
Modular Simultaneous Exponentiation
IP Core Specification (v1.4)





Acknowledgments

This project is maintained by the DraMCo research group1 of KAHO Sint-Lieven2, part of the KU Leuven
association3. The base design for this IP core is written by Geoffrey Ottoy, member of the DraMCo research
group. Further adjustments have been made by Jonas De Craene

1http://www.dramco.be/
2http://www.kahosl.be/
3http://associatie.kuleuven.be/

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

iii

http://www.dramco.be/
http://www.kahosl.be/
http://associatie.kuleuven.be/


Document Revision History

History

Revision Date By Description
0 November 2012 JDC First draft of this specification
1.0 November 2012 JDC Added sections “Acknowledgement” and “Performance and re-

source usage” as well as different fonts for variables and
signal_names

1.1 November 2012 GO Added this “Document Revision History”. Made several small
changes in layout and formulation.

1.2 March 2013 JDC Added information about the new possible RAM structures
1.3 March 2013 GO Revision of newly added RAM structures
1.4 April 2013 JDC Revision of newly added AXI4-Lite interface

Author info

GO: Geoffrey Ottoy
DraMCo research group
geoffrey.ottoy@kahosl.be

JDC: Jonas De Craene
KAHO Sint-Lieven
JonasDC@opencores.org

iv DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

geoffrey.ottoy@kahosl.be
JonasDC@opencores.org


Contents

Acknowledgments iii

Document Revision History iv

1 Introduction 1

2 Architecture 2
2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Exponentiation core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Operand RAM and exponent FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 IO ports and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Operation 12
3.1 Pipeline operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Modular Simultaneous exponentiation operations . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Core operation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Single Montgomery multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Modular simultaneous exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 PLB interface 15
4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 IO ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Control register (offset = 0x0000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Software reset register (offset = 0x0100) . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.3 Global interrupt enable register (offset = 0x021C) . . . . . . . . . . . . . . . . . . . 22
4.4.4 Interrupt status register (offset = 0x0220) . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.5 interrupt enable register (offset = 0x0228) . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Interfacing the core’s RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Handling interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 AXI4-Lite interface 24
5.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 IO ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.1 Control register (offset = 0x6000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Interfacing the core’s RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Handling interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

v



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 CONTENTS

6 Performance and resource usage 29

vi DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



Chapter 1

Introduction

The Modular Simultaneous Exponentiation core is a flexible hardware design to support modular simulta-
neous exponentiations in embedded systems. It is able to compute a double exponentiation as given by (1.1)

ge0
0 ·g

e1
1 mod m (1.1)

where:

g0 =
(
g0n−1 , · · · ,g01 ,g00

)
2 with n being the number of bits of the base operands

g1 =
(
g1n−1 , · · · ,g11 ,g10

)
2

m = (mn−1, · · · ,m1,m0)2

e0 =
(
e0t−1 , · · · ,e01 ,e00

)
2 with t being the number of bits of the exponents

e1 =
(
e1t−1 , · · · ,e11 ,e10

)
2

This operation is commonly used in anonymous credential and authentication cryptosystems like DSA 1,
Idemix 2, etc.. For this reason the core is designed with the use of large base operands in mind (n=512,
1024, 1536 bit and more..). The hardware is optimized for these simultaneous exponentiations, but also
supports single base exponentiations and single Montgomery multiplications. Flexibility is offered to the
user by providing the possibility to split the multiplier pipeline into 2 smaller parts, so that in total 3 different
base operand lengths can be supported. The length of the exponents can be chosen freely3

1FIPS-186-3, the third and current revision to the official DSA specification:
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

2IBM Idemix project website: https://www.zurich.ibm.com/security/idemix/
3The controlling software is responsible for loading in the desired number of exponent bits into the core’s exponent FIFO

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

1

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://www.zurich.ibm.com/security/idemix/


Chapter 2

Architecture

2.1 Block diagram

The architecture for the full IP core is shown in the Figure 2.1. It consists of 2 major parts, the actual
exponentiation core (mod_sim_exp_core entity) with a bus interface wrapped around it. In the following
sections these different blocks are described in detail.

Modular Simultaneous Exponentiation IP core

Operand RAM

Op0 / g0

Op1 / g1

Op2 / g01

Op3 / a

m

Exponent FIFO

Control Register

Multiplier

Control Unit

3
2

-b
it

 b
u

s 
in

te
rf

ac
e

din

dout

addr

load

xy

m

a

load_a

addr

IRQ

d
o

n
e

st
ar

t
Lo

ad
_x

n

n

n

mod_sim_exp_core

bus interface

~

~

~

Figure 2.1: Block diagram of the Modular Simultaneous Exponentiation IP core

2 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



2 Architecture
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

2.2 Exponentiation core

The exponentiation core (mod_sim_exp_core entity) is the top level of the modular simultaneous exponen-
tiation core. It is made up by 4 main blocks (Figure 2.2):

• a pipelined Montgomery multiplier as the main processing unit

• RAM to store the operands and the modulus

• a FIFO to store the exponents

• a control unit which controls the multiplier for the exponentiation and multiplication operations

mod_sim_exp_core

Operand RAM

Exponent FIFO

Pipelined 
Montgommery 

Multiplier

Control Unit

ready

rw_address 9

data_in 32

data_out 32

write_enable

collision

fifo_din 32

fifo_push

fifo_full

fifo_nopush

start

exp_m

x_sel_single

y_sel_single

dest_op_single

p_sel

calc_time

Op0 / g0

Op1 / g1

Op2 / g01

Op3 / a

m

~

~

~

modulus_sel

2

2

2

2

2

Figure 2.2: mod_sim_exp_core structure

2.2.1 Multiplier

The kernel of this design is a pipelined Montgomery multiplier. A Montgomery multiplication[1] allows
efficient implementation of a modular multiplication without explicitly carrying out the classical modular
reduction step. Right-shift operations ensure that the length of the (intermediate) results does not exceed
n+1 bits. The result of a Montgomery multiplication is given by (2.1):

r = x · y ·R−1 mod m with R = 2n (2.1)

For the structure of the multiplier, the work of Nedjah and Mourelle[2] is used as a basis. They show that
for large operands (>512 bits) the time×area product is minimal when a systolic implementation is used.
This construction is composed of cells that each compute a bit of the (intermediate) result.
Because a fully unrolled two-dimensional systolic implementation would require too many resources, a
systolic array (one-dimensional) implementation is chosen. This implies that the intermediate results are
fed back to the same same array of cells through a register. A shift register will shift-in a bit of the x operand
for every step in the calculation (figure 2.3). When multiplication is completed, a final check is made to
ensure the result is smaller than the modulus. If not, a final reduction with m is necessary.
Note: For this implementation the modulus m has to be uneven to obtain a correct result. However, we can
assume that for cryptographic applications, this is the case.

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

3



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 2 Architecture

x shift register
load_x

xy

m

carry

‘1’

‘0’

Systolic pipeline

‘0’

0

1

n

n

n+1

n+1

n n+1

n
r

xi

y

m

my

an
ex

t_
x

+

start

ready

st
ar

t

ready+

Figure 2.3: Multiplier structure. For clarification the my adder and reduction logic are depicted separately, whereas in
practice they are internal parts of the stages. (See Figure 2.4)

Stage and pipeline structure

The Montgomery algorithm uses a series of additions and right shifts to obtain the desired result. The main
disadvantage is the carry propagation in the adder, and therefore a pipelined version is used. The length of
the operands (n) and the number of pipeline stages can be chosen before synthesis. The user has the option
to split the pipeline into 2 smaller parts so there are 3 operand lengths available during runtime1.
The stages and first and last cell logic design are presented in Figure 2.4. Each stage takes in a part of
the modulus m and y operand and for each step of the multiplication, a bit of the x operand is fed to the
pipeline (together with the generated q signal), starting with the Least Significant Bit. The systolic array
cells need the modulus m, the operand y and the sum m+ y as an input. The result from the cells is latched
into a register, and then passed back to the systolic cells for the next bit of x. During this pass the right shift
operation is implemented. Each stage thus needs the least significant bit from the next stage to calculate the
next step. Final reduction logic is also present in the stages for when the multiplication is complete.
An example of the standard pipeline structure is presented in Figure 2.5. It is constructed using stages with
a predefined width. The first cell logic processes the first bit of the m and y operand and generates the q
signal. The last cell logic finishes the reduction and selects the correct result. For operation of this pipeline,
it is clear that each stage can only compute a step every 2 clock cycles. This is because the stages rely on
the result of the next stage.
In Figure 2.6 an example pipeline design is drawn for a split pipeline. All multiplexers on this figure are
controlled by the pipeline select signal (p_sel). During runtime the user can choose which part of the
pipeline is used, the lower or higher part or the full pipeline.

1e.g. a total pipeline length of 1536 bit split into a part of 512 bit and a part of 1024 bit

4 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



2 Architecture
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

xi
n

q
in

ci
n

re
g

xo
u

t

q
o

u
t

co
u

t

re
g

m
y_

co
u

t
m

y_
ci

n

re
g

re
d

_c
o

u
t

re
d

_c
in

a_
m

sb
m

y

y
m

w
id

th

w
id

th
w

id
th

+1

ce
ll_

re
su

lt
w

id
th

ce
ll_

re
su

lt
_r

eg
w

id
th

y
w

id
th

m
w

id
th

le
ft

 a
lig

n
ed

m
_i

n
v

w
id

th
ri

gh
t 

al
ig

n
ed

0
   

   
   

   
 1

a
w

id
th

-1

ce
ll_

re
su

lt
_r

eg
w

id
th

w
id

th
re

d
_r

rw
id

th

r_
se

l

a_
0

co
u

t

11

10

01

00

m
y 0

m
0

y 0

0

a 0

q
o

u
t

y 0xi
n

xo
u

t

Fi
rs

t 
C

el
l L

o
gi

c

C
LK

D
Q

d
o

n
e

st
ar

t

m
y_

co
u

t

re
d

_c
o

u
t

‘1
’

st
ar

t
st

ar
t_

fi
rs

t_
st

ag
e

xi
n

q
in

ci
n

re
d

_c
in

d
o

n
e

r_
se

l

a_
0

m
y_

ci
n

re
g +‘1

’

se
rv

es
 a

s 
cl

k 
en

ab
le

 f
o

r 
re

g
se

rv
es

 a
s 

cl
k 

en
ab

le
 f

o
r 

al
l r

eg
s

H
al

f 
ad

d
er

co
u

t r

La
st

 C
el

l L
o

gi
c

Sy
st

o
lic

 S
ta

ge

+

re
gi

st
er

+

sy
st

o
lic

 a
rr

ay
 c

el
ls

Figure 2.4: Pipeline stage and first and last cell logic

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

5



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 2 Architecture

r

y
m

q
in

a_
0

xi
n

ci
n

st
ar

t

re
d

_c
in

m
y_

ci
n

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

d
o

n
e

re
d

_c
o

u
t

m
y_

co
u

t
+

C
el

ls

re
su

lt
 r

ed
u

ct
io

n

w
id

th
w

id
th

+1

w
id

th

r_
se

l

r

y
m

q
in

a_
0

xi
n

ci
n

st
ar

t

re
d

_c
in

m
y_

ci
n

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

d
o

n
e

re
d

_c
o

u
t

m
y_

co
u

t
+

C
el

ls

re
su

lt
 r

ed
u

ct
io

n

w
id

th
w

id
th

+1

w
id

th

r_
se

l

r

y
m

q
in

a_
0

xi
n

ci
n

st
ar

t

re
d

_c
in

m
y_

ci
n

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

d
o

n
e

re
d

_c
o

u
t

m
y_

co
u

t
+

C
el

ls

re
su

lt
 r

ed
u

ct
io

n

w
id

th
w

id
th

+1

w
id

th

r_
se

l

y 0
m

0

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

re
d

_c
o

u
t

m
y_

co
u

t   +

First cell

a_
0

ci
n

d
o

n
e

re
d

_c
in

Last cell

r_
se

l

st
ar

t

xi
n

xi

y
m

r

n

n
n

Figure 2.5: Example of the pipeline structure (3 stages)

6 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



2 Architecture
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

r

y
m

q
in

a_
0

xi
n

ci
n

st
ar

t

re
d

_c
in

m
y_

ci
n

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

d
o

n
e

re
d

_c
o

u
t

m
y_

co
u

t
+

C
el

ls

re
su

lt
 r

ed
u

ct
io

n

w
id

th
w

id
th

+1

w
id

th

r_
se

l

r

y
m

q
in

a_
0

xi
n

ci
n

st
ar

t

re
d

_c
in

m
y_

ci
n

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

d
o

n
e

re
d

_c
o

u
t

m
y_

co
u

t
+

C
el

ls

re
su

lt
 r

ed
u

ct
io

n

w
id

th
w

id
th

+1

w
id

th

r_
se

l
r

y
m

q
in

a_
0

xi
n

ci
n

st
ar

t

re
d

_c
in

m
y_

ci
n

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

d
o

n
e

re
d

_c
o

u
t

m
y_

co
u

t
+

C
el

ls

re
su

lt
 r

ed
u

ct
io

n

w
id

th
w

id
th

+1

w
id

th

r_
se

l

y 0
m

0

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

re
d

_c
o

u
t

m
y_

co
u

t   +

First cell

a_
0

ci
n

d
o

n
e

re
d

_c
in

Last cell

r_
se

l

a_
0

ci
n

d
o

n
e

re
d

_c
in

Last cell

r_
se

l

y 0
m

0

q
o

u
t

a_
m

sb

xo
u

t

co
u

t

re
d

_c
o

u
t

m
y_

co
u

t   +

First cell

st
ar

t

xi
n

xi
n

xi

y
m

1
0

0
1

1
0

01

r

n

n
n

1
1

1
0

0

X
1

0

Figure 2.6: Example of a split pipeline (1+2 stages)

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

7



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 2 Architecture

2.2.2 Operand RAM and exponent FIFO

The core’s RAM is designed to store 4 operands and a modulus. 2 Three (3) options are available for the
implementation of the RAM. Setting the parameter C_MEM_STYLE, will change the implementation style.
All styles try to use the RAM resources available on the FPGA.
If the FPGA supports asymmetric RAMs, i.e. with a different read and write width, we suggest that the
option "asym" is selected. Since the (device specific) RAM blocks are inferred through code, it is imperative
to select the right device (C_FPGA_MAN), as this inference is different between manufacturers. Currently, only
Altera and Xilinx are supported.
If there’s no asymmetric RAM support, the option "generic" should be selected. This option will work for
most FPGAs, but the disadvantage is that it will use more resources than the "asym" option. This is because
a significant number of LUTs will be used to construct an asymmetric RAM.
For both options the size of the RAM adapts dynamically to the chosen pipeline width (C_NR_BITS_TOTAL).
Finally, the option "xil_prim" is targeted specifically to Xilinx devices. It uses blocks of RAM generated
with CoreGen. These blocks are of a fixed width and this results in a fixed RAM of 4x1536 bit for the
operands and 1536 bit for the modulus. This option is deprecated in favor of "asym".
Reading and writing (from the bus side) to the operands and modulus is done one 32-bit word at a time.
If using a split pipeline, it is important that operands for the higher part of the pipeline are loaded into the
RAM with preceding zero’s for the lower bits of the pipeline. As a rule of thumb, the number of FPGA
RAM blocks that will be used is given by (2.2):

2 ·C NR BITS TOTAL/32 (2.2)

To store the exponents, there is a FIFO of 32 bit wide. Every 32 bit entry has to be formatted as 16 bit of e0
for the lower part [15:0] and 16 bit of e1 for the higher part [31:16]. Entries have to be pushed in the FIFO
starting with the least significant word and ending with the most significant word of the exponents.
For the FIFO there are 2 styles available. The implementation style depends on the style of the operand
memory and it can not be set directly. When the RAM option "xil_prim" is chosen, the resulting FIFO
will use the FIFO18E1 primitive. It is able to store 512 entries, meaning 2 exponents of each 8192 bit long.
When the RAM options "generic" or "asym" are chosen, a generic FIFO will be implemented. This
consist of a symmetric RAM with the control logic for a FIFO. The depth of this generic FIFO is adjustable
with the parameter C_FIFO_DEPTH. The number of RAM blocks for the FIFO is given by (2.3), where
RAMBLOCK_SIZE is the size [bits] of the FPGA’s RAM primitive.

[(C FIFO DEPTH+1) ·32]/RAMBLOCK SIZE (2.3)

2.2.3 Control unit

The control unit loads in the operands and has full control over the multiplier. For single multiplications,
it latches in the x operand, then places the y operand on the bus and starts the multiplier. In case of an
exponentiation, the FIFO is emptied while the necessary single multiplications are performed. When the
computation is done, the ready signal is asserted to notify the system.

2This is the default configuration. The number of operands can be increased, but the control logic is only designed to work
with the default configuration.

8 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



2 Architecture
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

2.2.4 IO ports and memory map

The mod_sim_exp_core IO ports

Port Width Direction Description

clk 1 in core clock input
reset 1 in reset signal (active high) resets the pipeline, fifo and

control logic

operand memory interface
rw_address 9 in operand memory read/write address (structure de-

scibed below)

data_out 32 out operand data out (0 is lsb)

data_in 32 in operand data in (0 is lsb)
write_enable 1 in write enable signal, latches data_in to operand

RAM

collision 1 out collision output, asserts on a write error

exponent FIFO interface
fifo_din 32 in FIFO data in, bits [31:16] for e1 operand and bits

[15:0] for e0 operand

fifo_push 1 in push fifo_din into the FIFO
fifo_nopush 1 out flag to indicate if there was an error pushing the

word to the FIFO

fifo_full 1 out flag to indicate the FIFO is full

control signals
x_sel_single 2 in selection for x operand source during single

multiplication
y_sel_single 2 in selection for y operand source during single

multiplication
dest_op_single 2 in selection for the result destination operand for single

multiplication
p_sel 2 in specifies which pipeline part to use for exponentia-

tion / multiplication.
“01” : use lower pipeline part
“10” : use higher pipeline part
“11” : use full pipeline

modulus_sel 1 in selection for which modulus to use for the calcula-
tions (only available if C_MEM_STYLE = "generic"

or "asym"). Otherwise set to 0
exp_m 1 in core operation mode. “0” for single multiplications

and “1” for exponentiations

start 1 in start the calculation for current mode

ready 1 out indicates the multiplication/exponentiation is done
calc_time 1 out is high during a multiplication, indicator for used

calculation time

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

9



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 2 Architecture

The mod_sim_exp_core parameters

Name Description VHDL Type Default Value

C_NR_BITS_TOTAL total width of the multiplier in bits integer 1536

C_NR_STAGES_TOTAL total number of stages in the pipeline integer 96

C_NR_STAGES_LOW number of lower stages in the pipeline, de-
fines the bit-width of the lower pipeline
part

integer 32

C_SPLIT_PIPELINE option to split the pipeline in 2 parts boolean true

C_FIFO_DEPTH depth of the generic FIFO, only applicable
if C_MEM_STYLE = "generic" or "asym"

integer 32

C_MEM_STYLE select the RAM memory style (3 options): string "generic"

"generic" : use general 32-bit RAMs
"asym" : use asymmetric RAMs
(For more information see 2.2.2)
"xil_prim" : use xilinx primitives
(deprecated)

C_FPGA_MAN device manufacturer:
"xilinx" or "altera" string "xilinx"

The following figure describes the structure of the Operand RAM memory, for every operand there is a
space of 2048 bits reserved. So operand widths up to 2048 bits are supported.

unused space

M / OP
OPERAND/

(MODULUS)
WORD ADDRESS

8

(M1)
2048 bits

M
2048 bits

OP3
2048 bits

OP2
2048 bits

OP1
2048 bits

OP0
2048 bits

mod_sim_exp_core 
memory mapping
(32-bit word adressing)

rw
_a
d
d
re
ss

000h

040h

080h

0C0h

100h

140h

address structure:
bit:  8   -> '1': modulus
                  '0': operands
bits: 7-6 -> operand select in case of bit 8 = '0'
                    modulus select in case of bit 8 = '1'
bits: 5-0 -> modulus addr / operand addr resp.

Note: modulus M1 is optional, and only available when C_MEM_STYLE = 

generic or asym

01234567

1FFh

180h

Figure 2.7: Address structure of the exponentiation core

10 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



2 Architecture
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

2.3 Bus interface

The bus interface implements the register necessary for the control unit inputs to the mod_sim_exp_core
entity. It also maps the memory to the required bus and connects the interrupt signals. The embedded
processor then has full control over the core.

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

11



Chapter 3

Operation

3.1 Pipeline operation

The operation of the pipeline is shown in Figure 3.1. One can see that the stages are started every 2 clock
cycles (τc is the core clock period). This is needed because the least significant bit of the next stage result is
needed. Every stage has to run n (the width of the operands) times for the multiplication to be complete.

0

0

0 1

1

1 2

2

2 3

0

1

2 3

3 2 1 0

τc 

2 τc 

3 τc 

4 τc 

5 τc 

6 τc 

7 τc 

8 τc 

0

xi, qi, ci

alsb

Stage

Time

Figure 3.1: Pipeline operation: Each circle represents an active stage. The number indicates how much times that
stage has run. Dotted line contours indicate the stage is inactive.

For performing one Montgomery multiplication using this core, the total computation time Tm for an n-bit
operand with a k-stage pipeline is given by (3.1).

Tm = [k+2(n−1)]τc (3.1)

12 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



3 Operation
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

3.2 Modular Simultaneous exponentiation operations

Exponentiations are calculated with Algorithm 1 which uses the Montgomery multiplier as the main com-
putation step. It uses the principle of a square-and-multiply algorithm to calculate an exponentiation with 2
bases.

Input: g0, g1, e0 = (e0t−1 · · ·e00)2, e1 = (e0t−1 · · ·e00)2, R2 mod m, m
Output: ge0

0 ·g
e1
1 mod m

1: g̃0 := Mont(g0,R2), g̃1 := Mont(g1,R2), g̃01 := Mont(g̃0, g̃1)
2: a := Mont(R2,1) . This is the same as a := R mod m.
3: for i← (t−1) downto 0 do
4: a := Mont(a,a)
5: switch e1i , e0i

6: 0, 1 : a := Mont(a, g̃0)
7: 1, 0 : a := Mont(a, g̃1)
8: 1, 1 : a := Mont(a, g̃01)

9: a := Mont(a,1)
10: return a

It can be seen that the algorithm requires R2 mod m which is 22n mod m. We assume R2 mod m can be
provided or pre-computed. The for loop in the algorithm is executed by the control logic of the core. Apart
from this, a few pre- and one post-calculations have to be performed.
The computation time for an exponentiation depends on the number of zero’s in the exponents, from Al-
gorithm 1 one can see that if both exponent bits are zero at a time, no multiplication has to be performed.
Thus reducing the total time. The average computation time for a modular simultaneous exponentiation,
with n-bit base operands and t-bit exponents is given by (3.2).

Tse =
7
4

t ·Tm =
7
4

t · [k+2(n−1)]τc (3.2)

For single base exponentiations, i.e. 1 exponent is equal to zero, the average exponentiation time is given
by (3.3).

Te =
3
2

t ·Tm =
3
2

t · [k+2(n−1)]τc (3.3)

The formulas (3.2) and (3.3) given here are only the theoretical average time for an exponentiation, excluding
the pre- and post-computations.

3.3 Core operation steps

The core can operate in 2 modes, multiplication or exponentiation mode. The steps required to do one of
these actions are described here.

3.3.1 Single Montgomery multiplication

The following steps are needed for a single Montgomery multiplication:

1. load the modulus to the RAM using the 32 bit bus

2. load the desired x and y operands into any 2 locations of the operand RAM using the 32 bit bus.

3. select the correct input operands for the multiplier using x_sel_single and y_sel_single

4. select the result destination operand using result_dest_op

5. set exp/m = ‘0’ to select multiplication mode

6. set p_sel to choose which pipeline part you will use

7. generate a start pulse for the core

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

13



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 3 Operation

8. wait until interrupt is received and read out result in selected operand

Note: this computation gives a result r = x ·y ·R−1 mod m. If the actual product of x and y is desired, a final
Montgomery multiplication of the result with R2 is needed.

3.3.2 Modular simultaneous exponentiation

The core requires g̃0, g̃0, g̃01 and a to be loaded into the correct operand spaces before starting the exponen-
tiation. These parameters are calculated using single Montgomery multiplications as follows:

g̃0 = Mont(g0,R2) = g0 ·R mod m in operand 0

g̃1 = Mont(g1,R2) = g1 ·R mod m in operand 1

g̃01 = Mont(g̃0, g̃1) = g0 ·g1 ·R mod m in operand 2

a = Mont(R2,1) = R mod m in operand 3

When the exponentiation is done, a final multiplication has to be started by the software to multiply a with
1. The steps needed for a full simultaneous exponentiation are:

1. load the modulus to the RAM using the 32 bit bus

2. load the desired g0, g1 operands and R2 mod m into the operand RAM using the 32 bit bus.

3. set p_sel to choose which pipeline part you will use

4. compute g̃0 by using a single Montgomery multiplication of g0 with R2 and place the result g̃0 in
operand 0.

5. compute g̃1 by using a single Montgomery multiplication of g1 with R2 and place the result g̃1 in
operand 1.

6. compute g̃01 by using a single Montgomery multiplication of g̃0 with g̃1 and place the result g̃01 in
operand 2.

7. compute a by using a single Montgomery multiplication of R2 with 1 and place the result a in operand
3.

8. set the core in exponentiation mode (exp/m=’1’)

9. generate a start pulse for the core

10. wait until interrupt is received

11. perform the post-computation using a single Montgomery multiplication of a(in operand 3) with 1
and read out result

14 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



Chapter 4

PLB interface

4.1 Structure

The Processor Local Bus interface for this core is structured as in Figure 4.1. The core acts as a slave to
the PLB bus. The PLB v4.6 Slave[3] logic translates the interface to a lower level IP Interconnect Interface
(IPIC). This is then used to connect the core internal components to. The user logic contains the expo-
nentiation core and the control register for the core its control inputs and outputs. An internal interrupt
controller[4] handles the outgoing interrupt requests and a software reset module is provided to be able to
reset the IP core at runtime. This bus interface is created using the “Create or Import Peripheral” wizard
from Xilinx Platform Studio.

Processor Local Bus (version 4.6)

S
P

L
B

PLB v4.6

Slave

IP
IC

 S
la

v
e

   User Logic

Control

Register

mod_sim_exp_core

Core Memory

Software 

Reset

Interrupt 

Contoller

Figure 4.1: PLB IP core structure

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

15



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 4 PLB interface

4.2 Parameters

This section describes the parameters used to configure the core, only the relevant parameters are discussed.
PLB specific parameters are left to the user to configure. The IP core specific parameters and their respective
use are listed in the table below.

16 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



4 PLB interface
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

Name Description VHDL Type Default Value
Memory configuration
C_FIFO_DEPTH depth of the generic FIFO, only applicable

if C_MEM_STYLE = "generic" or "asym"
integer 32

C_MEM_STYLE the memory structure to use for the RAM,
choice between 3 options:

string "generic"

"xil_prim" : use xilinx primitives
"generic" : use general 32-bit RAMs
"asym" : use asymmetric RAMs
(For more information see 2.2.2)

C_FPGA_MAN device manufacturer: string "xilinx"

"xilinx" or "altera"

C_BASEADDR base address for the IP core’s memory
space

std logic vector X”FFFFFFFF”

C_HIGHADDR high address for the IP core’s memory
space

std logic vector X”00000000”

C_M_BASEADDR base address for the modulus memory
space

std logic vector X”FFFFFFFF”

C_M_HIGHADDR high address for the modulus memory
space

std logic vector X”00000000”

C_OP0_BASEADDR base address for the operand 0 memory
space

std logic vector X”FFFFFFFF”

C_OP0_HIGHADDR high address for the operand 0 memory
space

std logic vector X”00000000”

C_OP1_BASEADDR base address for the operand 1 memory
space

std logic vector X”FFFFFFFF”

C_OP1_HIGHADDR high address for the operand 1 memory
space

std logic vector X”00000000”

C_OP2_BASEADDR base address for the operand 2 memory
space

std logic vector X”FFFFFFFF”

C_OP2_HIGHADDR high address for the operand 2 memory
space

std logic vector X”00000000”

C_OP3_BASEADDR base address for the operand 3 memory
space

std logic vector X”FFFFFFFF”

C_OP3_HIGHADDR high address for the operand 3 memory
space

std logic vector X”00000000”

C_FIFO_BASEADDR base address for the FIFO memory space std logic vector X”FFFFFFFF”

C_FIFO_HIGHADDR high address for the FIFO memory space std logic vector X”00000000”
Multiplier configuration
C_NR_BITS_TOTAL total width of the multiplier in bits integer 1536

C_NR_STAGES_TOTAL total number of stages in the pipeline integer 96

C_NR_STAGES_LOW number of lower stages in the pipeline, de-
fines the bit-width of the lower pipeline
part

integer 32

C_SPLIT_PIPELINE option to split the pipeline in 2 parts boolean true

The complete IP core’s memory space can be controlled. As can be seen, the operand, modulus and FIFO
memory space can be chosen separately from the IP core’s memory space which hold the registers for con-
trol, software reset and interrupt control. The core’s memory space must have a minimum width of 1K byte

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

17



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 4 PLB interface

for all registers to be accessible. For the FIFO memory space, a minimum width of 4 byte is needed, since
the FIFO is only 32 bit wide. The memory space width for the operands and the modulus need a minimum
width equal to the total multiplier width.

There are 4 parameters to configure the multiplier. These values define the width of the multiplier operands
and the number of pipeline stages. If C_SPLIT_PIPELINE is false, only operands with a width of
C_NR_BITS_TOTAL are valid. Else if C_SPLIT_PIPELINE is true, 3 operand widths can be supported:

• the length of the full pipeline (C NR BIT S TOTAL)

• the length of the lower pipeline ( C NR BIT S TOTAL
C NR STAGES TOTAL ·C NR STAGES LOW )

• the length of the higher pipeline ( C NR BIT S TOTAL
C NR STAGES TOTAL ·(C NR STAGES TOTAL−C NR STAGES LOW )

18 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



4 PLB interface
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

4.3 IO ports

Port Width Direction Description
PLB bus connections
SPLB_Clk 1 in see note 1
SPLB_Rst 1 in see note 1
PLB_ABus 32 in see note 1
PLB_PAValid 1 in see note 1
PLB_masterID 3 in see note 1
PLB_RNW 1 in see note 1
PLB_BE 4 in see note 1
PLB_size 4 in see note 1
PLB_type 3 in see note 1
PLB_wrDBus 32 in see note 1
Sl_addrAck 1 out see note 1
Sl_SSize 2 out see note 1
Sl_wait 1 out see note 1
Sl_rearbitrate 1 out see note 1
Sl_wrDack 1 out see note 1
Sl_wrComp 1 out see note 1
Sl_rdBus 32 out see note 1
Sl_MBusy 8 out see note 1
Sl_MWrErr 8 out see note 1
Sl_MRdErr 8 out see note 1
unused PLB signals
PLB_UABus 32 in see note 1
PLB_SAValid 1 in see note 1
PLB_rdPrim 1 in see note 1
PLB_wrPrim 1 in see note 1
PLB_abort 1 in see note 1
PLB_busLock 1 in see note 1
PLB_MSize 2 in see note 1
PLB_TAttribute 16 in see note 1
PLB_lockerr 1 in see note 1
PLB_wrBurst 1 in see note 1
PLB_rdBurst 1 in see note 1
PLB_wrPendReq 1 in see note 1
PLB_rdPendReq 1 in see note 1
PLB_rdPendPri 2 in see note 1
PLB_wrPendPri 2 in see note 1
PLB_reqPri 2 in see note 1
Sl_wrBTerm 1 out see note 1
Sl_rdWdAddr 4 out see note 1
Sl_rdBTerm 1 out see note 1
Sl_MIRQ 8 out see note 1
Core signals
IP2INTC_Irpt 1 out core interrupt signal
calc_time 1 out is high when core is performing a multiplication, for monitoring

Note 1: The function and timing of this signal is defined in the IBM R© 128-Bit Processor Local Bus Ar-
chitecture Specification Version 4.6.

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

19



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 4 PLB interface

4.4 Registers

This section specifies the IP core internal registers as seen from the software. These registers allow to con-
trol and configure the modular exponentiation core and to read out its state. All addresses given in this table
are relative to the IP core’s base address.

Name Width Address Access Description

control register 32 0x0000 RW multiplier core control signals and
interrupt flags register

software reset 32 0x0100 W soft reset for the IP core

Interrupt controller registers

global interrupt enable register 32 0x021C RW global interrupt enable for the IP core
interrupt status register 32 0x0220 R register for interrupt status flags
interrupt enable register 32 0x0228 RW register to enable individual IP core interrupts

20 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



4 PLB interface
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

4.4.1 Control register (offset = 0x0000)

This registers holds the control inputs to the multiplier core and the interrupt flags.

P_SEL DEST_OP X_OP Y_OP START

876543210

EXP/M

9

Control bits

1610-15

--

20-31

READY
MEM_
ERR

17

FIFO_
FULL

18

FIFO_
ERR

19

--

Interrupt flags

Figure 4.2: control register

bits 0-1 P SEL : selects which pipeline part to be active
• ”01” lower pipeline part
• ”10” higher pipeline part
• ”11” full pipeline
• ”00” invalid selection

bits 2-3 DEST OP : selects the operand (0-3) to store the result in for a single
Montgomery multiplication1

bits 4-5 X OP : selects the x operand (0-3) for a single Montgomery multiplication1

bits 6-7 Y OP : selects the y operand (0-3) for a single Montgomery multiplication1

bit 8 START : starts the multiplication/exponentiation

bit 9 EXP/M : selects the operating mode
• ”0” single Montgomery multiplications
• ”1” simultaneous exponentiations

bits 10-15 unimplemented

bit 16 READY : ready flag, ”1” when multiplication is done
must be cleared in software

bit 17 MEM ERR : memory collision error flag, ”1” when write error occurred
must be cleared in software

bit 18 FIFO FULL : FIFO full error flag, ”1” when FIFO is full
must be cleared in software

bit 19 FIFO ERR : FIFO write/push error flag, ”1” when push error occurred
must be cleared in software

bits 20-31 unimplemented

1when the core is running in exponentiation mode, the parameters DEST OP, X OP and Y OP have no effect.

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

21



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 4 PLB interface

4.4.2 Software reset register (offset = 0x0100)

This is a register with write only access, and provides the possibility to reset the IP core from software by
writing 0x0000000A to this address. The reset affects the full IP core, thus resetting the control register,
interrupt controller, the multiplier pipeline, FIFO and control logic of the core.

4.4.3 Global interrupt enable register (offset = 0x021C)

This register contains a single defined bit in the high-order position. The GIE bit enables or disables all
interrupts form the IP core.

GIE

0 1-31

--

Figure 4.3: Global interrupt enable register

bit 0 GIE : Global interrupt enable
• ”0” disables all core interrupts
• ”1” enables all core interrupts

bits 1-31 unimplemented

4.4.4 Interrupt status register (offset = 0x0220)

Read-only register that contains the status of the core interrupts. Currently there is only one common inter-
rupt from the core that is asserted when a multiplication/exponentiation is done, FIFO is full, on FIFO push
error or memory write collision.

310-30

-- CIS

Figure 4.4: Interrupt status register

bits 0-30 unimplemented

bit 31 CIS : Core interrupt status
is high when interrupt is requested from core

4.4.5 interrupt enable register (offset = 0x0228)

This register contains the interrupt enable bits for the respective interrupt bits of the interrupt status register.

310-30

-- CIE

Figure 4.5: Interrupt enable register

bits 0-30 unimplemented

bit 31 CIE : Core interrupt enable
• ”0” disable core interrupt
• ”1” enable core interrupt

22 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



4 PLB interface
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

4.5 Interfacing the core’s RAM

Special attention must be taken when writing data to the operands and modulus. The least significant bit
of the data has be on the lowest address and the most significant bit on the highest address. A write to the
RAM has to happen 1 word at a time, byte writes are not supported due to the structure of the RAM.

4.6 Handling interrupts

When the embedded processor receives an interrupt signal from this core, it is up to the controlling software
to determine the source of the interrupt by reading out the interrupt flag of the control register.

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

23



Chapter 5

AXI4-Lite interface

5.1 Structure

The AXI4-Lite interface for this core acts as a slave to the AXI bus. It only supports the AXI-Lite procotol
since there is no ID reflection of the data transfer and only a 32-bit wide bus is supported. The AXI4-
Lite IPcore block contains the exponentiation core and a control register for the core its control inputs and
outputs.

5.2 Parameters

This section describes the parameters used to configure the core, only the relevant parameters are discussed.
AXI specific parameters are left to the user to configure. The IP core specific parameters and their respective
use are listed in the table below.

Name Description VHDL Type Default Value
Memory configuration
C_FIFO_DEPTH depth of the generic FIFO, only applicable

if C_MEM_STYLE = "generic" or "asym"
integer 32

C_MEM_STYLE the memory structure to use for the RAM,
choice between 3 options:

string "generic"

"xil_prim" : use xilinx primitives
"generic" : use general 32-bit RAMs
"asym" : use asymmetric RAMs
(For more information see 2.2.2)

C_FPGA_MAN device manufacturer: string "xilinx"

"xilinx" or "altera"

C_BASEADDR base address for the IP core’s memory
space

std logic vector X”FFFFFFFF”

C_HIGHADDR high address for the IP core’s memory
space

std logic vector X”00000000”

Multiplier configuration
C_NR_BITS_TOTAL total width of the multiplier in bits integer 1536

C_NR_STAGES_TOTAL total number of stages in the pipeline integer 96

C_NR_STAGES_LOW number of lower stages in the pipeline, de-
fines the bit-width of the lower pipeline
part

integer 32

C_SPLIT_PIPELINE option to split the pipeline in 2 parts boolean true

24 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



5 AXI4-Lite interface
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

The IP core’s memory space is organised in a fixed structure as show in Figure 5.1. Only the upper 17 bits
(31:15) of the base address can be chosen freely, the lower bits must be 0. So the C_BASEADDR parameter
must end in 0xXXXX0000 or 0xXXXX8000 in hexadecimal representation. The core’s memory space must
have a minimum width of 28K byte for all registers to be accessible.

Control reg

FIFO

OP3
4096 bits

OP2
4096 bits

OP1
2048 bits

OP0
4096 bits

M
4096 bits

AXI4-Lite interface 
memory mapping

(byte adressing)

B
u

s 
ad

d
re

ss

XXXX0000h

XXXX1000h

XXXX2000h

XXXX3000h

XXXX4000h

XXXX5000h

XXXX6FFFh

XXXX6000h

Figure 5.1: AXI4-Lite IP core memory structure

There are 4 parameters to configure the multiplier. These values define the width of the multiplier operands
and the number of pipeline stages. If C_SPLIT_PIPELINE is false, only operands with a width of
C_NR_BITS_TOTAL are valid. Else if C_SPLIT_PIPELINE is true, 3 operand widths can be supported:

• the length of the full pipeline (C NR BIT S TOTAL)

• the length of the lower pipeline ( C NR BIT S TOTAL
C NR STAGES TOTAL ·C NR STAGES LOW )

• the length of the higher pipeline ( C NR BIT S TOTAL
C NR STAGES TOTAL ·(C NR STAGES TOTAL−C NR STAGES LOW )

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

25



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 5 AXI4-Lite interface

5.3 IO ports

Port Width Direction Description
AXI4-Lite bus connections
S_AXI_ACLK 1 in see note 1
S_AXI_ARESETN 1 in see note 1
S_AXI_AWADDR 32 in see note 1
S_AXI_AWVALID 1 in see note 1
S_AXI_AWREADY 1 out see note 1
S_AXI_WDATA 32 in see note 1
S_AXI_WVALID 1 in see note 1
S_AXI_WREADY 1 out see note 1
S_AXI_WSTRB 4 in see note 1
S_AXI_BVALID 1 out see note 1
S_AXI_BREADY 1 in see note 1
S_AXI_BRESP 2 out see note 1
S_AXI_ARADDR 32 in see note 1
S_AXI_ARVALID 1 in see note 1
S_AXI_ARREADY 1 out see note 1
S_AXI_RDATA 32 out see note 1
S_AXI_RVALID 1 out see note 1
S_AXI_RREADY 1 in see note 1
S_AXI_RRESP 2 out see note 1
Core signals
IntrEvent 1 out core interrupt signal
calc_time 1 out is high when core is performing a multiplication, for monitoring

Note 1: The function and timing of this signal is defined in the AMBA R© AXI Protocol Version: 2.0 Speci-
fication.

5.4 Registers

This section specifies the IP core internal registers as seen from the software. These registers allow to con-
trol and configure the modular exponentiation core and to read out its state. All addresses given in this table
are relative to the IP core’s base address.

Name Width Address Access Description

control register 32 0x6000 RW multiplier core control signals and
interrupt flags register

26 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



5 AXI4-Lite interface
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

5.4.1 Control register (offset = 0x6000)

This registers holds the control inputs to the multiplier core and the interrupt flags.

P_SEL DEST_OP X_OP Y_OP START

232425262728293031

EXP/M

22

Control bits

--

21

RESET

20 1519-16

--

11-0

READY
MEM_
ERR

14

FIFO_
FULL

13

FIFO_
ERR

12

--

Interrupt flags

Figure 5.2: control register

bits 31-30 P SEL : selects which pipeline part to be active
• ”01” lower pipeline part
• ”10” higher pipeline part
• ”11” full pipeline
• ”00” invalid selection

bits 29-28 DEST OP : selects the operand (0-3) to store the result in for a single
Montgomery multiplication1

bits 27-26 X OP : selects the x operand (0-3) for a single Montgomery multiplication1

bits 25-24 Y OP : selects the y operand (0-3) for a single Montgomery multiplication1

bit 23 START : starts the multiplication/exponentiation

bit 22 EXP/M : selects the operating mode
• ”0” single Montgomery multiplications
• ”1” simultaneous exponentiations

bit 21 unimplemented

bit 20 RESET : active high reset for the core2

bits 19-16 unimplemented

bit 15 READY : ready flag, ”1” when multiplication is done
must be cleared in software

bit 14 MEM ERR : memory collision error flag, ”1” when write error occurred
must be cleared in software

bit 13 FIFO FULL : FIFO full error flag, ”1” when FIFO is full
must be cleared in software

bit 12 FIFO ERR : FIFO write/push error flag, ”1” when push error occurred
must be cleared in software

bits 11-0 unimplemented

1when the core is running in exponentiation mode, the parameters DEST OP, X OP and Y OP have no effect.
2The reset affects the full IP core, thus resetting the control register, interrupt controller, the multiplier pipeline, FIFO and

control logic of the core.

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

27



Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 5 AXI4-Lite interface

5.5 Interfacing the core’s RAM

Special attention must be taken when writing data to the operands and modulus. The least significant bit
of the data has be on the lowest address and the most significant bit on the highest address. A write to the
RAM has to happen 1 word at a time, byte writes are not supported due to the structure of the RAM.

5.6 Handling interrupts

When the embedded processor receives an interrupt signal from this core, it is up to the controlling software
to determine the source of the interrupt by reading out the interrupt flag of the control register.

28 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



Chapter 6

Performance and resource usage

This Modular Simultaneous Exponentiation IP core is designed to speed up modular simultaneous exponen-
tiations on embedded systems. On embedded processors, software implementations (even with specialized
libraries like GMP1), demand much CPU time when large operands are used. Practical tests of this core have
shown a significant speed-up compared to software computations. For n = 1536 and t = 1024, hardware is
about 70 times faster than a GMP-based implementation (with embedded linux) an a 100 MHz MicroBlaze
processor (32-bit).

For the multiplier, execution time is given by (3.1), where τc is defined by the core operating frequency.
Since the maximum frequency is highly influenced by the latency in the critical path, we can expect to
achieve higher frequencies for shorter stage lengths. This trend is seen in Figure 6.1 for different operand
lengths, which are results used from the static timing analysis during synthesis. A minimum execution
time in this graph is found when the maximum operating frequency of the core first reaches the maximum
frequency of the FGPA in use. Beyond that point, using a smaller stage width has no positive effect anymore
because the frequency can not rise anymore and the number of clock cycles to complete a multiplication
increases. Another remark that can be made is that splitting the pipeline, has no considerable effect on the
performance of the core.

1GNU Multiple Precision Arithmetic Library – Project website: http://gmplib.org/

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

29

http://gmplib.org/


Modular Simultaneous Exponentiation
IP Core Specification (v1.4) – v1.4 6 Performance and resource usage

1,00

10,00

100,00

1.000,00

1 10 100 1000

m
u

lt
ip

lic
at

io
n

 e
xe

cu
ti

o
n

 t
im

e 
@

 f
m

ax
 [

µ
s]

 

stage width [in bits] 

Virtex 6: xc6vlx240t-1ff1156 

512 bit

1024 bit

1536 bit

1536 bit split

2048 bit

Figure 6.1: Example of multiplication execution time in function of the stage width for a Virtex6 FPGA.

In general, shorter stage lengths result in smaller execution times. However, using more stages implies
that more flip-flops will be needed, thus more resources are used. A balance must be found between a
execution time and resources. Currently, the core’s operating frequency is the same as the bus frequency
of the embedded processor. For optimal operation of the core, the stage width must be chosen so that the
maximum frequency given in synthesis is just above or equal to the bus frequency.
In the tables below resource usage and timing results are shown for different operand lengths and FPGA’s.
As a rule of thumb, the number of flip-flops is given by (6.1).

5+2 ·n+6 · n
s
+ dlog2(n)e+ dlog2(

n
s
)e (6.1)

where s is the stage width.
The number of LUTs is almost completely determined by n and the number of LUT-inputs. A pre-synthesis
estimate can be made with (6.2) and (6.3).

8 ·n for 4-input LUTs (6.2)

6 ·n for 6-input LUTs (6.3)

Results for a Virtex 6 device xc6vlx240t-1ff1156, speedgrade -1
Synthesis settings: Optimization: area, Effort: high

n 512 1024 2048 [bit]
stagewidth 64 16 4 64 16 4 64 16 4 [bit]

fmax 64,91 199,96 395,57 64,91 199,66 358,62 94,91 199,96 358,62 [MHz]
Tm@ fmax 15,87 5,27 2,91 31,77 10,55 9,63 63,57 21,11 12,84 [µs]

cycles 1030 1054 1150 2062 2110 3454 4126 4222 4606 [cycles]
Resources

Flipflops 1089 1235 1813 2163 2453 5401 4309 4887 7193
LUT’s 3094 3096 3102 6169 6171 9252 12315 12318 12324

30 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven



6 Performance and resource usage
Modular Simultaneous Exponentiation

IP Core Specification (v1.4) – v1.4

Results for a Spartan 3 device xc3s1000-5fg320, speedgrade -5
Synthesis settings: Optimization: area, Effort: high

n 256 512 [bit]
stagewidth 32 8 2 64 32 8 2 [bit]

fmax 21,49 69,30 127,32 11,36 21,49 69,30 127,32 [MHz]
Tm@ fmax 24,1 7,82 5,01 90,7 48,29 15,67 10,04 [µs]

cycles 518 542 638 1030 1038 1086 1278 [cycles]
Resources

Flipflops 576 722 1300 1089 1138 1428 2582
LUT’s 2072 2074 2079 4124 4126 4128 4135

Results for a Virtex 4 device xc4vlx200-11ff1513, speedgrade -11
Synthesis settings: Optimization: area, Effort: high

n 512 1024 [bit]
stagewidth 64 32 8 2 128 32 8 2 [bit]

fmax 22,83 43,05 138,31 246,98 11,77 43,05 138,31 246,98 [MHz]
Tm@ fmax 45,12 24,11 7,85 5,17 87,5 24,5 8,31 6,21 [µs]

cycles 1030 1038 1086 1278 1030 1054 1150 1534 [cycles]
Resources

Flipflops 1089 1138 1428 2582 2114 2260 2838 5144
LUT’s 4124 4126 4128 4135 8225 8230 8234 8238

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

31



Bibliography

[1] P. L. Montgomery, “Modular multiplication without trail division,” Mathematics of Computation,
vol. 44, no. 170, pp. 519–521, 1985.

[2] N. N. de Macedo Mourelle L., “Three hardware architectures for the binary modular exponentiation:
Sequential, parallel, and systolic,” IEEE Transactions on Circuits and Systems - I: Regular Papers,
vol. 53, no. 3, pp. 627–633, 2006.

[3] Xilinx, “Plbv46 slave single (v1.01a) ds561.” http://www.xilinx.com/support/documentation/
ip_documentation/plbv46_slave_single.pdf.

[4] Xilinx, “Interrupt control (v2.01a) ds516.” http://www.xilinx.com/support/documentation/ip_
documentation/interrupt_control.pdf.

32 DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

http://www.xilinx.com/support/documentation/ip_documentation/plbv46_slave_single.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plbv46_slave_single.pdf
http://www.xilinx.com/support/documentation/ip_documentation/interrupt_control.pdf
http://www.xilinx.com/support/documentation/ip_documentation/interrupt_control.pdf


License

Copyright (C) 2011 DraMCo research group and OPENCORES.ORG
This project may be used and distributed without restriction provided that the copyright statement is not
removed from the files and that any derivative work contains the original copyright notice and the associated
disclaimer.

This project is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This project is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this source; if not,
download it from http://www.opencores.org/lgpl.shtml

DraMCo research group – KAHO Sint-Lieven
Association KU Leuven

33


	Acknowledgments
	Document Revision History
	Introduction
	Architecture
	Block diagram
	Exponentiation core
	Multiplier
	Operand RAM and exponent FIFO
	Control unit
	IO ports and memory map

	Bus interface

	Operation
	Pipeline operation
	Modular Simultaneous exponentiation operations
	Core operation steps
	Single Montgomery multiplication
	Modular simultaneous exponentiation


	PLB interface
	Structure
	Parameters
	IO ports
	Registers
	Control register (offset = 0x0000)
	Software reset register (offset = 0x0100)
	Global interrupt enable register (offset = 0x021C)
	Interrupt status register (offset = 0x0220)
	interrupt enable register (offset = 0x0228)

	Interfacing the core's RAM
	Handling interrupts

	AXI4-Lite interface
	Structure
	Parameters
	IO ports
	Registers
	Control register (offset = 0x6000)

	Interfacing the core's RAM
	Handling interrupts

	Performance and resource usage

