NAND Controller (ONFi Compliant)

NAND Controller specs

ONFi compliant NAND controller partially implements ONFi standard of NAND flash communication protocol.

Instruction Set
Status Register
Internal Buffers and Index Register4
JEDEC ID Buffer4
ONFI Parameter Page Buffer4
Data Page Buffer5
Address Buffer5
Example Waveforms – READ_ID

Controller interface

Controller's interface to custom logic

Signal	Type/Width	Usage				
CLK	IN:1	Clock input.				
Enable#	IN:1	Component enable signal. Active LOW.				
Reset#	IN:1	Component reset signal. Active LOW.				
Busy	OUT:1	Indicates whether the controller is busy (1) or idle (0).				
Activate	IN:1	Strobe this input to 1 will instruct the controller to execute command fed to cmd_in port.				
Cmd_in	IN:8	Command input.				
Data_in	IN:8	Data input.				
Data_out	OUT:8	Data output.				

CLK – This is a clock input. Be aware of the need to define clock cycle duration in onfi_package.vhd, as it is used for delay times calculation.

Enable# - Controller is inactive when this input is set to low. Avoid setting it to low when controller's 'Busy' output is high.

Reset# - When set to '0' resets the controller. All internal signals are reset to their defaults.

Busy – Indicates whether the controller is in the middle of something. All commands would be ignored when Busy is set to '1'.

Activate – Setting this input to '1' instructs the controller to read the command on Cmd_in and execute it (if it is a valid command, otherwise no action is taken).

Cmd_in - 8 bit command input register. Make sure the command is fed in prior to strobing 'Activate'.

Data_in – 8 bit data input register. Just as in case of Cmd_in, make sure the data is fed in prior to strobing 'Activate'.

Data_out – 8 bit data output register. Only read from it when 'Busy' is '0', otherwise the value is undefined.

Controller's interface to NAND Flash

This controller implements the standard NAND Flash interface defined in ONFI Specification Rev.4. It supports both x8 and x16 interfaces. Bits 8 to 15 of the NAND data/command bus are ignored when connected to x8 chip. You do not have to tell the controller which chip it is connected to, as it determines this information automatically when reading ONFI Parameter Page. You have to tell the controller to read the parameter page though.

Instruction Set

Instruction	Data_in	Data_out	Function
0x00			Controller reset. Resets all internal signals to their defaults.
0x01			Performs NAND reset sequence.
0x02			Reads ONFI Parameter Page into the internal buffer.
0x03			Reads JEDEC ID into the internal buffer.
0x04			Performs NAND Block Erase sequence. The address of the block MUST
			be set prior to issuing this command.
0x05		Status	Performs NAND Read Status operation and puts the result on
			Data_out.
0x06			Reads a page into the internal buffer. Page's address should be set
			prior to issuing this command. Note – you should specify 5 bytes of the
			address regardless of the ADDRESS_CYCLES value in the parameter
			page, the controller will issue appropriate amount of address cycles.
0x07			Programs one page with the content of the internal page buffer. The
			address should be set appropriately prior to issuing this command.
0x08		Controller	Returns the content of the controller's 8-bit status register.
		status	
0x09			Sets CE# pin of the chip to LOW.
0x0a			Sets CE# pin of the chip to HIGH.
0x0b			Sets the WP# pin of the chip to LOW (enables write protection). This
			pins is set to LOW upon controller's reset.
0х0с			Sets the WP# pin of the chip to HIGH (disables write protection).
0x0d			Resets internal buffer index to 0. Although, the controller has three
			internal buffers, it uses single index register for all of them.
0x0e		JEDEC ID	Returns the byte pointed by index register from the JEDEC ID buffer
		byte	and increments the register. Check status register for
			OUT_OF_BOUNDS error (if index > 4) if the returned byte is 0.
			Basically, you should reset the index register before reading from
			JEDEC ID buffer.
0x0f		Parameter	Returns the byte pointed by index register from the ONFI Parameter
		Page byte	Page internal buffer and increments the register. Check status register
			for OUT_OF_BOUNDS error (if index > 255) if the returned byte is 0.
			Basically, you should reset the index register before reading from
			Parameter Page buffer.

0x10		Data Page	Returns the byte pointed by index register from the Data Page internal
		byte	buffer and increments the register. Check status register for
			OUT_OF_BOUNDS error (if index > data_bytes_per_page +
			oob_bytes_per_page) if the returned byte is 0. Basically, you should
			reset the index register before reading from Data Page buffer.
0x11	Byte		Writes single byte into the Data Page internal buffer at position
			pointed by the index register. Make sure you reset the index register
			prior to starting filling the page buffer.
0x12		Address	Returns the byte pointed by the index register from the Address
		byte	internal buffer. Don't forget to reset the index register before reading
			address bytes.
0x13	Byte		Writes single byte into the Address internal buffer at position pointed
			by the index register.

Status Register

Bit	Meaning					
position						
0	'0' after reading the ONFI Parameter Page means that the chip is not ONFI compliant and the					
	controller does not know how to handle it.					
1	Indicates whether the chip is x8 ('0') or x16 ('1').					
2	Indicates whether the chip is enabled ('1'). Note – the controller does not pay attention to this bit!					
3	Indicates whether write protection is enabled (whether WP# is set to LOW).					
4	'1' means that the index register pointed beyond buffer bounds during the last operation on internal					
	buffers.					
5	Reserved					
6	Reserved					
7	Reserved					

Internal Buffers and Index Register

The ONFI Compliant NAND Controller utilizes three internal buffers and a common index register. NOTE: Do not forget to reset the index register before starting to read from any buffer, so that the first byte read would be the first byte in buffer. When the index register reaches a value outside the buffer being accessed it is reset to 0, also 0 is returned as operation's result as well as bit 4 of the status register gets set to '1'.

JEDEC ID Buffer

The JEDEC ID Buffer is a 5 bytes buffer that contains chip's ID. It is only provided for convenience as a way to speed up READ ID procedures. You only have to read the ID from flash once and then access this buffer if needed, which may be up to 12 times faster (depends on your clock settings).

ONFI Parameter Page Buffer

256 bytes buffer that holds the ONFI Parameter Page (once it has been read).

Data Page Buffer

This is the largest buffer – 8628 bytes, enough to have the largest page fit in.

Address Buffer

This buffer is 5 bytes long and contains the address of the page currently in use.

Example Waveforms - READ_ID

- Instruction 0x03 READ_ID instructs the controller to read JEDEC ID into internal buffer.
- Instruction 0x0e READ_ID_BYTE is executed 5 times to get all bytes of the ID stored in the internal buffer.
- Instruction 0x08 GET_STATUS reads the content of the controller's status register, which in this case is 0x0c, meaning the chip is enabled and write protection is on. As you see, bit 0 is not set in this particular case as we have not read ONFI Parameter Page during this simulation.