete

 Exec.

3 Execution Mem adr

 5 7 13 Bne complete

 9

I complete Mem ac

 6 Sw 10 11

 R coml

 Mem rd Mflo Mfhi

I type instructions

The commands I have the same next state except in the execution cycle, so

by combining them can achieve the reduction stages. The differences in

arithmetic operation is specified (in first stage), check carried out by ALu

control.

AsA 1,

Mem

rd,IR Pc

AsA 0

Aluop

0000

AlsA

1

Mem

rd

Mem

wr,ds

tt

Mem

wr,

IorD

Alusw

1

Eq 1

Rfmu

x 010

RegW

1

ALUO

P 11

Eq 0

Mult

en 1

AlsB

10

RegW

1

Pc s

10

Rfmu

x 001

Rfmu

x 000

R type instructions

They have the same current and next state except arithmetic cycle execution

like I type commands, the difference in function is specified by Alu control

where are part decoded and executed.

The instructions Mult, Mtlo, Mthi

Belong to R type commands but have a different situation in their performance

in this circle, the result must be recorded in the registers Hi, Lo.

A separate stage for these commands is made and different function

performed by Alu control. (Record the Hi and Lo, or Hi or Lo).

The implementation of the entire transaction is not lost, even after performing

the Mult many different instructions are follow, and is achieved through the

control signal Mult_en.

The instructions Mflo, Mfhi

Owned in R type instructions but have a different next state to completion. No

execution cycle exist it is an empty circle (bubble). Thus, it is possible to

follow the course of the R type, but separated in the last cycle, reducing

possible unnecessary stages.

To clk signal in Xilinx memories
A numerous simulations and the best result was presented in descending
pulse execution in memory (Read or Write).
The advantage of operating in the descending pulse in the memories is that
there is the availability in the remaining rising pulse (at the same stage of
operation) to implement any order or circuit (eg pipeline), this creates greater
flexibility in hardware circuit with multiple variations, thus speed and flexibility
for multiple implementations.

Performance

Instructions that are in instruction memory are in the follow order:

AF890064 SW $s1,100($s2) Store word (W)

 8F890064 LW $s1,100($s2) Load word

02538820 ΑDD $s1 $s2 $s3 Addition

02538821 ΑDDU $s1,$s2,$s3 Addition

02538822 SUB $s1,$s2,$s3 Subtract

02538823 SUBU $s1,$s2,$s3 Subtract

02538824 ΑND $s1,$s2,$s3 AND

02538825 OR $s1,$s2,$s3 OR

02538826 ΧΟR $s1,$s2,$s3 XOR

02538827 NOR $s1,$s2,$s3 NOR

02530018 MULT $s2,$s3 Multiply

00008812 MFLO $t1 Move from Lo

00008810 MFHI $t1 Move from Ηi

01200011 MTHI $t1 Move to Hi

01200013 MTLO $t1 Move to Lo

001288C0 SLL $s1,$s2, 3 Shift left logical

001288C2 SRL $s1,$s2, 3 Shift right logical

001288C3 SRA $s1,$s2, 3 Shift right arithmetic

02728804 SLLV $s1,$s2,$s3 Shift left logical variable

02728806 SRLV $s1,$s2,$s3 Shift right logical variable

02728807 SRAV $s1,$s2,$s3 Shift right arithmetic variable

12720001 BEQ $s1, $s2, label Branch on equal

16720001 BNE $s1, $s2, label Branch on not equal

22290064 ΑDDI $t1 $s1,3 Addition immediate

26290064 ΑDDIU $t1,$s1,3 Addition immediate

32290064 ΑNDI $t1,$s1,3 AND immediate

36290064 ORI $t1,$s1,3 OR immediate

3A290064 ΧΟRI $t1,$s1,3 XOR immediate

3C090064 LUI $t1 100 load upper immediate

0232802A SLT $t0, $s0, $s1 Set less than

0232802A SLTU $t0, $s0, $s1 Set less than unsigned

2A280064 SLTI $t0, $s0, 10 Set less than immediate

2D280064 SLTIU $t0, $s0, 10 Set less than unsi/immediate

01000008 JR $t0 Jump register

0100F809 JALR $t0 Jump and link register

At the end an algorithm follows.

When the pc reaches the jr instruction the next instruction to be executed is

the beginning of the algorithm fibonacci, and at the end of the execution of the

next command execution is at x00000000. So the execution sequence of the

entire program is never-ending cycle.

Created separate outside door called BUS_W it makes it easier to monitor

values and good record of execution through the simulator of Xilinx (via test

benchs and by executing the file main_tst).

The instructions results from Xilinx simulator

AF890064 SW $s1,100($s2) Store word

8F890064 LW $s1,100($s2) Load word

02538820 ΑDD $s1 $s2 $s3 Addition

02538821 ΑDDU $s1,$s2,$s3 Addition

02538822 SUB $s1,$s2,$s3 Subtract

02538823 SUBU $s1,$s2,$s3 Subtract

02538824 ΑND $s1,$s2,$s3 AND

02538825 OR $s1,$s2,$s3 OR

02538826 ΧΟR $s1,$s2,$s3 XOR

02538827 NOR $s1,$s2,$s3 NOR

00008812 MFLO $t1 Move from Lo

00008810 MFHI $t1 Move from Ηi

01200011 MTHI $t1 Move to Hi

01200013 MTLO $t1 Move to Lo

001288C0 SLL $s1,$s2, 3 Shift left logical

001288C2 SRL $s1,$s2, 3 Shift right logical

Error detection

With continuous scaling in CMOS technology the number of transistors grows

more and more in a single chip. Chip multiprocessors (CMPs) are an efficient

way for using this very large number of transistors integrated in a chip.

Several researches show that high density integration makes modern

processors prone to the risk of transient or permanent fault. However, the

increase of temperature and decrease of the voltage in the chip lead to a

higher susceptibility to faults. As the feature size shrinks the probability of a

single transistor to become faulty, it increases due to the low threshold

voltages.

It is projected that the rate at which the transient errors occur will grow

exponentially and will soon represent one of the most significant issues in the

design of future generation high-performance microprocessors.

This work proposes a fault tolerant architecture that tolerates the high fault

rates that are expected in future technologies. In this work the multiplication

block circuit is tested.

Analyze

In this method a multiplication is executed and the result is stored following by

a comparison. It is start with initial value of 00001111…. which this value

executes a multiplication in multiplication circuit and the result is stored. It

needs 64 machine cycles to complete this error detection. After the initial

multiplication the numbers which are executed are subjected a shift one digit,

following by a multiplication again and the result are stored in previous result.

This is continuous for 64 machine cycle, where the final result is stored,

including the previous results. In final stage of error detection the calculated

result is compared with a correct stored result and if any error exists in

multiplication array circuit this can be found. In this method the fault coverage

is approximately 75% and 64 machine cycles are demanded. The error

detection begins at start up before any execution. It has a high fault coverage

and nearly fast execution due to hardware implementation, which will be more

popular method for errors detection in future for the time saving (there is not

time penalty), reliability, low cost and high presentence to fault coverage, low

power consumption.

A slide different circuit implementation but much more powerful:

 The multiplier circuit device made with and/h/f/adders.

C\AB 00 01 11 10

 0

 1

I treat both exits as one because the point is to detect errors, from the

karnaugh map we have:

A’B + AB’ + CB’ If combine the first two we have CB’.

There is the term +AB (from 111, 110) but I subtract it temporally to simplify

the procedure.

To implement it we need to include only one 0 in test vectors.

If we will check a 4X4 bits multiplier with a shift in each clock as:

1110, 1101, 1011, 0111 in y axes and the same in x axes, we will cover the

90% error detection in 8 machines cycles. I left one stage of variables out, for

isolate detection to simplify the procedure, which is the value all -> 1s, which

needs one machines cycle and cover the remaining 10% of error detection.

The total procedure needs 10 machines cycles with an addition all -> 0s. The

total coverage is 98-99%. In multiplier 32X32 bits it needs 66 machines cycles

for total coverage. This method is fast enough and support total error

detection with hardware implementation.

Observing

The inputs of xor1 and and2 are connected directly, we can take them as

equal, also xor2 and and1 are connected the same way, if a stack at 0 or 1

occurs then both inputs gates will be in that stage, the same.

0 1 0 1

1 1c 0 1c

V000 => if s=0, c=0 then ok else if

 (s=1) then

 ((xor1 pin1 or pin2) or (xor2 pin1 or pin2)) = 1

 Else if

 (c=1) then

 ((xor1 pin1 or pin2) or (xor2 pin1 or pin2) or Or) = 1

V111=> if s=1, c=1 then ok else if

 (s=0) then

 ((xor1 pin1 or pin2) or (xor2 pin2)) = 0

 Else if

 (c=0) then

 ((xor1 pin1 or pin2) or (or pin2)) = 0

V011=> if s=0, c=1 then ok else if

 (s=1) then

 ((xor1 pin2) or (xor2 pin1 or pin2)) = 0

 Else if

 (c=0) then

 ((xor2 pin1 or pin2) or (Or pin1)) = 0

This seems correct in full adder, the same occurs in an array.

Another alternate method: This method is hardware implemented 100% also

and it is very simple. In first machine cycle a 0000… is executed in

multiplication circuit and the result is compared with 0, if a 1 stack exists can

be found here. (This covers the 50% error detection)

In second cycle a number 1111111111111111111111111111111 is multiplied

with the 10101010101010101010101010101010 and comparison is done with

a correct stored value at the end of this cycle. The third and final stage a

multiplication is done with reversed numbers to cover as much as possible of

the multiplication array circuit and if any error detection exist is also found

here. (In a sample multiplier 4X4 bits error detection coverage is about 2%)

This method has smaller fault coverage about 54% but it is very fast, it is only

need 3 machines cycles to complete the fault tolerance.

Summary and Conclusion

In conclusion, the experiment was a success. A fully realized MIPS32

compliant five stage CPU was developed, implemented, and tested

successfully. A bottom up design process was followed in developing the

CPU. First the smallest components, such as the program counter, were

designed and tested. These functional blocks were then combined to make

each of the five stages. Finally these five stages were connected together to

create the final CPU. Methods that could potentially improve this project would

be to test different implementations of the design in reducing I type and R type

instructions, as that was a significant portion of the ALU. The store of Mult

instruction in useful for compacted algorithms. The rate at which the transient

errors occur will grow exponentially and error detection in fault coverage it will

be an important issue. The hardware error detection method has a high fault

coverage and fast execution, low cost, low consumption.

Further research

Most error detect methods for fault tolerance check the mips or a circuit at

start up or at once or periodically to find any errors for fault coverage, but

what if an error occurs during the tests? A fault data will process as correct.

To work around with this, a non stop searching method is presented to test

the mips continuously, it can be implement and find any error as it appears in

born, further more if the fpga has enough space to relocate the damaged

place it can be done in another undamaged.

To implement this error detect method, we can inject in fsm and detect the

errors for fault tolerance. Knowing the next stage (instruction) through fsm, it

is easy to start the test for “multiply” block circuits, which error detection circuit

could test the multiply circuits as long as the next instruction it is not concern

this circuits, if a multiply instruction is coming up we can stop the process and

continue when it is free again, thus we can find if an error occurs in this part of

cpu and cover the fault tolerance. The same process it is possible to test and

other critical part of mips or central unit and find if an error exist. The

advantage in this method is that the error detect circuit works continuously.

This method does not require double cores, but only some additional parts

(low cost) and which can work in conjunction with fsm without consume the

microprocessor’s working time but it can work simultaneously.

References

Sundar Rajan. 1999. Essential VHDL. RTL synthesis Done Right

Ds099.pdf 2009. Xilinx Spartan-3 FPGA Family.Data Sheet

 www.xilinx.com

Spartan3_hdl.pdf 2011. Xilinx. Spartan-3 Libraries Guide for HDL Designs

 www.xilinx.com

Ug222.pdf 2009. Xilinx. Spartan-3 Generation Configuration User Guide

 www.xilinx.com

xapp463.pdf 2005. Xilinx. Using Block RAM in Spartan-3 Generation FPGAs

 www.xilinx.com

L16-Multicycle-MIPS.ppt 2010. Montek Singh Multicycle MIPS. COMP541.

lec07-MIPS.pdf 2012. John Wawrzynek EECS150-Digital Design MIPS

lec20.pdf Erik Jonsson. The CPU Control Unit The University of Texas at
 Dallas

mips01.ppt Haldun Hadimioglou MipsVersion0&1 Polytechnic institute of NYU

MIPS_Processor.ppt S. Reda. 2007. 8-bit MIPS Processor.

report.doc Yu Zhang. Redesign Control FSM of a Multicycle MIPS Processor

with Low Power State Encoding. Electrical and Computer Engineering

Department.

lec06-mult.pdf 1997. Dave Patterson. Computer Architecture and Engineering

 http.cs.berkeley.edu/~patterson

lecture3_combinational_blocks.ppt George Mason University. FPGA and
ASIC Design with VHDL

vhdl_math_tricks_mapld_2003.pdf 2003. Jim Lewis VHDL Math Tricks of

the Trade.

lecture9_synthesis.ppt George Mason University. VHDL Coding for Synthesis

http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/

