
MPEG-2 Decoder User Guide

Koenraad De Vleeschauwer

kdv@kdvelectronics.eu

August 24, 2017

Copyright Notice

Copyright c⃝2007-2009, Koenraad De Vleeschauwer.
Redistribution and use in source (LYX format) and `compiled' forms (PDF, PostScript,

HTML, RTF, etc.), with or without modi�cation, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code (LYX format) must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF,
PostScript, HTML, RTF, and other formats) must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this documentation without speci�c prior written permission.

This documentation is provided by the author �as is" and any express or im-

plied warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed. In

no event shall the author be liable for any direct, indirect, incidental,

special, exemplary, or consequential damages (including, but not limited

to, procurement of substitute goods or services; loss of use, data, or

profits; or business interruption) however caused and on any theory of

liability, whether in contract, strict liability, or tort (including negli-

gence or otherwise) arising in any way out of the use of this documenta-

tion, even if advised of the possibility of such damage.

MPEG-2 License Notice

Commercial implementations of MPEG-1 and MPEG-2 video, including shareware, are
subject to royalty fees to patent holders. Many of these patents are general enough such
that they are unavoidable regardless of implementation design.
MPEG-2 intermediate product. Use of this product in any manner that

complies with the MPEG-2 standard is expressly prohibited without a

license under applicable patents in the MPEG-2 patent portfolio, which

license is available from MPEG LA, L.L.C., 250 Stelle Street, suite 300,

Denver, Colorado 80206.

Contents

1 Processor Interface 5

1.1 Decoder Block Diagram . 5

1.2 Ports . 7

1.2.1 Clocks . 9

1.2.2 Reset . 9

1.2.3 Stream Input . 9

1.2.4 Register File Access . 9

1.2.5 Memory Controller . 9

1.2.6 Memory Request FIFO . 10

1.2.7 Memory Response FIFO . 10

1.2.8 Video Output . 10

1.2.9 Test Point . 11

1.2.10 Status . 11

1.3 Processor Tasks . 12

1.4 Registers . 12

1.5 Read-only Registers . 15

1.6 On-Screen Display . 16

1.7 Frame Store . 18

1.8 Video Modeline . 18

1.9 Interrupts . 21

1.10 Watchdog . 22

1.11 Trick mode . 24

1.12 Test point . 26

2 Decoder Sources 27

2.1 Source Directory Structure . 27

2.2 MPEG2 Decoder . 27

2.2.1 FIFO sizes . 27

2.2.2 Dual-ported memory and FIFO models 30

2.2.3 Memory mapping . 30

2.2.4 Modeline . 31

2.2.5 Inverse Discrete Cosine Transform 32

2.2.6 Bilinear chroma upsampling . 32

2.3 Simulation . 33

2.3.1 Icarus Verilog Simulation . 33

2.3.2 Conformance Tests . 37

MPEG2 Decoder User Guide August 24, 2017 3

Contents kdv electronics

2.4 Tools . 38
2.4.1 Logic Analyzer . 38
2.4.2 Finite State Machine Graphs . 38
2.4.3 IEEE-1180 IDCT Accuracy Test 41
2.4.4 Reference software decoder . 41
2.4.5 MPEG2 Test Streams . 41

4 August 24, 2017 MPEG2 Decoder User Guide

1 Processor Interface

An MPEG2 decoder, implemented in Verilog, is presented. Chapter 1 describes the
decoder for the software engineer who wishes to write a device driver.

1.1 Decoder Block Diagram

Figure 1.1 shows the MPEG2 decoder block diagram. An external source such as a
DVB tuner or DVD drive provides an MPEG2 stream. The video elementary stream is
extracted and sent to the decoder. The video bu�er acts as a �fo between the incoming
MPEG2 video stream and the variable length decoder. The video bu�er evens out tem-
porary di�erences between the bitrate of the incoming MPEG2 bitstream and the bitrate
at which the decoder parses the bitstream.

The MPEG2 codec is a variable length codec; codewords which occur often occupy less
bits than codewords which occur only rarely. Getbits provides a sliding window over the
incoming stream. As the codewords have a variable length, the sliding window moves
forward a variable amount of bits at a time.

Variable length decoding does the actual parsing of the bitstream. Variable length de-
coding stores stream parameters such as horizontal and vertical resolution, and produces
run/length values and motion vectors. Run/length values and motion vectors are di�er-
ent ways of describing an image. The run/length values describe an image as compressed
data contained within the bitstream. The motion vectors describe an image as a mosaic
of already decoded images.

Run-length decoding, inverse quantizing and inverse discrete cosine transform decom-
press the run/length values.

Motion compensation retrieves already decoded images from memory and applies the
motion vector translations.

The reconstructed image is the sum of the decompressed run/length values and trans-
lated pieces of already decoded images. The reconstructed image is stored in the frame

store for later display and reference.

The frame store receives requests to store and retrieve pixels from three di�erent
sources:

• motion compensation, which writes reconstructed image frames to memory

• chroma resampling, which reads reconstructed image frames from memory for dis-
playing

MPEG2 Decoder User Guide August 24, 2017 5

1. Processor Interface kdv electronics

MPEG2 Input

Video Buffer

Getbits

Variable Length
Decoding

Run/Level Decoding,
Inverse Quantizing,
Inverse ZigZag

Inverse Discrete
Cosine Transform

Motion
Compensation

Frame StoreDot Clock

Video Sync
 and Timing

Memory
Controller

Chroma
Resampling

RAMMixer

On-Screen
Display

YUV to RGB

Digital Video Out

Elementary
Stream

Elementary
Stream

bitfields

Run/Level
ValuesMotion

Vectors

DCT
Coefficients

blocks

macroblocks

Frames

Sync YUV, OSD

YUV, OSD, Sync

YUV, Sync

RGB, YUV, Sync

Figure 1.1: Decoder Block Diagram

6 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

• writes to the on-screen display, under software control.

Some of these blocks have multiple accesses to the frame store. Within the MPEG2
decoder a total of six memory read or write requests may occur simultaneously. The
frame store prioritizes these requests and serializes them into a single stream of memory
read/write requests, which is sent to the memory controller.

The memory controller is external to the MPEG2 decoder. The memory controller
handles the low-level details of interfacing with the memory chips. If memory is static
RAM, interfacing requires little more than a bu�er; dynamic memory requires a more
complex controller.

The MPEG2 decoder accepts 4:2:0 format video, in which color and brightness infor-
mation have a di�erent resolution: color information (chrominance) is sent at half the
horizontal and half the vertical resolution of brightness information (luminance). This
makes sense because the human eye uses di�erent mechanisms to perceive color and
brightness; and the di�erent mechanisms used have di�erent sensitivities.

Sending color information at half the horizontal and half the vertical resolution of
brightness information implies the reconstructed image in the frame store has only one
color pixel for every four brightness pixels. Assigning the same color information to the
four pixels of brightness information would result in a chunky image. Chroma resampling

does horizontal and vertical interpolation of the color information, resulting in a smooth
color image.

A dot clock marks the frequency at which pixels are sent to the display. The dot clock
is external to the MPEG2 decoder and can be either free running or synchronized to
another clock.

The video synchronization generator counts pixels, lines and image frames at the dot
clock frequency. At any given moment, the video synchronization generator knows the
horizontal and vertical coordinate of the pixel to be displayed.

The pixels generated in chroma resampling and the coordinates generated by the video
synchronization generator are joined in the mixer. The result is a stream of pixels, at
the current horizontal/vertical coordinate, at the dot clock frequency.

At this point the on-screen display is added. The on-screen display has the same
resolution as the video and uses a 256-color palette. Software can choose to put the
on-screen display on top, completely hiding the video; or to blend on-screen display and
video, as if they were two translucent glass plates.

The MPEG2 decoder works with chrominance (color) and luminance (brightness) in-
formation throughout. The �nal step is converting chrominance and luminance to red,
green and blue in yuv2rgb. The red, green and blue information is the output of the
decoder.

1.2 Ports

Table 1.2 lists MPEG2 decoder input/output ports.

MPEG2 Decoder User Guide August 24, 2017 7

1. Processor Interface kdv electronics

Port Bits Description I/O Clock

clk 1 Decoder clock I -

dot_clk 1 Video clock I -

mem_clk 1 Memory Controller clock I -

rst 1 Reset I -

stream_data 8 Program stream data I clk

stream_valid 1 stream_data valid I clk

busy 1 Decoder busy �ag O clk

reg_addr 4 Register address I clk

reg_dta_in 32 Register write data I clk

reg_wr_en 1 Register write enable I clk

reg_dta_out 32 Register read data O clk

reg_rd_en 1 Register read enable I clk

error 1 Decoding error �ag O clk

interrupt 1 Interrupt O clk

watchdog_rst 1 Watchdog-generated Reset O clk

r 8 Red O dot_clk

g 8 Green O dot_clk

b 8 Blue O dot_clk

y 8 Y Luminance O dot_clk

u 8 Cr Chrominance O dot_clk

v 8 Cb Chrominance O dot_clk

pixel_en 1 Pixel enable O dot_clk

h_sync 1 Horizontal synchronization O dot_clk

v_sync 1 Vertical synchronization O dot_clk

c_sync 1 Composite synchronization O dot_clk

mem_req_rd_cmd 2 Memory request command O mem_clk

mem_req_rd_addr 22 Memory request address O mem_clk

mem_req_rd_dta 64 Memory request data O mem_clk

mem_req_rd_en 1 Memory request read enable I mem_clk

mem_req_rd_valid 1 Memory request valid O mem_clk

mem_res_wr_dta 64 Memory response data I mem_clk

mem_res_wr_en 1 Memory response enable I mem_clk

mem_res_wr_almost_full 1 Memory response almost full O mem_clk

testpoint_dip_en 1 Testpoint dip switches enable I -

testpoint_dip 4 Testpoint dip switches I -

testpoint 34 Logical analyzer test point O -

Table 1.2: Ports

8 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

1.2.1 Clocks

Up to three di�erent clocks may be supplied to the MPEG2 decoder.

clk Main decoder clock, input.

dot_clk Video clock, input. Variable frequency, varying with current video modeline.

mem_clk Memory Controller Clock, input.

The decoder produces pixels at a maximum rate of one per clk cycle.

1.2.2 Reset

rst Asynchronous reset, input, active low, internally synchronized.

1.2.3 Stream Input

stream_data 8-bit elementary stream data, input, synchronous with clk, byte aligned.
The elementary stream is an MPEG2 4:2:0 video elementary stream.

stream_valid elementary stream data valid, input, synchronous with clk. Assert when
stream_data valid.

busy busy, active high, output, synchronous with clk. When high, indicates main-
taining stream_valid high will over�ow decoder input bu�ers.

1.2.4 Register File Access

reg_addr 5-bit register address, input, synchronous with clk.

reg_dta_in 32-bit register data in, input, synchronous with clk.

reg_wr_en register write enable, input, active high, synchronous with clk. Assert to
write reg_dta_in to reg_addr.

reg_dta_out 32-bit register data out, output, synchronous with clk.

reg_rd_en Active high register read enable, input, synchronous with clk. Assert to
obtain the contents of register reg_addr at reg_dta_out.

1.2.5 Memory Controller

The interface between MPEG2 decoder and memory controller consists of two �fos. The
memory request FIFO sends memory read, write or refresh requests from decoder to
memory controller. The memory response FIFO sends data read from memory controller
to MPEG2 decoder. The data from the memory read requests appears in the memory
response FIFO in the same order as the memory reads were issued in the memory request
FIFO.

MPEG2 Decoder User Guide August 24, 2017 9

1. Processor Interface kdv electronics

mem_req_rd_cmd Mnemonic Description

0 CMD_NOOP No operation

1 CMD_REFRESH Refresh memory

2 CMD_READ Read 64-bit word

3 CMD_WRITE Write 64-bit word

Table 1.3: Memory controller commands

1.2.6 Memory Request FIFO

mem_req_rd_cmd memory request command, output, synchronous with mem_clk. Valid
values are de�ned in table 1.3.

mem_req_rd_addr 22-bit memory request address, output, synchronous with mem_clk.

mem_req_rd_dta 64-bit memory request data, output, synchronous with mem_clk.

mem_req_rd_en memory request read enable, input, active high, synchronous with
mem_clk.

mem_req_rd_valid memory request read valid, output, active high, synchronous
with mem_clk. Indicates when mem_req_rd_cmd, mem_req_rd_addr and
mem_req_rd_dta have meaningful values.

1.2.7 Memory Response FIFO

mem_res_wr_dta 64-bit memory response write data, input, synchronous with mem_clk.

mem_res_wr_en memory response write enable, input, active high, synchronous with
mem_clk. Assert to write mem_res_wr_dta to the memory response FIFO.

mem_res_wr_almost_full memory response write almost full, output, active high, syn-
chronous with mem_clk. When high, indicates maintaining mem_res_wr_en

high will over�ow the memory response FIFO. The current clock cycle can
be completed without over�owing the memory response FIFO.

1.2.8 Video Output

r red component, output, synchronous with dot_clk.

g green component, output, synchronous with dot_clk.

b blue component, output, synchronous with dot_clk.

y Y luminance, output, synchronous with dot_clk.

u Cr chrominance, output, synchronous with dot_clk.

10 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

v Cb chrominance, output, synchronous with dot_clk.

pixel_en pixel enable, output, active high, synchronous with dot_clk. When pixel_en

is high, r, g, b, y, u and v are valid; when pixel_en is low video is blanked.

h_sync horizontal synchronization, output, active high, synchronous with dot_clk.

v_sync vertical synchronization, output, active high, synchronous with dot_clk.

c_sync composite synchronization, output, active low, synchronous with dot_clk.

1.2.9 Test Point

The decoder provides a test point for connecting a logic analyzer. The signals available
at the test point can be selected either by software control, or using dip switches. The
signals available at the test point are not de�ned as part of this speci�cation, may vary
even for implementations with the same status register version number and are subject
to change without notice. See Verilog source probe.v for details.

testpoint_dip_en 1-bit input. If testpoint_dip_en is high, the registers visible
at testpoint are selected using testpoint_dip. If testpoint_dip_en

is low, the registers visible at testpoint output are selected using the
testpoint_sel �eld of register 15.

testpoint_dip 4-bit input. testpoint_dip selects test point output if
testpoint_dip_en is high.

testpoint 34-bit output. testpoint is a test point to connect a 34-channel logic an-
alyzer probe to the MPEG2 decoder. Up to 16 di�erent sets of signals are
available, hardware selectable using the testpoint_dip dip switches or soft-
ware selectable by writing to register 15. Any clocks present are on bits 32
and/or 33; bits 0 to 31 are data only. Bits 0 to 31 can also be accessed by
software, by reading register 15.

1.2.10 Status

error error, output, active high, synchronous with clk. Indicates variable length
decoding encountered an error in the bitstream.

interrupt interrupt, output, active high, synchronous with clk. Reading the status
register allows software to determine the cause of the interrupt, and will clear
the interrupt.

watchdog_rst watchdog-generated reset signal, output, active low, synchronous with
clk. Normally high; low during one clock cycle if the watchdog timer expires.

MPEG2 Decoder User Guide August 24, 2017 11

1. Processor Interface kdv electronics

1.3 Processor Tasks

To decode an MPEG-2 bitstream, the processor should execute the following tasks, in
order:

1. Initialize the horizontal, horizontal sync, vertical, vertical sync and video mode
registers with reasonable defaults. Clear osd_enable, picture_hdr_intr_en and
frame_end_intr_en. Set the video_ch_intr_en �ag.

2. Start feeding the MPEG-2 bitstream to the stream_data port of the decoder.

3. The decoder will issue an interrupt when video resolution or frame rate changes.
Whenever the decoder issues an interrupt, clear the interrupt by reading the status
register. Read the size, display size and frame rate registers. Calculate a new
modeline, change dot clock frequency if necessary, and write the new video timing
parameters to the horizontal, horizontal sync, vertical, vertical sync and video mode
registers.

4. At bitstream end, pad the stream with 8 times hex 000001b7, the sequence end
code (ISO/IEC 13818-2, par. 6.2.1, Start Codes).

If the On-Screen Display (OSD) is used, the processor should execute the following tasks
as well:

1. Initialize the On-Screen Display color look-up table.

2. Wait until horizontal_size and vertical_size have meaningful values.

3. Write to the On-Screen Display.

4. Set osd_enable to one.

5. If a video change interrupt occurs, and horizontal_size or vertical_size has
changed, rewrite the On-Screen Display.

Writing to the OSD is described in detail on page 16. Interrupt handling is treated on
page 21.

1.4 Registers

The processor interface to the decoder consists of two times 16 32-bit registers. These
registers can be divided in 16 read-mode registers (Table 1.4) and 16 write-mode registers
(Table 1.5). The read-mode registers allow reading decoder status, while the write-mode
registers allow setting video timing parameters and writing to the On-Screen Display
(OSD).

12 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

register bits content read/write

0 version 15-0 version r

1 status 15-8 matrix_coefficients r

7 watchdog_status r

6 osd_wr_en r

5 osd_wr_ack r

4 osd_wr_full r

3 picture_hdr r

2 frame_end r

1 video_ch r

0 error r

2 size 29-16 horizontal_size r

13-0 vertical_size r

3 display size 29-16 display_horizontal_size r

13-0 display_vertical_size r

4 frame rate 15-12 aspect_ratio_information r

11 progressive_sequence r

10-6 frame_rate_extension_d r

5-4 frame_rate_extension_n r

3-0 frame_rate_code r

f testpoint 31-0 testpoint r

Table 1.4: Read-mode Registers

MPEG2 Decoder User Guide August 24, 2017 13

1. Processor Interface kdv electronics

register bits content read/write

0 stream 15-8 watchdog_interval w

3 osd_enable w

2 picture_hdr_intr_en w

1 frame_end_intr_en w

0 video_ch_intr_en w

1 horizontal 27-16 horizontal_resolution w

11-0 horizontal_length w

2 horizontal sync 27-16 horizontal_sync_start w

11-0 horizontal_sync_end w

3 vertical 27-16 vertical_resolution w

11-0 vertical_length w

4 vertical sync 27-16 vertical_sync_start w

11-0 vertical_sync_end w

5 video mode 27-16 horizontal_halfline w

2 clip_display_size w

1 pixel_repetition w

0 interlaced w

6 osd clt yuvm 31-24 y w

23-16 u w

15-8 v w

7-0 osd_clt_mode w

7 osd clt addr 7-0 osd_clt_addr w

8 osd dta high 31-0 osd_dta_high w

9 osd dta low 31-0 osd_dta_low w

a osd_addr 31-29 osd_frame w

28-27 osd_comp w

26-16 osd_addr_x w

10-0 osd_addr_y w

b trick mode 10 deinterlace w

9-5 repeat_frame w

4 persistence w

3-1 source_select w

0 flush_vbuf w

f testpoint 3-0 testpoint_sel w

Table 1.5: Write-mode Registers

14 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

1.5 Read-only Registers

version contains a non-zero FPGA bitstream (hardware) version number. Software
should at least print a warning �Warning: hardware version (%i.%i)

more recent than software driver� if the hardware version is higher than
expected.

picture_hdr is set whenever an picture header is encountered in the bit-
stream. picture_hdr is cleared whenever the status register
is read. In a well-behaved MPEG-2 stream, horizontal_size,
vertical_size, display_horizontal_size, display_vertical_size,

aspect_ratio_information and frame_rate will have meaningful values
when a picture header is encountered.

frame_end is set when video vertical synchronization begins. frame_end is cleared when-
ever the status register is read.

video_ch is set whenever video resolution or frame rate changes. video_ch is cleared
whenever the status register is read.

error is set when variable length decoding cannot parse the bitstream. error is
cleared whenever the status register is read.

watchdog_status is high if the watchdog timer expired. watchdog_status is cleared
whenever the status register is read.

horizontal_size is de�ned in ISO/IEC 13818-2, par. 6.2.2.1, par. 6.3.3.

vertical_size is de�ned in ISO/IEC 13818-2, par. 6.2.2.1, par. 6.3.3.

display_horizontal_size is de�ned in ISO/IEC 13818-2, par. 6.2.2.4, par. 6.3.6.

display_vertical_size is de�ned in ISO/IEC 13818-2, par. 6.2.2.4, par. 6.3.6.

aspect_ratio_information is de�ned in ISO/IEC 13818-2, par. 6.3.3.

matrix_coefficients is de�ned in ISO/IEC 13818-2, par. 6.3.6.

frame_rate_extension_n is de�ned in ISO/IEC 13818-2, par. 6.3.3, par. 6.3.5.

frame_rate_code is de�ned in ISO/IEC 13818-2, par. 6.3.3, Table 6-4.

progressive_sequence is de�ned in ISO/IEC 13818-2, par. 6.3.5.

frame_rate_extension_d is de�ned in ISO/IEC 13818-2, par. 6.3.3, par. 6.3.5.

MPEG2 Decoder User Guide August 24, 2017 15

1. Processor Interface kdv electronics

osd_clt_mode Comment

xxx00000 alpha = 0/16

xxx00001 alpha = 1/16

xxx00010 alpha = 2/16

xxx00011 alpha = 3/16

xxx00100 alpha = 4/16

xxx00101 alpha = 5/16

xxx00110 alpha = 6/16

xxx00111 alpha = 7/16

xxx01000 alpha = 8/16

xxx01001 alpha = 9/16

xxx01010 alpha = 10/16

xxx01011 alpha = 11/16

xxx01100 alpha = 12/16

xxx01101 alpha = 13/16

xxx01110 alpha = 14/16

xxx01111 alpha = 15/16

xxx11111 alpha = 16/16

xx0xxxxx attenuate video pixel by alpha

xx1xxxxx alpha blend osd and video pixel

00xxxxxx display video pixel

01xxxxxx display attenuated/alpha blended pixel

10xxxxxx display osd pixel

11xxxxxx display blinking osd pixel

Table 1.6: On-Screen Display Modes

1.6 On-Screen Display

The OSD has the same resolution and aspect ratio as the MPEG-2 video being displayed.
If no MPEG-2 video is being displayed, the OSD is unde�ned. Note feeding the decoder
a simple MPEG-2 sequence header with horizontal_size and vertical_size already
satis�es the requirements for using the OSD.

The OSD is only shown if there is video output. If one wishes to display an OSD
when no MPEG2 video is being reproduced, video output can be forced by setting
source_select to 4, 5, 6 or 7.

The OSD may use up to 256 di�erent colors. The OSD color lookup table (CLT) stores
y, u, v and osd_clt_mode data for each color. The y, u and v values are interpreted
as de�ned by matrix_coefficients. The osd_clt_mode value determines the color
displayed according to Table 1.6. The di�erent modes combine osd and video in various
ways:

• video. This is the normal mode of operation.

16 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

• attenuated video. 16 discrete levels of attenuation can be used to fade video in or
out.

• on-screen display.

• blend of on-screen display and video. 16 discrete levels of translucency.

• blinking on-screen display. Alternates between osd pixel and attenuated/alpha
blended video pixel with a frequency of about one second.

osd_enable determines whether the On-Screen Display is shown or not. If osd_enable
is low, the On-Screen Display is not shown. If osd_enable is high, the On-
Screen Display is shown. The osd color lookup table has to be initialized and
the osd has to be written before osd_enable is raised. osd_enable is 0 on
power-up or reset.

osd_wr_en is set whenever an osd write is has been accepted, whether the osd write was
successful or not. osd_wr_en is cleared whenever the status register is read.

osd_wr_ack is set whenever an osd write has been successful. osd_wr_ack is cleared
whenever the status register is read.

osd_wr_full is set when the osd write �fo is full. When the osd write �fo is full, osd
writes are not accepted.

When writing to the osd color lookup table:

1. Write osd_clt_yuvm.

2. Write osd_clt_addr.

Writes to the osd color lookup table take e�ect immediately.
When writing to the osd:

1. Only write to the osd when horizontal_size and vertical_size have meaningful
values. This is the case when a picture header has been encountered.

2. Verify osd_wr_full is low. Writing when osd_wr_full is high has no e�ect.

3. Write the leftmost four pixels to osd_dta_high.

4. Write the rightmost four pixels to osd_dta_low.

5. Write x and y position of the leftmost pixel to osd_addr. Note x has to be a
multiple of 8. osd_frame always has value 4 for OSD writes. osd_comp always has
value 0 for OSD writes.

6. Read the status register until osd_wr_en is asserted. When osd_wr_en is high, the
value of osd_wr_ack indicates whether the write was successful.

Writes to the osd pass through a 32-position �fo. This introduces some latency. Repeating
the last osd write 32 times �ushes �fo contents, ensuring osd memory has been updated.

MPEG2 Decoder User Guide August 24, 2017 17

1. Processor Interface kdv electronics

osd_frame Frame

0 0

1 1

2 2

3 3

4 OSD

Table 1.7: OSD Frame

osd_comp Component

0 y

1 u

2 v

Table 1.8: OSD Component

1.7 Frame Store

Pixels can be written directly to the frame store, using the same mechanism as OSD
writes. By writing pixels to the frame store and afterwards setting the source_select

�eld of the trick register (described on page 24) arbitrary bitmaps can be shown.
The only di�erence between an OSD write and a frame store write is the value of

osd_frame and/or osd_comp. Tables 1.7 and 1.8 list the frame and component codes.
Frames 0 and 1 are used for storing I and P frames. Frames 2 and 3 are used for storing
B frames. All frames are stored in 4:2:0 format, with u and v frames having half the
width and height of the y frame. Note y, u and v values are stored in memory with an
o�set of 128.
Writes to the frame store are only de�ned when horizontal_size and vertical_size

have meaningful values. Writes with osd_frame 4 are only de�ned when osd_comp is 0.

1.8 Video Modeline

The video timing parameters are:

• horizontal_resolution

• horizontal_sync_start

• horizontal_sync_end

• horizontal_length

• vertical_resolution

• vertical_sync_start

18 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

horizontal_sync_end

horizontal_length

v
e
r
t
i
c
a
l
_
l
e
n
g
t
h

v
e
r
t
i
c
a
l
_
s
y
n
c
_
e
n
d

v
e
r
t
i
c
a
l
_
s
y
n
c
_
s
t
a
r
t

v
e
r
t
i
c
a
l
_
r
e
s
o
l
u
t
i
o
n

horizontal_resolution

horizontal_sync_start

progressive

Figure 1.2: Progressive Video

• vertical_sync_end

• vertical_length

• horizontal_halfline

• interlaced

• pixel_repetition

These parameters can be deduced from the X11 modeline for the display, which is de-
scribed in the �XFree86 Video Timings HOWTO�. Writing to the internal registers which
contain the video timing parameters will restart the video synchronization generator.

Two video timing diagrams are shown, one for progressive video (Figure 1.2) and one
for interlaced video (Figure 1.3). The diagrams show the picture area (a light grey
rectangle), �anked by horizontal sync (a dark grey vertical bar) and vertical sync (a dark
grey horizontal bar).

horizontal_resolution number of dots per scan line.

MPEG2 Decoder User Guide August 24, 2017 19

1. Processor Interface kdv electronics

horizontal_sync_start

horizontal_resolution

horizontal_sync_end

horizontal_length

horizontal_halfline

v
e
r
t
i
c
a
l
_
l
e
n
g
t
h

v
e
r
t
i
c
a
l
_
s
y
n
c
_
e
n
d

v
e
r
t
i
c
a
l
_
s
y
n
c
_
s
t
a
r
t

v
e
r
t
i
c
a
l
_
r
e
s
o
l
u
t
i
o
n

odd field

even field

Figure 1.3: Interlaced Video

20 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

horizontal_sync_start used to specify the horizontal position the horizontal sync pulse
begins. The leftmost pixel of a line has position zero.

horizontal_sync_end used to specify the horizontal position the horizontal sync pulse
ends.

horizontal_length total length, in pixels, of one scan line.

vertical_resolution number of visible lines per frame (progressive) or �eld (inter-
laced).

vertical_sync_start used to specify the line number within the frame (progressive) or
�eld (interlaced) the vertical sync pulse begins. The topmost line of a frame
or �eld is line number zero.

vertical_sync_end used to specify the line number within the frame (progressive) or
�eld (interlaced) the vertical sync pulse ends.

horizontal_halfline used to specify the horizontal position the vertical sync begins
on odd �elds of interlaced video. Not used in progressive mode.

vertical_length total number of lines of a vertical frame (progressive) or �eld (inter-
laced).

clip_display_size If asserted, the image is clipped to (display_horizontal_size,
display_vertical_size). If not asserted, the image is clipped to
(horizontal_size, vertical_size).

interlaced used to specify interlaced output is required. If interlaced is asserted,
vertical sync is delayed one-half scan line at the end of odd �elds.

pixel_repetition If pixel_repetition is asserted, each pixel is output twice. This can
be used if the original dot clock is too low for the transmitter. As an example,
suppose valid dot clock rates are 25. . . 165 MHz, but the SDTV video being
decoded has a dot clock of only 13.5 MHz. Asserting pixel_repetition and
doubling dot clock frequency results in a dot clock of 27 MHz, su�cient for
SDTV video to be transmitted across the link.

1.9 Interrupts

Three independent conditions may trigger an interrupt: when a picture header is encoun-
tered in the bitstream, when frame display ends, and when video resolution or frame rate
changes. All three interrupt sources are optional and can be disabled individually.

When picture_hdr_intr_en is high and a picture header is encountered in the bit-
stream, picture_hdr is set and the interrupt signal is asserted until the status register is
read. If picture_hdr_intr_en is low, the interrupt signal is never raised. picture_hdr

MPEG2 Decoder User Guide August 24, 2017 21

1. Processor Interface kdv electronics

and picture_hdr_intr_en are 0 on power-up or reset. The picture header interrupt
marks the �heartbeat� of the video decoding engine.

When video vertical synchronization begins and frame_end_intr_en is high,
frame_end is set and the interrupt signal is asserted until the status register is read.
If frame_end_intr_en is low, the interrupt signal is never raised. frame_end and

frame_end_intr_en are 0 on power-up or reset. The frame end interrupt marks the
�heartbeat� of the video display engine.

When one of horizontal_size, vertical_size, display_horizontal_size,

display_vertical_size, progressive_sequence, aspect_ratio_information,

frame_rate_code, frame_rate_extension_n, or frame_rate_extension_d changes,
and video_ch_intr_en is high, video_ch is set and the interrupt signal is asserted until
the status register is read. If video_ch_intr_en is low, the interrupt signal is never
raised. video_ch and video_ch_intr_en are 0 on power-up or reset. The video change
interrupt marks an abrupt change in the MPEG2 bitstream.

It is suggested that software, when receiving a video change interrupt:

1. Reads the size, display size and frame rate registers.

2. If frame_rate_code, frame_rate_extension_d or frame_rate_extension_n have
changed, change dot clock frequency.

3. Calculates a video modeline, either using a look-up table or algebraically, e.g. using
the VESA General Timing Formula.

4. Writes the new video modeline parameters to the horizontal, horizontal sync, verti-
cal, vertical sync and video mode registers. This restarts the video synchronization.

5. If horizontal_size or vertical_size have changed and osd_enable is high,
rewrite the On-Screen Display.

1.10 Watchdog

The MPEG2 decoder contains a watchdog circuit. The watchdog circuit resets the de-
coder if the decoder is unresponsive. The decoder is considered unresponsive if the
decoder does not accept MPEG2 data for a period of time longer than the watchdog
timeout interval. We outline how to con�gure the watchdog timeout interval, de�ne un-
der which conditions the watchdog circuit activates, and describe what happens when
the watchdog timer expires.

The watchdog timeout interval can be con�gured by writing watchdog_interval, reg-
ister 0, bits 15-8.

• writing 0 to watchdog_interval causes the watchdog timer to expire immediately.

• writing a value from 1 to 254, inclusive, to watchdog_interval enables the watch-
dog circuit.

22 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

• writing 255 decimal to watchdog_interval disables the watchdog circuit.

The default value of watchdog_interval is 127. If watchdog_interval has a value from
1 to 254, inclusive, the watchdog timeout is

watchdog_timeout = (watchdog_interval + 1).(repeat_frame+ 1).218

clk clock cycles. repeat_frame (Section 1.11) determines the numer of times a decoded
video frame is displayed. Each decoded video image is shown repeat_frame + 1 times.
If a video frame is shown n times, the watchdog timeout is multiplied by n as well. This
implies there is no need to adjust the watchdog timer if video is reproduced in slow
motion.
The default value of repeat_frame is 0. If decoder clk frequency is 75 MHz the default

watchdog timeout interval is 0.45 seconds.
The watchdog timer starts running when the decoder raises the busy signal. If the busy

signal remains high for longer than the watchdog timeout interval, a reset is generated.
The watchdog timer is reset

• when the global rst input signal is driven low

• when the decoder busy signal is low

• when the decoder has been halted to show the current frame (repeat_frame is 31,
freeze-frame)

• when the decoder has been halted to show a particular framestore frame
(source_select is non-zero)

• when the watchdog circuit has been disabled (watchdog_interval has been set to
0 or to 255)

• during the �rst 226 clk clock cycles after the watchdog timer expired, or the de-
coder was reset. This watchdog timer holdo� disables the watchdog during system
initialisation. If clock frequency is 75 MHz, 226 clock cycles corresponds to 0.89
seconds.

When the watchdog timer expires

• the watchdog_rst output pin becomes low during one clk clock cycle. The
watchdog_rst output can be used to reset external hardware, or to generate a
processor interrupt.

• the watchdog_status bit in the status register is set to 1. Software can detect
whether the watchdog timer expired by checking watchdog_status in the status
register. Reading the status register resets the watchdog_status bit back to 0.

• The framestore, On-Screen Display and circular video bu�er are �lled with zeroes.

• any data in the memory response �fo is discarded.

MPEG2 Decoder User Guide August 24, 2017 23

1. Processor Interface kdv electronics

• osd_enable is set to 0. This disables the On-Screen Display, as the On-Screen
Display now contains all zeroes.

• con�guration data written to the register �le is not modi�ed when the watchdog
expires. In particular, the video timing parameters (Sec. 1.8) remain unchanged.

The watchdog_rst output pin can optionally be used to reset external hardware when
the watchdog expires. Examples of external hardware are the memory controller and the
DVI dot clock generator. Note, however, resetting memory controller and DVI dot clock
generator when the watchdog timer expires is optional.

The MPEG2 decoder does not require the external memory controller to be re-
set when the watchdog timer expires. When the watchdog timer expires, the
MPEG2 decoder will write zeroes to all addresses from FRAME_0_Y to VBUF_END
(framestore_request.v, STATE_CLEAR). When the watchdog timer expires, the
MPEG2 decoder will also read and discard any data from the memory response �fo
(framestore_response.v, STATE_FLUSH). These two actions re-synchronize MPEG2
decoder and external memory controller and bring memory to a known state.

The MPEG2 decoder also does not require the DVI clock generator to be reset when
the watchdog expires. When the watchdog timer expires, the video timing parameters
(Sec. 1.8) remain unchanged. If the DVI clock frequency remains unchanged when the
watchdog timer expires, the decoder will continue with exactly the same video timing.

1.11 Trick mode

The trick mode register provides a toolbox for implementing non-standard playback
modes. An example of a non-standard playback mode is slow motion. It is perhaps
easiest to visualize trick mode settings as a pipeline (Figure 1.4).

flush_vbuf Writing one to flush_vbuf clears the incoming video bu�er. Flushing the
video bu�er may be useful when changing channels.

persistence If persistence is set, and no new decoded image is available at frame
start the last decoded image is shown again. If persistence is not set, and
no new decoded image is available at frame start a blank screen is shown.
persistence is 1 on power-up or reset.

source_select If zero, normal video is shown. Non-zero values allow continuous output
of a blank screen, or a speci�c frame from the frame store, as in table 1.9.
source_select is 0 on power-up or reset.

repeat_frame If zero, each decoded image is shown once. If non-zero, contains the
number of times the decoded image will be additionally shown, as in table
1.10. A value of 31 shows the image inde�nitely. repeat_frame is 0 on
power-up or reset.

24 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

video out

display

frame buffer

decoder

video buffer

MPEG2 in

source select

flush vbuf

repeat frame
deinterlace

persistence

Figure 1.4: Trick mode pipeline

source_select Frame shown

0 last decoded frame

1 blank screen

4 frame 0

5 frame 1

6 frame 2

7 frame 3

Table 1.9: Source Select

repeat_frame times shown

0 1

1 2

2 3

. . .

30 31

31 forever

Table 1.10: Repeat Frame

MPEG2 Decoder User Guide August 24, 2017 25

1. Processor Interface kdv electronics

deinterlace Setting deinterlace high forces the decoder to output video as frames,
even if the MPEG2 stream is interlaced. This can be used to reproduce
interlaced MPEG2 streams on progressive displays. Setting deinterlace

is not recommended when reproducing a progressive MPEG2 stream on a
progressive display. Setting deinterlace has no e�ect if the video modeline
speci�es interlaced output (interlaced set). Note no spatial or temporal
interpolation is done (�weaving�).

1.12 Test point

The MPEG2 decoder provides a test point for connecting a logic analyzer. Internally,
the decoder contains various test points, only one of which is actually output to the logic
analyzer. Which internal test point is output to the logic analyzer is determined by the
contents of testpoint_sel. The value of bits 0..31 of the test point can also be read by
software. While this is no substitute for a logic analyzer, it is recognized that in many
cases this may be the only option available.

testpoint_sel Used in hardware debugging. Determines which internal test point is
multiplexed to the 34-channel logical analyzer test point.

testpoint Used in hardware debugging. Provides the current value of bits 0 to 31 of
the 34-channel logical analyzer test point.

26 August 24, 2017 MPEG2 Decoder User Guide

2 Decoder Sources

Chapter 2 provides an overview of the decoder sources for the hardware engineer who
wishes to synthesize or modify the decoder.

2.1 Source Directory Structure

The source �les are organized in directories as follows:
bench/ iverilog Icarus behavioral simulation, page 33
doc/ Documentation
rtl/ mpeg2 MPEG2 decoder, page 27
tools/ fsmgraph Finite state machine graphs, page 38

ieee1180 IEEE1180 IDCT accuracy test, page 41
logicport Logicport logic analyzer, page 38
mpeg2dec Reference MPEG2 decoder, page 41
streams MPEG2 test streams, page 41

A linux system with Icarus Verilog is suggested, but not required, as development
environment.

2.2 MPEG2 Decoder

The rtl/mpeg2 directory contains the sources of the MPEG2 decoder itself. This section
describes the changes most likely to be needed when instantiating the decoder: changing
default modeline, changing FIFO sizes, choosing dual-ported ram and �fo models, chang-
ing memory mapping. In addition, references are provided for the IDCT and bilinear
chroma upsampling algorithms.

2.2.1 FIFO sizes

Fifo depth and almost full/almost empty thresholds are de�ned in fifo_size.v. Note
setting �fo depths and thresholds to arbitrary values can result in decoder deadlock.

Figure 2.1 shows MPEG2 decoder data �ow. Together, framestore_request, mem-
ory controller and framestore_response implement the framestore. Communica-
tion with the framestore is through �fos. The incoming MPEG2 stream is written
to vbuf_write_fifo. framestore_request reads the stream from vbuf_write_fifo

and writes it to the circular video bu�er in memory. If vbuf_read_fifo is almost
empty, framestore_request issues memory read requests for the circular video bu�er.
framestore_response receives data from the circular video bu�er and writes the data

MPEG2 Decoder User Guide August 24, 2017 27

2. Decoder Sources kdv electronics

to vbuf_read_fifo. The net result is vbuf_write_fifo, circular video bu�er and
vbuf_read_fifo acting as a single, huge �fo.
Variable-length decoding reads the MPEG2 stream from vbuf_read_fifo, and pro-

duces motion vectors and run/length codes. Run/length decoding, inverse quantizing,
inverse zig-zag and inverse discrete cosine transform (IDCT) read the run/length codes
and produce the prediction error. The prediction error is written to predict_err_fifo,
one row of eight pixels at a time.
Motion compensation address generation motcomp_addrgen translates the motion vec-

tors into three sets of memory addresses: the addresses where the forward motion com-
pensation pixels can be read, the addresses where the backward motion compensation
pixels can be read, and the addresses where the reconstructed pixels can be written. The
addresses of the pixels needed for forward and backward motion compensation are writ-
ten to the fwd_reader and bwd_reader address �fos. The address of the reconstructed
pixels is written to the motion compensation destination �fo, dst_fifo. The memory
subsystem reads the fwd_reader and bwd_reader address �fos, and writes the pixel
values to the fwd_reader and bwd_reader data �fos.
Motion compensation reconstruction motcomp_recon adds pixel values read from for-

ward motion compensation data �fo, backward motion compensation data �fo and pre-
diction error, and writes the result to the address read from the motion compensation
destination �fo.
Displaying the video image requires chroma resampling and yuv to rgb conversion.

Resampling address generation resample_addrgen scans the reconstructed video image,
line by line. The addresses of the pixels are written to the disp_reader address �fo.
The memory subsystem reads the addresses from disp_reader address �fo and writes
the pixel values to the disp_reader data �fo. resample_dta reads the pixel values from
the disp_reader data �fo, while resample_bilinear does the actual bilinear chroma
upsampling calculations. After conversion from yuv to rgb, the pixels are written to the
pixel queue pixel_queue which adapts between decoder and DVI clocks.
Note the memory tag �fo mem_tag_fifo between framestore_request and

framestore_response. For every memory read request, framestore_request writes
a tag to the memory tag �fo. The tag identi�es the source of the memory read request:
circular video bu�er, forward and backward motion compensation, or resampling. For
every data word received from memory, framestore_response reads a tag from the
memory tag �fo, and writes the data word received from memory to the data �fo corre-
sponding to the tag. If the memory tag �fo is almost full, framestore_request stops
issuing memory read or write requests. As a result, the number of outstanding memory
read requests is always less than or equal to the size of the memory tag �fo.
When modifying fifo_size.v, care should be taken the �fos can never over�ow. Note

that when framestore_request stops issuing memory read requests, there still may
be outstanding memory read requests in the memory request queue. The number of
outstanding memory read requests is always smaller than, or equal to, the size of the
memory tag �fo. When modifying fifo_size.v, remember �fos which receive data from
memory may receive outstanding data, even after framestore_request has stopped
sending memory read requests.

28 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Figure 2.1: MPEG2 decoder data�ow

MPEG2 Decoder User Guide August 24, 2017 29

2. Decoder Sources kdv electronics

2.2.2 Dual-ported memory and FIFO models

FPGAs typically provide dedicated on-chip �fo's and dual-port RAMs. The designer then
has to choose between using vendor-provided FIFOs and dual-port RAMs or writing his
own.

The �le wrappers.v de�nes the implementation of all dual-port RAMs and �fos in the
design. For each component, two versions are provided: one where read and write port
share a common clock; and one where read and write port have independent clocks.

dpram_sc dual-ported ram, same clock for read and write ports

dpram_dc dual-ported ram, di�erent clock for read and write ports

fifo_sc �fo, same clock for read and write ports

fifo_dc �fo, di�erent clock for read and write ports

The dual-ported rams are inferred from code in wrappers.v. The �fos can be either im-
plemented in Verilog, or instantiated as FPGA primitives, depending upon wrappers.v.
Following �fo models are available:

xfifo_sc.v �fo, same clock for read and write port.

generic_fifo_sc_b.v OpenCores generic �fo, di�erent clock for read and write ports.

xilinx_fifo_sc.v Xilinx Virtex-5 �fo, same clock for read and write ports. Uses
xilinx_fifo.v, xilinx_fifo144.v and xilinx_fifo216.v.

xilinx_fifo_dc.v Xilinx Virtex-5 �fo, di�erent clock for read and write ports. Uses
xilinx_fifo.v, xilinx_fifo144.v and xilinx_fifo216.v.

xilinx_fifo_sc.v and xilinx_fifo_dc.v implement �fos using FIFO18, FIFO18_36,
FIFO36 or FIFO36_72 Virtex-5 primitives. Table 2.1 lists available data and address
widths. If a xilinx_fifo_sc.v or a xilinx_fifo_dc.v is instantiated with data and/or
address widths di�erent from those in Table 2.1, the actual �fo will be larger and/or
wider.

2.2.3 Memory mapping

The MPEG2 decoder memory mapping is de�ned in rtl/mpeg2/mem_codes.v. The de-
fault memory mapping needs 4 mbyte RAM and is su�cient for SDTV. By de�ning
MP_AT_HL an alternative memory mapping can be chosen which requires 16 mbyte RAM
and is su�cient for HDTV.

Translation of macroblock addresses to memory addresses is implemented in
rtl/mpeg2/mem_addr.v. A macroblock address, a signed motion vector (mv_x, mv_y)
with halfpixel precision, and an signed o�set (delta_x, delta_y) with pixel precision are
translated to an address in memory.

30 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Data bits Address bits FIFO Depth Implementation

4 13 8192 FIFO36

4 12 4096 FIFO18

9 12 4096 FIFO36

9 11 2048 FIFO18

18 11 2048 FIFO36

18 10 1024 FIFO18

36 10 1024 FIFO36

36 9 512 FIFO18

72 9 512 FIFO36_72

144 9 512 2 * FIFO36_72

216 9 512 3 * FIFO36_72

Table 2.1: Xilinx FIFO address widths

The macroblock address is assumed to iterate over all allowable values: beginning at
zero, incrementing by one, until after the �nal macroblock the macroblock address is reset
to zero. Macroblock address has to be initialized to zero, or an error condition results.
Macroblock address changes other than incrementing by one, remaining unchanged or
resetting to zero also result in an error condition.

Note the motion vector (mv_x, mv_y) is scaled by a factor two when accessing chromi-
nance as de�ned in [1, par. 7.6.3.7]. The o�set (delta_x, delta_y) remains unchanged
when accessing chrominance blocks.

The translation of macroblock addresses and motion vectors to memory addresses
in rtl/mpeg2/mem_addr.v has to be kept synchronized with the framestore dump task
write_framestore in rtl/sim/mem_ctl.v, else the framestore dumps made during sim-
ulation will not accurately represent framestore contents.

Note out-of-range memory accesses are translated to the ADDR_ERR address. If a
memory request with address mem_req_rd_addr equal to ADDR_ERR occurs during
simulation, simulation stops with an error message.

The MPEG2 decoder zeroes out the framestore after system reset or when the watchdog
timer expires. The MPEG2 decoder writes zeroes to all addresses from FRAME_0_Y
to VBUF_END when the rst input pin goes low or when the watchdog_rst pin goes
low.

2.2.4 Modeline

The default modeline is 800x600 progressive @ 60 Hz (SVGA). The modeline.v source
contains the modeline parameters, and can be edited to change horizontal and vertical
resolution, sync pulse width and position. The default pixel frequency on the ML505 is
38.21 MHz, and is de�ned in dotclock_synthesizer.v. Note dotclock_synthesizer.v
synthesizes two frequencies, dotclock and dotclock90, equal in frequency but 90 degrees

MPEG2 Decoder User Guide August 24, 2017 31

2. Decoder Sources kdv electronics

phase shifted. The frequency synthesized is

fout = fosc.r.
DCM_ADV_INST.CLKFX_MULTIPLY

DCM_ADV_INST.CLKFX_DIV IDE

where fosc is the 100 MHz user clock frequency

fosc = 100

and

r =
PLL_ADV_INST.CLKFBOUT_MULT

PLL_ADV_INST.CLKOUT1_DIV IDE
= 0.25

To change pixel frequency, �rst calculate the multiplier and divider for the new frequency.
Suppose one wishes to synthesize a frequency of 35 MHz:

macpro mpeg2ether # ./mpeg2ether --dot_clock 35

dotclock ftarget = 35.00 fout = 35.00 MHz

multiplier: 7 divider: 5

high frequency mode: 0 ch7301 lowfreq: 1 ch7301 colorbars: 0

A pixel frequency of 35 MHz requires a multiplier of 7 and a divider of 5, with lowfreq
asserted. Hence, in dvi/dotclock.v:

parameter [7:0]

DEFAULT_DIVIDER = 8'd4, // Divider minus one, actually

DEFAULT_MULTIPLIER = 8'd6; // Multiplier minus one, actually

parameter

DEFAULT_LOWFREQ = 1'b1

Note the modeline can be con�gured at any time using the mpeg2ether utility; it is
only when changing the default modeline that modifying the sources is necessary. The
mpeg2ether utility is explained on page ??.

2.2.5 Inverse Discrete Cosine Transform

The IDCT algorithm used is described in [4]. A copy of document [4] can be found in the
doc directory. The IDCT implementation uses 12 18x18 multipliers and two dual-port
rams, and can do streaming. Run-length decoding (rld.v), inverse quantizing (iquant.v,
zigzag_table.v) and IDCT transform (idct.v) all operate at the same speed of one
pixel per clock. The IDCT meets the requirements of the former IEEE-1180.

2.2.6 Bilinear chroma upsampling

The chrominance components have half the vertical and half the horizontal resolution of
the luminance. To obtain equal chrominance and luminance resolution, bilinear chroma
upsampling is used. Bilinear chroma upsampling computes chroma pixel values by ver-
tical and horizontal interpolation. Vertical interpolation implies adding two rows of

32 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Source Description

resample.v Upsampling top-level �le

resample_addrgen.v Generates memory addresses of chroma/lumi rows

resample_dta.v Reads chroma/lumi rows from memory

resample_bilinear.v Performs bilinear upsampling calculations

Table 2.2: Upsampling source �les

chroma values with di�erent weights. The chroma row closest to the luma row gets
weight 3/4, while the chroma row farthest from the luma row gets weight 1/4. The
document doc/bilinear.pdf shows the weights used.

Bilinear chroma upsampling is implemented in various source �les, as described in
Table 2.2.

2.3 Simulation

Behavioral simulation using Icarus Verilog is described. For timing simulation consult
your synthesis software.

2.3.1 Icarus Verilog Simulation

Behavioral simulation of the decoder can be performed using Icarus Verilog. The Icarus
Verilog testbench in the bench/iverilog directory contains the following �les:

testbench.v Top-level Verilog source; instantiates MPEG2 decoder.

mem_ctl.v Simple memory controller, for simulation only.

Makefile Make�le to create and run the simulation.

wrappers.v Wrapper for dual-port ram and �fos. Implements synchronous �-
fos using xfifo_sc.v, and implements asynchronous �fos as OpenCores
generic_fifo_sc_b.v.

generic_dpram.v, generic_fifo_dc.v, generic_fifo_sc_b.v Opencores generic �-
fos.

Create the decoder is easy using the accompanying Makefile. First, remove any �les left
over from a previous simulation:

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ make clean

rm -f mpeg2 stream.dat testbench.lxt trace framestore_*.ppm tv_out_*.ppm

Now create the decoder:

MPEG2 Decoder User Guide August 24, 2017 33

2. Decoder Sources kdv electronics

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ make

iverilog -D__IVERILOG__ -DMODELINE_SIF -I ../../rtl/mpeg2 -o mpeg2

testbench.v mem_ctl.v wrappers.v generic_fifo_dc.v

generic_fifo_sc_b.v generic_dpram.v ../../rtl/mpeg2/mpeg2video.v

../../rtl/mpeg2/vbuf.v ../../rtl/mpeg2/getbits.v

xxd -c 1 ../../tools/streams/stream-susi.mpg |

cut -d\ -f 2 > stream.dat

This executes two commands:

• iverilog to compile the Verilog sources to an executable, mpeg2.

• xxd to convert the binary MPEG2 program stream �le stream.mpg to an ASCII
�le stream.dat, which the simulator can load.

When compiling the Verilog sources, two Verilog parameters are de�ned on the command
line: __IVERILOG__ and MODELINE_SIF. The �rst Verilog de�ne, __IVERILOG__ , is de-
�ned only during simulation, and never during synthesis. It is used to enable several
run-time checks which only make sense in a simulation environment. The second Ver-
ilog de�ne, MODELINE_SIF, chooses one of several pre-de�ned video output formats from
modeline.v.

Finally, run the newly created executable mpeg2:

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ make test

IVERILOG_DUMPER=lxt ./mpeg2

LXT info: dumpfile testbench.lxt opened for output.

$readmemh(stream.dat): Not enough words in the read file for

requested range.

testbench.mem_ctl.write_framestore dumping framestore to

framestore_000.ppm @ 0.02 ms

testbench.mem_ctl.write_framestore dumping framestore to

framestore_001.ppm @ 0.02 ms

testbench.mpeg2.motcomp macroblock_address: 0

testbench.mpeg2.motcomp macroblock_address: 1

testbench.mpeg2.motcomp macroblock_address: 2

testbench.mpeg2.motcomp macroblock_address: 3

During simulation, the environment variable IVERILOG_DUMPER=lxt is set. This instructs
the simulator to produce a dump�le in the more compact lxt format, instead of the
default vcd format.

By default, simulator output includes the macroblock address. This allows easy moni-
toring of decoder progress.

Each Verilog source �le contains a define DEBUG statement, which can be uncom-
mented or commented to switch trace output for that particular source �le on or o�.

34 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

During simulation, two kinds of graphics �les are written: framestore dumps
framestore_*.ppm and video captures tv_out_*.ppm. The framestore is where the de-
coder stores already decoded images. These are Portable Pixmap graphics �les in ASCII
format. Figure 2.2 shows a sample framestore dump.

The framestore consists of four frames and the on-screen display (OSD). The �rst two
frames contain I and P pictures, while the last two frames contain B-pictures. Each frame
consists of y (luminance), u and v (chrominance) information, with u and v having half
the horizontal and half the vertical resolution of y. In the framestore dump, uninitialized
memory is displayed in green. Looking at �gure 2.2, one can see that the �rst three
frames of the framestore have already been written; the decoder is halfway through the
fourth frame. The On-Screen Display, at the bottom of the framestore dump, has not
been initialized yet.

During simulation, by default, the framestore is dumped whenever a new frame begins;
and every 200 macroblocks. As a framestore dump is a graphics �le in ASCII format,
one can also look at the �le using standard text �le utilities. These are the �rst 12 lines
of a sample framestore dump:

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ head -12 framestore_0001.ppm

P3

mpeg2 framestore dump @ 11.81 ms

frame number 2

horizontal_size 352

vertical_size 288

display_horizontal_size 0

display_vertical_size 0

mb_width 22

mb_height 18

picture_structure frame picture

chroma_format 420

352 2618 255

255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255

The header of the framestore dump contains information about decoder status at the
moment of the dump.

Figure 2.3 shows video capture �le tv_out_0000.ppm.Horizontal sync is displayed as a
vertical black stripe, to the right of the image. Vertical sync is displayed as a horizontal
black stripe, below the image area. Blanking is displayed in a dark grey. The position of
picture, horizontal sync and vertical sync in �gure 2.3 is as de�ned in �gure 1.2. As with
the framestore dumps, one can look at tv_out_0000.ppm using standard text utilities.

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ head -10 tv_out_0000.ppm

MPEG2 Decoder User Guide August 24, 2017 35

2. Decoder Sources kdv electronics

Figure 2.2: Framestore dump

36 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Figure 2.3: Video output capture

P3

picture 1 @ 10.73 ms

horizontal resolution 352 sync_start 381 sync_end 388 length 458

vertical resolution 288 sync_start 295 sync_end 298 length 315

interlaced 0 halfline 175

459 316 255

0 0 0

0 77 0

3 0 3

2 0 2

The header of the video capture �le contains information about the video modeline at
the moment of video capture.
To end the simulation, go to the window where iverilog is running and type ctrl-c

finish. The simulator will �nish writing trace and testbench.lxt �les, and return
control to the command prompt.
The binary �le testbench.lxt is a log of all wire and register changes which occurred

during simulation. testbench.lxt can be displayed using vcd viewers such as gtkwave.

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ gtkwave testbench.lxt &

Once testbench.lxt �le has been loaded in gtkwave, internal decoder wires and registers
can be displayed as waveforms.

2.3.2 Conformance Tests

The bench/conformance directory contains a testbench for the ISO/IEC 13818-4 MPEG2
conformance tests. The testbench assumes the ISO/IEC 13818-4 conformance test bit-

MPEG2 Decoder User Guide August 24, 2017 37

2. Decoder Sources kdv electronics

streams are available on your system. The ISO/IEC 13818-4 MPEG2 Conformance test
bitstreams for Main Pro�le @ Main Level can be downloaded from the ISO web site using
the tools/streams/retrieve script.

Typing make clean test in the bench/conformance directory simulates all MP@ML
conformance test bitstreams. Table 2.3 summarizes test results.

When running the compatibility tests, note the decoder is not MPEG1-compatible, and
does not decode MPEG1 streams. The MPEG2 decoder decodes MPEG2 4:2:0 program
streams only.

2.4 Tools

The tools directory contains various utilities and tools used during decoder development
and test.

2.4.1 Logic Analyzer

On the Xilinx ML505, the MPEG2 decoder testpoint has been broken out to the Xilinx
Generic Interface (XGI) . The test point selection can be done using the GPIO DIP
switches. If the ML505 is held so the LCD can be read, the GPIO DIP switches are at
the bottom right of the board. GPIO DIP switches are numbered 1 to 8, from left to
right.

If GPIO DIP switch 3 is o�, test point selection is made by writing to register 15
decimal, REG_WR_TESTPOINT. If GPIO DIP switch 3 is on, test point selection is
made by dip switches 5 to 8. GPIO DIP switch 5 is MSB, GPIO DIP switch 8 is LSB.

Verify the probing has been enabled in probe.v. Note that, as one adds test points,
routing and timing closure becomes more and more di�cult. Only de�ne those test points
you need.

The Intronix Logicport is a small USB-based logic analyzer. It has 34 channels, two
of which can be used as clock inputs, and does state analysis at up to 200 MHz. The
MPEG2 decoder on the ML505 runs at 75 MHz, with a typical dot clock of 27 MHz, well
within the capabilities of the Logicport logic analyzer. Probing the memory controller
at 200 MHz, however, is borderline. To be on the safe side, when probing the memory
controller with the Logicport, lower memory clock to 125 MHz .

A small two-layer adapter board has been designed to connect the Intronix
Logicport to the Xilinx ML505. Board layout can be downloaded from
http://www.kdvelectronics.eu/probe_adapter/probe_adapter.html.

The tools/logicport directory contains Logicport con�guration �les for the test
points de�ned in probe.v. Note con�guration �les can be read and waveforms displayed
by Logicport software even if no analyzer is present.

2.4.2 Finite State Machine Graphs

The MPEG2 decoder uses Finite State Machines throughout; no embedded processors
or microcontrollers are used. Verifying the correctness of the Finite State Machines is

38 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Test bitstream Pro�le and level Remarks

tcela/tcela-16-matrices 11172-2 Fail (MPEG1 stream)

tcela/tcela-18-d-pict 11172-2 Fail (MPEG1 stream)

compcore/ccm1 11172-2 Fail (MPEG1 stream)

tcela/tcela-19-wide 11172-2 Fail (MPEG1 stream)

toshiba/toshiba_DPall-0 SP@ML

nokia/nokia6_dual SP@ML

nokia/nokia6_dual60 SP@ML

nokia/nokia_7 SP@ML

tcela/tcela-14-bff-dp SP@ML

ibm/ibm-bw-v3 SP@ML

tcela/tcela-8-fp-dp SP@ML

tcela/tcela-9-fp-dp SP@ML 1 bit o�

mei/MEI.stream16v2 SP@ML Fail (MPEG1 stream)

mei/MEI.stream16.long SP@ML Fail (MPEG1 stream)

ntr/ntr_skipped_v3 SP@ML

teracom/teracom_vlc4 SP@ML

tcela/tcela-15-stuffing SP@ML

tcela/tcela-17-dots SP@ML

gi/gi4 MP@ML

gi/gi6 MP@ML

gi/gi_from_tape MP@ML

gi/gi7 MP@ML

gi/gi_9 MP@ML

ti/TI_cl_2 MP@ML

tceh/tceh_conf2 MP@ML

mei/mei.2conftest.4f MP@ML

mei/mei.2conftest.60f.new MP@ML

tek/Tek-5.2 MP@ML

tek/Tek-5-long MP@ML

tcela/tcela-6-slices MP@ML

tcela/tcela-7-slices MP@ML

sony/sony-ct1 MP@ML

sony/sony-ct2 MP@ML

sony/sony-ct3 MP@ML

sony/sony-ct4 MP@ML

att/att_mismatch MP@ML

teracom/teracom_vlc4 MP@ML

ccett/mcp10ccett MP@ML

lep/bits_conf_lep_11 MP@ML

hhi/hhi_burst_short MP@ML

hhi/hhi_burst_long MP@ML

tcela/tcela-10-killer MP@ML

Table 2.3: Conformance Test Suite

MPEG2 Decoder User Guide August 24, 2017 39

2. Decoder Sources kdv electronics

important. Finite state machine transition graphs are created from Verilog source �les
as a means of visually inspecting and verifying source correctness. The mkfsmgraph Perl
script in tools/fsmgraph assumes the comment /* next state logic */ marks the
beginning of a case statement in an always block, used to select the next state, and that
all states begin with STATE_ :

/* next state logic */

always @*

case (state)

STATE_INIT: if (first_pixel_read) next = STATE_WAIT;

else next = STATE_INIT;

...

default next = STATE_INIT

endcase

/* state */

always @(posedge clk)

if(~rst) state <= STATE_INIT;

else state <= next;

The mkfsmgraph tool parses the Verilog source �les using the following algorithm:

• read the Verilog �le until the comment /* next state logic */ is found

• take the �rst always block after the /* next state logic */ comment

• any word beginning with STATE_ is assumed to represent a FSM state.

• if the character following the FSM state is a colon (:) the state is a graph node.

• if the character following the FSM state is a semicolon (;) the state is the end point
of a state transition.

• if the character following the FSM state is neither a colon (:) nor a semicolon (;)
the state is not added to the graph.

The resulting graph is written to standard output in gml format. Graph layout software
uDrawGraph from the University of Bremen, Germany, is then used to produce a visually
appealing graph.
No attempt has been made to write a script capable of parsing arbitrary Verilog sources.

The Verilog sources have been written so the script can parse them.
The graph of the variable length-decoding FSM vld.v has been simpli�ed further

by removing all transitions to STATE_NEXT_START_CODE and STATE_ERROR.
Nodes which transition to STATE_NEXT_START_CODE are drawn with double bor-
der. Removing transitions to STATE_NEXT_START_CODE and STATE_ERROR
produces a graph with much less visual clutter. A large format version of the FMS graph
of vld.v can be found in doc/vld-poster.pdf. It is suggested to become familiar with
the graph before signi�cantly modifying vld.v.

40 August 24, 2017 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

2.4.3 IEEE-1180 IDCT Accuracy Test

idct.v has been tested to comply with the former IEEE-1180, the actual ISO/IEC 23002-
1 [2]. The testbench can be found in the tools/ieee1180 directory. Test results can be
found in the �le ieee-1180-results. Test results indicate the idct implementation is
IEEE-1180 compliant.

2.4.4 Reference software decoder

The directory tools/mpeg2dec contains the MPEG2 reference decoder, modi�ed to pro-
vide extensive logging and to regularly write the framebu�ers to �le. A sample run could
be:

koen@macpro ~/xilinx/mpeg2/tools $ mkdir run

koen@macpro ~/xilinx/mpeg2/tools $ cd run

koen@macpro ~/xilinx/mpeg2/tools/run $../mpeg2dec/mpeg2decode

-r -v9 -t -o0 'dump_%d_out_%c' -b ../streams/tcela-17.mpg > log

saving dump_0_out_f.y.ppm

saving dump_0_out_f.u.ppm

saving dump_0_out_f.v.ppm

saving dump_0_forward_ref_frm.y.ppm

saving dump_0_forward_ref_frm.u.ppm

saving dump_0_forward_ref_frm.v.ppm

saving dump_0_backward_ref_frm.y.ppm

saving dump_0_backward_ref_frm.u.ppm

saving dump_0_backward_ref_frm.v.ppm

saving dump_0_auxframe.y.ppm

saving dump_0_auxframe.u.ppm

saving dump_0_auxframe.v.ppm

saving dump_1_out_f.y.ppm

saving dump_1_out_f.u.ppm

...

The log �le contains detailed information about the execution of the MPEG2 decoding
algorithm, while the .ppm �les contain framestore dumps, using separate graphics �les
for each y, u and v component.

2.4.5 MPEG2 Test Streams

The tools/streams directory contains some sample MPEG2 program streams, useful
during testing. The retrieve script in the tools/streams directory can be used to
download the ISO/IEC 13818-4 conformance test bitstreams from the ISO web site1.

1ISO/IEC 13818-4 test bitstreams, http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/bitstreams/main-profile/

MPEG2 Decoder User Guide August 24, 2017 41

Bibliography

[1] ITU-T Recommendation H.262 �Information technology - Generic coding of moving
pictures and associated audio information: Video�, 2000. Also published as ISO/IEC
International Standard 13818-2.

[2] ISO/IEC International Standard 23002-1 �Information technology - MPEG video tech-
nologies - Part 1: Accuracy requirements for implementation of integer-output 8x8
inverse discrete cosine transform�, 2006.

[3] �Architecture and Bus-Arbitration Schemes for MPEG-2 Video Decoder", Jui-Hua
Li and Nam Ling, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 9, No. 5, August 1999, p.727-736.

[4] �Systematic approach of Fixed Point 8x8 IDCT and DCT Design and Implementa-
tion", Ci-Xun Zhang , Jing Wang , Lu Yu, Institute of Information and Communica-
tion Engineering, Zhejiang University, Hangzhou, China, 310027.

[5] �Virtex-5 FPGA User Guide�, Xilinx UG190 (v3.2), December 11, 2007.

[6] �ML505/506 MIG Design Creation Using ISE 9.2i SP3, MIG 2.0 and ChipScope Pro
9.2i�, Xilinx, December 2007.

42 August 24, 2017 MPEG2 Decoder User Guide

