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BSD 3-Clause License

Copyright (c) 2020, Stephan Nolting. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND  ANY  EXPRESS  OR  IMPLIED  WARRANTIES,  INCLUDING,  BUT  NOT  LIMITED  TO,
THE IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  FOR  A  PARTICULAR
PURPOSE  ARE  DISCLAIMED.  IN  NO  EVENT  SHALL  THE  COPYRIGHT  HOLDER  OR
CONTRIBUTORS  BE  LIABLE  FOR  ANY  DIRECT,  INDIRECT,  INCIDENTAL,  SPECIAL,
EXEMPLARY,  OR  CONSEQUENTIAL  DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS  INTERRUPTION)  HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF  LIABILITY,
WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT  (INCLUDING  NEGLIGENCE  OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
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1. Introduction

Welcome to The NEO430 Processor project!

You need a small but still powerful, customizable and microcontroller-like processor system for your next
FPGA design? Then the NEO430 might be the right choice for you!

This processor is based on the Texas Instruments MSP430 ISA and provides compatibility with the original
instruction  set  (differences  are  listed  below).  The  processor  features  a  very  small  outline,  already
implementing standard features like a timer, a watchdog, UART, TWI and SPI serial interfaces, general
purpose IO ports, an internal bootloader and of course internal memory for program code and data. All of the
peripheral modules are optional – if you do not need them, you can just exclude them from implementation
to reduce the footprint of the system. Any additional modules, which make a more customized system, can
be connected via a Wishbone-compatible bus interface or you can add them as custom functions unit to the
processor core itself. By this you can build a system that perfectly fits your needs.

The high-level software development is based on the free TI msp430-gcc     compiler tool chain. You can either
use Windows Powershell, the Windows Bash Subsystem or directly Linux as build environment for your
applications. The example software folder of this project features several demo programs from which you
can start creating your own NEO430 applications.

This project is intended to work "out of the box". Just synthesize the test setup from this project, upload it to
your  FPGA board  and  start  exploring  the  capabilities  of  the  NEO430  processor.  Application  program
generation (and even ROM-installation) works by executing a single "make" command. Jump to   4. Let's Get  
It Started!, where a lot of guides and tutorials are provided to make your first NEO430 setup run.

This project is published under the BSD   3-Clause   License   (BSD)

6   1. Introduction May 15, 2020

Figure 1: NEO430 processor block diagram, optional modules are marked using dashed lines
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1.1. Processor Key Features

✔ 16-bit open source soft-core microcontroller-like processor system

✔ Code-efficient RISC-like ISA with powerful CISC-like addressing capabilities

✔ Full support of the original MSP430 instruction set architecture

✔ Tool chain based on free TI msp430-gcc compiler

✔ Application compilation makefiles for Windows Powershell / Subsystem for Linux and native  Linux

✔ Completely described in behavioral, platform-independent VHDL (no macros, primitives, attributes,
etc. used), tested on Intel, Xilinx and Lattice FPGAs

✔ Fully synchronous design, no latches, no gated clocks

✔ Very low hardware resource requirements and high operating frequency

✔ Internal data (DMEM, p.30) and instruction memories (IMEM, p.30) with user-configurable sizes

✔ Customizable processor hardware configuration

✔ Optional   multiplier and divider unit (MULDIV, p.48)

✔ Optional   high-precision 16-bit timer (TIMER, p.43) with arbitrary frequency generator output

✔ Optional   universal asynchronous receiver and transmitter unit (UART, p.36)

✔ Optional   8/16-bit serial peripheral interface master (SPI, p.39) with 6 dedicated chip select lines

✔ Optional   two wire serial interface master (TWI, p.41), compatible to the I²C standard

✔ Optional   general purpose parallel IO port (GPIO, p.35), 16xOUT & 16xIN + pin-change interrupt

✔ Optional   32-bit Wishbone bus interface adapter (WB32, p.32) – incl. bridges to Avalon & AXI-Lite

✔ Optional   watchdog timer (WDT, p.45)

✔ Optional   custom functions unit (CFU, p.52) to implement user-defined extensions

✔ Optional   16 or 32 bit cyclic redundancy checksum computation unit (CRC16/32, p.51)

✔ Optional   4 channel PWM controller with 4 or 8 bit resolution (PWM, p.53)

✔ Optional   GARO-based true random number generator (TRNG, p.56)

✔ Optional   8 channel external interrupts controller (EXIRQ, p.59), capable of triggering IRQs by SW

✔ Optional   internal bootloader (BOOTLD, p.68) with UART or SPI flash boot option

✔ Optional   arbitrary frequency generator (FREQ_GEN, p.63)
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1.2. Main Differences to TI's Original MSP430 Architecture

Since the NEO430 is not intended as MSP430 clone, there are severe differences to TI's original product
lines. The main differences are:

✗ Completely different processor peripheral modules with different functionality

✗ No  compiler support of  the hardware multiplier/divider – the multiplier/divider unit  can still  be
utilized  by  using  explicit C  functions  provided  by  the  NEO430  C-library;  see  chapter  2.13.
Multiplier and Divider Unit (MULDIV) for more information

✗ Maximum of 48kB instruction memory and 12kB of data memory

✗ Specific NEO430 tool chain required (makefiles, boot-code and linker script)

✗ Custom binary executable format (→ 3.1.4. Executable Image Formats)

✗ No hardware debugging interface

✗ No analog components

✗ No support of TI's Code Composer Studio

✗ No support of the CPU’s DADD instruction / BCD addition1 (→ 2.1.5. Instruction Set)

✗ Just 4 CPU interrupt channels (extendable via the EXIRQ controller)

✗ Single clock domain for complete processor

✗ Different numbers of instruction execution cycles (→ 2.1.6. Instruction Timing)

✗ Only one power-down (sleep) mode

✗ Internal bootloader with user interface via UART serial port (→ 3.2. Internal Bootloader)

✗ NEO430-specific extended ALU functions (disabled by default) (→ 2.1.2. Arithmetic / Logic Unit)

1 Should not be a problem, since the compiler does not use this instruction at all when not explicitly used as inline
assembly.
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1.3. Project Home Folder Structure

neo430
│
├─doc
│ │
│ │
│ │
│ └─figures
│
├─rtl
│ │
│ ├─core
│ │
│ │
│ ├─top_templates
│ │
│ │
│ │
│ │
│ └─fpga_specific
│
├─sim
│ │
│ │
│ ├─ghdl
│ │
│ │
│ ├─ISIM
│ │
│ │
│ └─modelsim
│
│
├─sw
│ │
│ │
│ │
│ ├─bootloader
│ │
│ ├─common
│ │
│ ├─example
│ │ │
│ │ └─...
│ │
│ │
│ ├─lib
│ │ │
│ │ └─neo430
│ │   │
│ │   ├─include
│ │   └─source
│ │
│ └─tools
│   │
│   └─image_gen
│
│
│
└─travis_ci

Project home folder

This  folder  contains  a  copy  of  the  implemented  Wishbone
specifications as well as the processor documentary (the document you
are currently reading).

Some figures for the web page.

All the rtl files of the project can be found here.

This folder contains all the rtl (VHDL) core files of the NEO430
processor. Make sure to add ALL of them to your FPGA EDA project.

Here you can find several different exemplary top entities of the
NEO430 (like a simple system top entity that you can use for your
first  FPGA  test  implementation  of  the  NEO430  processor  or  a  top
entity using only resolved std_logic signal types).

This folder provides FPGA vendor-specific & optimized HW modules.

The  sim  folder  contains  a  simple  VHDL  testbench  and  additional
simulation files.

Contains a simple script to simulate the processor’s testbench using
the free and open GHDL.

Here you can find a default Xilinx ISIM/Vivado simulator waveform
configuration file.

Waveform  configuration  file  and  simulation  compilation  script  for
Mentor Graphic’s ModelSim.

The software folder contains example programs, software libraries,
compilation scripts and of course several example  code projects to
start from.

Sources and compilation scripts of the NEO430-internal bootloader.

Application linker script and CPU startup code.

Here  you  can  find  several  example  programs.  Each  project  folder
includes the program's C sources and a makefile for compilation. Add
your own projects to this folder.

This folder contains different C software libraries.

Here you can find the NEO430 HW driver library’s C source files and
the according header/include files. 

This folder contains helper programs.

This program either generates an executable binary (for uploading via
the bootloader) or an executable VHDL ROM initialization image for
the bootloader ROM or the actual application ROM/RAM.

Scripts for travis CI.
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1.4. Processor VHDL File Hierarchy

All necessary VHDL hardware description files are located in the project's rtl/core folder. The top entity
of the entire processor including all the required configuration generics is neo430_top.vhd. Make sure to
add all files to your project and assign them to a library called “neo430”.

neo430_top.vhd
│
├─neo430_boot_rom.vhd
│ │
│ └─neo430_bootloader_image.vhd
│
├─neo430_cfu.vhd
│
├─neo430_crc.vhd
│
├─neo430_dmem.vhd
│
├─neo430_exirq.vhd
│
├─neo430_freq_gen.vhd
│
├─neo430_gpio.vhd
│
├─neo430_imem.vhd
│ │
│ └─neo430_application_image.vhd
│
├─neo430_muldiv.vhd
│
├─neo430_package.vhd
│
├─neo430_pwm.vhd
│
├─neo430_spi.vhd
│
├─neo430_sysconfig.vhd
│
├─neo430_timer.vhd
│
├─neo430_trng.vhd
│
├─neo430_twi.vhd
│
├─neo430_uart.vhd
│
├─neo430_wb_interface.vhd
│
├─neo430_wdt.vhd
│
└─neo430_cpu.vhd
  │
  ├─neo430_addr_gen.vhd
  │
  ├─neo430_alu.vhd
  │
  ├─neo430_control.vhd
  │
  └─neo430_reg_file.vhd

Processor core top entity

Bootloader ROM

Boot ROM initialization image for the bootloader

Custom functions units for user-defined extension

Checksum computation unit (CRC16/32)

DMEM: Internal RAM for storing data

External interrupts controller

3-channel arbitrary frequency generator

General purpose 16-bit input/output controller

IMEM: Internal RAM/ROM for the application code

IMEM application initialization image

Multiplier and divider unit

Processor VHDL package file

Pulse-width modulation controller

Serial peripheral interface

IRQ vector configuration and system information

High-precision timer

True random number generator

Two wire serial interface

Universal asynchronous receiver/transmitter

Wishbone bus adapter

Watchdog timer

NEO430 CPU's top entity

CPU address generator unit

CPU arithmetic/logic unit

CPU control finite state machine

CPU register file
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1.5. Processor Top Entity – Signals

The following table shows all interface ports of the processor top entity (neo430_top.vhd). The type of all
signals is std_ulogic or std_ulogic_vector, respectively2 (except for the TWI signals).

Signal name Width Direction Function HW Module

Global Control

clk_i 1 Input Global clock line, all registers triggering on rising edge global

rst_i 1 Input Global reset, low-active global

General Purpose Inputs & Outputs

gpio_o 16 Output General purpose parallel output3 GPIO

gpio_i 16 Input General purpose parallel input GPIO

PWM Channels

pwm_o 4 Output Pulse Width Modulation channels PWM

Frequency Generator

freq_gen_o 3 Output Arbitrary frequency generator output FREQ_GEN

Serial Communication

uart_txd_o 1 Output UART serial transmitter UART

uart_rxd_i 1 Input UART serial receiver UART

spi_sclk_o 1 Output SPI master clock line SPI

spi_mosi_o 1 Output SPI serial data output SPI

spi_miso_i 1 Input SPI serial data input SPI

spi_cs_o 8 Output SPI dedicated chip select lines 0..74 (low-active) SPI

twi_sda_io 1 InOut TWI serial data line TWI

twi_scl_io 1 InOut TWI serial clock line TWI

Wishbone Bus (on-chip)

wb_adr_o 32 Output Slave address WB32

wb_dat_i 32 Input Write data WB32

wb_dat_o 32 Output Read data WB32

wb_we_o 1 Output Write enable ('0' = read transfer) WB32

wb_sel_o 4 Output Byte enable WB32

wb_stb_o 1 Output Strobe WB32

wb_cyc_o 1 Output Valid cycle WB32

wb_ack_i 1 Input Transfer acknowledge WB32

External Interrupt Request

ext_irq_i 8 Input Interrupt request signals, high-active EXIRQ

ext_ack_o 8 Output Interrupt request acknowledges, single-shot EXIRQ

Table 1: neo430_top.vhd – processor's top entity interface ports

2 If you need a top entity with resolved signals, take a look at the alternative top entities in the rtl/top_templates
folder.

3 Bit #0 is used by the bootloader to drive a high-active status LED.
4 Chip select #0 is used by the bootloader to access the external boot SPI flash.
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1.6. Processor Top Entity – Configuration Generics

The following table shows the configuration generics of the processor top entity (neo430_top.vhd).

Generic name Type Default Function

General Configuration

CLOCK_SPEED natural 100000000 Clock speed of signal clk_i in Hz (Hertz)

IMEM_SIZE natural 4*1024 Size of internal instruction memory (max 48kB) in bytes

DMEM_SIZE natural 2*1024 Size of internal data memory (max 12kB) in bytes

Additional Configuration

USER_CODE std_ulogic_vector x”0000” 16-bit custom user code, can be read by application software

Module Configuration

MULDIV_USE boolean true Implement multiplier/divider unit

WB32_USE boolean true Implement Wishbone interface adapter

WDT_USE boolean true Implement watchdog timer

GPIO_USE boolean true Implement parallel GPIO port

TIMER_USE boolean true Implement high-precision timer

UART_USE boolean true Implement UART serial communication unit

CRC_USE boolean true Implement checksum computation unit

CFU_USE boolean false Implement custom functions unit

PWM_USE boolean true Implement pulse width controller

TWI_USE boolean true Implement two wire serial interface unit

SPI_USE boolean true Implement serial peripheral interface unit

TRNG_USE boolean false Implement true random number generator

EXIRQ_USE boolean true Implement external interrupts contoller

FREQ_GEN_USE boolean true Implement arbitrary frequency generator

Boot Configuration

BOOTLD_USE boolean true Implement and auto start internal bootloader

IMEM_AS_ROM boolean false Implement internal instruction memory as read-only memory

Table 2: neo430_top.vhd – processor’s top entity configuration generics

The main processor configuration regarding memory sizes and available peripheral modules is done
using the top unit’s generics. The advanced or experimental hardware configuration (NX config) is
done using flags in the processor’s main VHDL package file (neo430_package.vhd).
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1.7. Alternative Top Entities

Besides  the  actual  top  entity  of  the  processor  (rtl/core/neo430_top.vhd),  there  are  several  other
entities that can be used instead. These alternative top entities are located in: rtl/top_templates

Top entity file Description

neo430_test.vhd This setup is meant as “hello world” test project for your first contact with the 
neo430 processor. This setup is used in the Let’s Get It Started tutorial.

neo430_top_avm.vhd This top entity features an Avalon master interface, which is generated by converting
the processor’s Wishbone bus. All signals are std_logic.

neo430_top_std_logic.vhd Same as the original top entity, but using only std_logic signal types.

neo430_top_axi_lite.vhd This top entity features an AXI-Lite-compatible master itnerface, which is generated 
by converting the processor’s Wishbone bus. All signals are std_logic.

Table 3: Alternative top entities
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1.8. FPGA Implementation Results

This chapter shows some exemplary implementation results of the NEO430 processor for different FPGA
platforms, EDA tool chains and configurations.

1.8.1. Full Implementation (Default Configuration)

Configuration

Hardware Version: 0x0406

• IMEM_SIZE: 4*1024
• DMEM_SIZE: 2*1024
• MULDIV_USE: true
• WB32_USE: true
• WDT_USE: true
• GPIO_USE: true
• TIMER_USE: true
• UART_USE: true
• CRC_USE: true

• CFU_USE: false
• PWM_USE: true
• TWI_USE: true
• SPI_USE: true
• TRNG_USE: false
• EXIRQ_USE: true
• FREQ_GEN_USE: true
• BOOTLD_USE: true
• IMEM_AS_ROM: false

The Lattice iCE40 UltraPlus Version uses optimized memory modules (for IMEM & DMEM) to utilize the
SPRAM memory primitives of the FPGA (IMEM = 32kB, DMEM = 12kB).

FPGA Tools

• Intel Quartus Prime Lite 17.1 (“balanced implementation”)
• Xilinx Vivado 2019.2, default strategies
• Lattice Radiant 1.1 (Synplify)

Implementation Results

Resource
Intel Cyclone IV

EP4CE22F17C6N 
Xilinx Artix-7 

XC7a35TICS324-1L 
Lattice iCE40 UltraPlus

iCE40UP5K-SG48I

LUTs/LEs: 1869 / 22320 (8%) 1036 / 20800 (5%) 3928 / 5280 (74%)

FFs/
Registers: 

1137 / 22320 (5%) 1144 / 41600 (2.75%) 1923 / 5280 (36%)

Total memory 
bits / Block 
RAMs / EBRs5: 

65800 / 608256 (11%) 2.5 / 50 (5%)
EBR: 9 / 30 (30%)
SPRAM: 2 / 4 (50%)

DSP-Blocks: 0 0 0

Maximum 
Frequency: 

121 MHz (slow 1200mV
0°C model)

100 MHz (constrained) 20.25 MHz
(constrained)

Table 4: Hardware utilization – full / default configuration

5 Using optimized memory modules for IMEM (32kB) & DMEM(12kB) from the rtl\fpga_specific\lattice_ice40up
folder
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1.8.2. Minimal Configuration

This is the minimal configuration of the NEO430 processor that is still able to do “useful” stuff.

Configuration

Hardware Version: 0x0406

• IMEM_SIZE: 4*1024
• DMEM_SIZE: 2*1024
• MULDIV_USE: false
• WB32_USE: false
• WDT_USE: false
• GPIO_USE: true
• TIMER_USE: false
• UART_USE: false
• CRC_USE: false

• CFU_USE: false
• PWM_USE: false
• TWI_USE: false
• SPI_USE: false
• TRNG_USE: false
• EXIRQ_USE: false
• FREQ_GEN_USE: false
• BOOTLD_USE: false
• IMEM_AS_ROM: true

The Lattice iCE40 UltraPlus Version uses optimized memory modules (for IMEM & DMEM) to utilize the
SPRAM memory primitives of the FPGA (IMEM = 32kB, DMEM = 12kB). These primitives cannot be
initialized via bitstream. Therefor, the Lattice implementation uses the IMEM as RAM and also includes
booloader (which could be used to initialize the IMEM via the GPIO signals...).

FPGA Tools

• Intel Quartus Prime Lite 17.1 (“balanced implementation”)
• Xilinx Vivado 2019.2, default strategies
• Lattice Radiant 1.1 (Synplify)

Implementation Results

Resource
Intel Cyclone IV

EP4CE22F17C6N 
Xilinx Artix-7 

XC7a35TICS324-1L 
Lattice iCE40 UltraPlus

iCE40UP5K-SG48I

LUTs/LEs: 590 / 22320 (3%) 576 / 20800 (3%) 1812 / 5280 (34%)

FFs/
Registers: 

230 / 22320 (1%) 26 / 41600 (0.6%) 755 / 5280 (14%)

Total memory 
bits / Block 
RAMs / EBRs6:

49408 / 608256 (8%) 1 / 50 (2%)
EBR: 4 / 30 (13%)
SPRAM: 2 / 4 (50%)

DSP-Blocks: 0 0 0

Maximum 
Frequency: 

122 MHz (slow
1200mV 0°C model)

100 MHz (constrained) 20.25 MHz
(constrained)

Table 5: Hardware utilization – minimal configuration

6 Using optimized memory modules for IMEM (32kB) & DMEM(12kB) from the rtl\fpga_specific\lattice_ice40up
folder
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1.8.3. Resource Utilization by Entity

This table shows the required resources for each entity of the processor system.  Logic functions of different
modules might be merged between entity boundaries, so the total number might vary a bit.

Configuration

Hardware Version: 0x0406

• IMEM_SIZE: 4*1024
• DMEM_SIZE: 2*1024
• MULDIV_USE: true
• WB32_USE: true
• WDT_USE: true
• GPIO_USE: true
• TIMER_USE: true
• UART_USE: true
• CRC_USE: true

• CFU_USE: false
• PWM_USE: true
• TWI_USE: true
• SPI_USE: true
• TRNG_USE: true
• EXIRQ_USE: true
• FREQ_GEN_USE: true
• BOOTLD_USE: true
• IMEM_AS_ROM: false

Implementation Results

Intel Cyclone IV EP4CE22F17C6N, Intel Quartus Prime Lite 17.1 (“balanced implementation”)

Entity/Module Function LEs FFs MEM bits DSPs

CPU Central processing unit 525 169 264 0

IMEM (4kB) Instruction memory (RAM) 5 1 32768 0

DMEM (2kB) Data memory (RAM) 5 1 16384 0

Boot ROM (2kB) Bootloader ROM 2 1 16384 0

SYSCONFIG System information 12 11 0 0

GPIO GPIO parallel in/out ports 50 45 0 0

MULDIV Multiplier/divider unit 209 134 0 0

WDT Watchdog timer 53 37 0 0

TIMER High-precision timer 66 57 0 0

UART Universal asynchronous RX & TX 130 91 0 0

WB32 32-bit Wishbone bus interface 129 117 0 0

CRC Cyclic redundancy checksum unit 111 94 0 0

CFU Custom functions unit - - - -

PWM Pulse width modulation unit 96 66 0 0

TWI Two wire serial interface 78 43 0 0

SPI Serial peripheral interface 82 59 0 0

TRNG True random number generator 92 76 0 0

EXIRQ External interrupts controller 70 55 0 0

FREQ_GEN Arbitrary frequency generator 140 130 0 0

Table 6: Hardware utilization by entity
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1.9. CPU Performance (CoreMark Benchmark)

The performance of the NEO430 CPU was tested using the  C  ore  M  ark CPU benchmark  . This benchmark
focuses on testing the capabilities of the CPU core itself rather than the performance of the whole system.
The according source code and the SW project can be found in the  sw/example/coremark folder. All
NEO430-specific modifications of the original code were made “outside” of the time-critical benchmark
core.

Configuration

Hardware Version: 0x0407

Hardware configuration: 32kB IMEM, 12kB DMEM, 100MHz clock

Compiler: MSP430-GCC 8.3.0

Used peripherals:  TIMER for time measurement,  UART for printing the results,
MULDIV for multiplications

Coremark Results

 NEO430: clock speed  = 100000000 Hz
 NEO430: timer IRQs/s = 10
 NEO430: running coremark (2000 iterations). This may take some time...
 
 2K performance run parameters for coremark.
 CoreMark Size    : 666
 Total ticks      : 2887
 Total time (secs): 288
 Iterations/Sec   : 6
 Iterations       : 2000
 Compiler version : GCC8.3.0
 Compiler flags   : -> see makefile
 Memory location  : STACK
 seedcrc          : 0xe9f5
 [0]crclist       : 0xe714
 [0]crcmatrix     : 0x1fd7
 [0]crcstate      : 0x8e3a
 [0]crcfinal      : 0x4983
 Correct operation validated. See README.md for run and reporting rules.

Example coremark output (the results are computed using integer math)

 The resulting CoreMark score is defined as CoreMark iterations (here: 2000) per second. The relative 
CoreMark score is defined as the CoreMark score divided by the clock frequency in Mhz.

CoreMark Score=CoreMark iterations
Time in seconds

Relative CoreMark Score=CoreMark Score
Clock frequency [MHz]

This project is published under the BSD   3-Clause   License   (BSD)

17   1. Introduction May 15, 2020

https://github.com/stnolting/neo430
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
mailto:stnolting@gmail.com


The NEO430 Processor                                                          This project is hosted on GitHub
by Stephan Nolting                                                                                             stnolting@gmail.com

Optimization / Configuration Executable Size CoreMark
Score

CoreMarks/Mhz

-Os 12150 bytes 6.57 0.065

-O2 14600 bytes 7.16 0.071

-Os + NEO430_MULDIV 12118 bytes 14.43 0.144

-O2 + NEO430_MULDIV 14562 bytes 17.68 0.176

-Os + NEO430_MULDIV + NEO430_DSP 12060 bytes 15.63 0.156

-O2 + NEO430_MULDIV + NEO430_DSP 14510 bytes 19.42 0.194

Table 7: CoreMark results

NEO430_MULDIV

Results #3 and ä4 were generated using the “NEO430_HWMUL_ABI_OVERRIDE” feature flag for compilation,
which allows to  map implicit  multiplications  in  the  source code via  compiler  primitives  directly  to  the
multiplier core of the MULDIV unit. For more information see chapter   2.13. Multiplier and Divider Unit  
(MULDIV).

NEO430_DSP

The last two CoreMark results were generated using the “NEO430_HWMUL_DSP” feature flag for compilation.
This feature assumes the usage of the FPGA’s embedded multipliers (DSP block) for the multiplier core of
the MULDIV unit. By using this flag, the wait cycles usually required to wait for the result generated by the
default serial MULDIV multiplier core are eliminated. Obviously, the usage of DSP block for the MULDIV
unit has to be enabled via the advanced/experimental (NX) flags in the processor’s VHDL main package file.
For more information see chapter   2.13. Multiplier and Divider Unit (MULDIV)  .

Evaluation

Even though a score of 6.57 can outnumber certain architectures and configurations (see the score table on
the coremark homepage), the  relative score of 0.065 CoreMarks per second might sound pretty low. True.
But keep in mind the benchmark was executed using only the resources of the NEO430 CPU itself. The CPU
consists of only ~520 Intel Cyclone IV LUTs and does not contain any sophisticated ALU operations like
multiplications, divisions or barrel shifting.

When including NEO430 MULDIV unit (using the “NEO430_HWMUL_ABI_OVERRIDE” feature) the CoreMark
score is increased to 19.4. By explicitly using additional HW accelerators from the NEO430 ecosystem (e.g.
the CRC unit) the performance can be further increased.
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2. Hardware Architecture
The  NEO430  processor  system  is  constructed  from  the  CPU  itself  and  several  different  memory  and
peripheral modules. This chapter takes a closer look at these modules and their specific functionality. 

Address Space

Although  the  NEO430  is  fully  compatible  to  the  original  TI  MSP430  instruction  set  architecture,  the
implemented modules are completely different from the original design. Hence, the provided modules and
the resulting address space layout are completely new. The figure below shows the general layout of the 16-
bit address space of the CPU.

In general,  the  address  space in  separated into  four  groups:  At  the  beginning of  the  address  space  the
instruction memory (IMEM) is located. This memory (can be implemented as RAM or ROM) stores the
instructions of the actual application. The data memory (DMEM) starts in the middle of the address space.
This memory stores global variables, the stack and the heap. Additionally, the interrupt vectors are located at
the beginning of the DMEM. The custom NEO430 linker script ensures that these locations are not used by
the application program.  Close to  the end of the address space the bootloader ROM can be found. This
optional memory contains the image of the interactive bootloader. Finally, all the IO devices (timer, UART,
GPIO, …) are located at the very end of the address space.

Peripheral/IO Devices

In contrast to the original MSP430, the NEO430 does not have any special function registers at the beginning
of  the  memory space.  Instead,  all  'special  functions'  – like  peripheral/IO devices,  control  registers  and
interrupt enable configurations – are  located inside the according hardware units.  These IO units (devices)
are located at the end of the memory space in the so-called  IO region. This region is 128 bytes large. A
special linker script as well as the dedicated NEO430 software library abstract the specific memory layout
for the user. All IO devices are reset by software by writing zero to the according unit’s control register.
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Figure 2: General NEO430 address space layout
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Separated Instruction (IMEM) and Data (DMEM) Memories

Just like the original MSP430, the NEO430 uses separated memories for storing data and instructions, but
both memories are accessed via the same bus. The DMEM is implemented as normal RAM, the IMEM is
also implemented as RAM, but one can only write to it  if a special bit in the CPU’s status register is set.
Normally, this bit is only set by the bootloader for transferring an image from an external flash or via the
UART into the IMEM during the boot process. Alternatively, the IMEM can be implemented as true ROM
(via the IMEM_AS_ROM generic). In this case, the actual executable application image is included during the
synthesis process and persists as non-volatile image in the IMEM. Thus, the bootloader ROM is no longer
required (only for development purpose, maybe).

Word and Byte Accesses

All internal memories (IMEM, DMEM, bootloader ROM) can be accesses in byte and word mode. All of the
peripheral devices in the IO region can only be accessed using full-word mode.

All IO modules (peripheral modules) can only be accessed in full-word mode (full 16-bit accesses).

Internal Reset Generator

All processor-internal modules – except for the CPU and the watchdog timer – do not require a dedicated
reset  signal.  However,  all  devices  can be reset  by software by clearing the corresponding unit’s  control
register.  The  automatically  included application  start-up  code  will  perform such a  software-reset  of  all
modules to ensure a clean system reset state.

The hardware reset signal of the processor can either be triggered via the external reset pin (LOW-active) or
by the internal watchdog timer (if implemented). Before the external reset signal is applied to the system, it
is filtered (so no spike can generate a reset, a minimum active reset period of one clock cycle is required) and
extended to have a minimal duration of four clock cycles.

Internal Clock Generator

An internal clock divider generates 8 clock signals derived from the main clock input. These derived clock
signals are not actual clock signals. Instead, they are derived from a simple counter and are used as “clock
enable” signal by the different processor modules. Thus, the whole design operates using only the main clock
signal (single clock domain). Some of the processor modules (like the timer or the UART) can select one of
the derived clock enabled signals for their internal operation. If none of the connected modules require a
clock signal from the generator, the clock divider is automatically deactivated to reduce dynamic power.

The available clock frequencies from the clock generator can be used by many modules (like the TWI, SPI,
UART, Timer and WDT) by setting a certain 3-bit prescaler in the module’s control register. The mapping of
the selection bits to the actually obtained clock are shown in the table below. “f” represents the main clock.

Prescaler bits: 000 001 010 011 100 101 110 111

Resulting clock f/2 f/4 f/8 f/64 f/128 f/1024 f/2048 f/4096
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2.1. NEO430 CPU

The CPU is the heart of the NEO430 processor. It implements all the instructions, emulated instructions and
addressing modes of the original TI MSP430 instruction set architecture (ISA). There are small differences to
the original  architecture when it  comes to instruction execution cycles,  status register  bits,  power down
modes and interrupt behavior.

The CPU consists of the following VHDL files (from the project’s rtl/core folder):

• neo430_addr_gen.vhd → address generator unit
• neo430_alu.vhd → main arithmetic/logic unit
• neo430_control.vhd → finite-state machine for CPU control
• neo430_cpu.vhd → CPU top entity
• neo430_reg_file.vhd → register file (incl. Status register and stack pointer)

Data Path

Instruction execution is conducted by performing several tiny steps – so-called micro operations. Thus, the
NEO430 implements a multi-cycle architecture: The CPU requires several consecutive cycles to complete a
single instruction. An accurate listing of the required processing cycles for each instruction is given in the
following chapter. The execution of the micro operations is controlled by the central control arbiter, which
implements a complex finite state machine (FSM). This FSM generates the control signals for the data path,
that processes the data. This data path is constructed from the register file, the primary data ALU and the
address generator unit. The image below shows the simplified architecture of this data path.
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Figure 3: Data path of the NEO430 CPU
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Control Path

The NEO430 CPU was implemented as multi-cycle architecture, requiring several consecutive clock cycles
to  process  a  single  instruction.  Obviously,  this  kind  of  implementation  scheme  reduces  the  overall
performance when compared to a pipelined one. There are two main points for this design decision: First, a
multi cycle architecture generally requires less logic since you don not need any pipeline conflict handling
(e.g., forwarding). Second, the MSP430 ISA uses CISC-like features, which makes it nearly impossible to
implement  in using a classic 5-stage pipeline (e.g.,  single instructions requiring 3 memory accesses).  A
summary of the control FSM can be found in the project’s doc folder: doc/neo430_control_fsm.ods

2.1.1. Register File

The NEO430 provides a register file with 16 registers, each having a data width of 16 bit. Each register can
be accessed in 16-bit or 8-bit mode, but always a full 16-bit word is written back. The first four registers
have a special purpose:

• R0: Program counter
• R1: Stack pointer, managed by hardware, can also be used as general purpose data register
• R2: Status register (see later)
• R4: Constant generator; not an actual register, writing data to this register has no effect

The remaining 12 registers can be used as general purpose data registers.

2.1.2. Arithmetic / Logic Unit

The ALU is the data processing core of the processor. It implements arithmetical, logical, transfer, exchange,
test and compare operations. All these operations are derived from the original TI MSP430. Most of the ALU
operations generate some kind of status information that is stored to the status register.

Extended ALU functions

The NEO430 ALU provides some features/function which are not  part of  the original MSP430 processor
ISA. At the moment, the only extended ALU function is the computation of a parity flag conducted for each
ALU operation (including MOVs). For this, all result bits are XNORed and the result is stored to a normally
reserved bit in the status register (see next chapter). The neo430_cpu.c hardware driver library provides a
function to easily utilize this feature.

By default, these option are excluded from synthesis but can be enabled via the processor’s VHDL package
file (rtl\core\neo430_package.vhd):

  
   constant use_xalu_c : boolean := false; -- implement extended ALU function
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Binary-Coded Decimal Addition (DADD instruction)

The NE0430 does not support the original TI MSP430 DADD instruction, since this operation is very rarely
used and consumes a lot of hardware for implementation. The compiler will not generate this instruction7 if it
is not explicitly used as inline assembly.

The application compilation makefiles will output a warning when the DADD instruction might be
used by a program.

  
  NEO430: WARNING! ‘DADD’ instruction might be used!

The makefile  only scans the generated assembly listing file  for  the  “DADD” keyword.  If  the  makefile
outputs this warning, there might be a DADD instruction in the actual program code. But it is more likely
that a part from the read-only section of the program (like a string or other constants) was interpreted by the
disassembly process as DADD instruction. In case of doubt check the assembly listing file *.s by yourself.

7 At least I have never seen that. ;)
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2.1.3. Status Register

The status register (SR = R2) represents the ALU execution status flags and CPU control flags. The carry C,
zero Z, negative N and the overflow V flags correspond to the result of the last ALU operation.

Via the I flag interrupts can be globally activated or deactivated. If this flag is cleared, all further interrupt
requests to the CPU are queued and finally executed when the I flag is set again. When setting the Q flag, all
pending interrupts in the CPU’s interrupt request queue are deleted. This flag is write-only (read as zero) and
automatically clears after being set.

The  S flag is used to bring the CPU into power-down (sleep) mode. When this flag is  set,  the CPU is
completely deactivated while all processor modules – like the timer – keep operating. An interrupt request
from any IRQ channel will reactivate the CPU, clears the S flag and the processor resumes operations with
the next consecutive instruction.

The R flag is used to control write access to the internal instruction memory (IMEM). When set, the IMEM
behaves as a RAM, otherwise the IMEM behaves like a true read-only memory. If the IMEM is implemented
as true ROM (IMEM_AS_ROM generic), this flag is always zero and no write access to the IMEM is possible
at all.  All other bits of the status register do not have a specific function yet. Hence, they are reserved for
future use and should not be used and are always read as zero.

Bit# Name R/W Function

0 C_FLAG R/W Carry flag

1 Z_FLAG R/W Zero flag

2 N_FLAG R/W Negative flag

3 I_FLAG R/W Global Interrupt enable

4 S_FLAG R/W Sleep mode (CPU off)

5 P_FLAG R/W Parity flag8 (see previous. chapter)

6..7 - R/- Reserved, read as 0

8 V_FLAG R/W OVerflow flag

9..13 - R/- Reserved, read as 0

14 Q_FLAG -/W Clears pending interrupt buffer when set9

15 R_FLAG R/W Allow write access to IMEM “ROM”

Table 8: Bits of the status register

8 This flag is only available if the extended ALU operations switch is activated. See chapter Arithmetic / Logic Unit
for more information.

9 This flag is automatically cleared in the next clock cycle and is always read as zero.
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Figure 4: Processor status register
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2.1.4. Interrupts

The NEO430 CPU features 4 independent interrupts via 4 interrupt request signals. When triggered, each of
these requests start a unique interrupt handler. The interrupt-causing sources  can be the TIMER threshold
match interrupt, the UART or the TWI or the SPI transmission-done interrupt, the GPIO pin-change interrupt
or the external interrupts controller. The base addresses of the according interrupt handlers have to be stored
in advance to the interrupt vector configuration table, which is located at the beginning of the DMEM. The
application linker script ensures these locations are not used by the actual program.

Address IRQ Vector Name Priority Source

0xC000 IRQVEC_TIMER 1 (highest) The timer generates a threshold match

0xC002 IRQVEC_SERIAL 2 UART Rx available OR UART TX done OR SPI 
transmission done OR TWI transmission done

0xC004 IRQVEC_GPIO 3 GPIO input pin change

0xC006 IRQVEC_EXT 4 (lowest) External interrupts controller IRQ

Table 9: Interrupt sources, priorities and handler base addresses with configuration register names

Operation

All interrupts can be globally disabled by clearing the I flag in the processor's status register. An interrupt
handler can only execute, when the I flag is set and the corresponding enable flag of the interrupt source is
activated inside the according source’s control register (e.g., the timer unit).

If an interrupt  is triggered, the according handler is executed and the interrupt request is deleted from the
queue  as  soon  as  the  handler  starts  executing.  If  the  same  interrupt  request  triggers  again  during  the
execution of the handler,  the request is stored and is  executed after the handler has finished. Any other
pending interrupt requests with lower priority will be further queued. Whenever an interrupt is triggered and
the corresponding handler is entered, the I flag of the status register is cleared to avoid an interruption of the
executed handler. If more than one interrupt channel is triggered at the same time, the one with the highest
priority is executed while the other requests are queued. When the handler of the interrupt with the highest
priority exits, the handler of the interrupt with the next lower priority is started afterwards. Of course, you
can reactivate the global interrupt enable flag inside an interrupt handler to implement a nested interrupt
behavior. When setting the Q flag, all pending interrupt request in the buffer are deleted.

Interrupt Vector Configuration

The interrupt vectors can be initialized by a program by using the provided register aliases:

  // interrupt vector table setup
  IRQVEC_TIMER  = (uint16_t)(&timer_irq_handler);  // Timer IRQ handler address
  IRQVEC_SERIAL = (uint16_t)(&serial_irq_handler); // UART/SPI/TWI IRQ handler address
  IRQVEC_GPIO   = (uint16_t)(&gpio_irq_handler);   // GPIO IRQ handler address
  IRQVEC_EXT    = (uint16_t)(&ext_irq_handler);    // External IRQ handler address

The external IRQ vector is automatically assigned by the EXIRQ library functions and should not be
defined manually (→ 2.18. External Interrupts Controller (EXIRQ)).
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Using Interrupts in C Code

The interrupt handlers have to use specific attributes to ensure they perform stack spilling and also to use the
RETI instruction when finishing. Each handler must not have any passed arguments nor a return value. The
following example shows an exemplary setup:

  int main(void) {

    IRQVEC_TIMER  = (uint16_t)(&timer_irq_handler); // Timer IRQ handler address
    ...
  }

/* ------------------------------------------------------------
 * INFO Timer interrupt handler
 * ------------------------------------------------------------ */
  void __attribute__((__interrupt__)) timer_irq_handler(void) {

    ...
  }

CPU Behavior

When a valid interrupt is received by the CPU, the hardware first stores the return address and afterwards the
current state of the status register (including the set interrupt enable flag) to the stack. After that, the global
interrupt flag and the sleep flag (if set) are cleared. Thus, the status register keeps its value, which was set in
the  interrupted  program,  except  for  the  cleared  sleep  and  interrupt  enable  flags.  Finally,  the  according
interrupt handler address is moved to the program counter to start execution of the handler. When the handler
finishes execution (by the RETI instruction), the CPU reloads the old state of the status register (with the set
interrupt enable flag and maybe the set sleep flag) and the return address from the stack to continue normal
program execution.

When an interrupt handler finishes execution, at least one instruction from the interrupted program is
executed before the same or another interrupt handler can start execution.

Maximum CPU Interrupt Latency

The maximum interrupt latency – starting from a valid interrupt request to the CPU until the actual interrupt
service routine is started – is defined by the latency of the interrupt management system of the CPU, the
latency of the currently executed instruction and the latency required for fetching and starting the according
interrupt vector.

The interrupt  management system requires 2 cycles to process a valid interrupt  request.  The worst-case
latency for an instruction (see next sub chapter) is presented by a certain CALL instruction, which requires
11 cycles  for  completion.  If  an  interrupt  is  triggered,  8  cycles  are  required  to  fetch  the  corresponding
interrupt vector and to perform a jump to that address. Thus, the maximum interrupt latency is 21 cycles.
In contrast, the minimum interrupt latency is 10 cycles.
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External Interrupts

In its default configuration, the NEO430 processor features eight external interrupt request signals (top entity
port ext_irq_i) with eight according interrupt request acknowledge signals (top entity port ext_ack_o).
The IRQ signals are evaluated by the external interrupts controller (EXIRQ) and are passed to the CPU’s
IRQVEC_EXT interrupt request line.

When the external interrupts controller (EXIRQ) is excluded from synthesis, the external interrupt
and acknowledge lines do not have a function.

For more information regarding the use of the external interrupts via the EXIRQ take a look at chapter 2.18.
External Interrupts Controller (EXIRQ).
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2.1.5. Instruction Set

The instruction set  of  the NEO430 CPU is binary-compatible to the original TI MSP430 instruction set
architecture. The only exception is presented by the CPU’s BCD addition instruction DADD, which is NOT
supported by the NEO430. A cheat sheet featuring all instructions can be found in the “instruction_set.pdf”
in the doc folder.

The double-operand “decimal addition” instruction (DADD) is not supported by the NEO430.

2.1.6. Instruction Timing

A fully registered data path, which is subdivided into several micro operation cycles, is implemented by the
NEO430 CPU. This allows the system to operate at very high clock rates, but of course this also requires a
splitting of the instruction execution into several sub cycles. The tables below show the required execution
cycles for the different operand classes and addressing modes.

SRC

Register direct R Indexed [R+n] Indirect [R] Indirect auto inc [R++]

DST
Register direct R 6 8 7 7

Indexed [R+n] 8 10 9 9

Table 10: Double-operand (format I) instruction execution cycles (worst case)

SRC = DST

Register direct R Indexed [R+n] Indirect [R] Indirect auto inc [R++]

CALL 7 10 8 8

PUSH 6 9 7 7

Others 5 8 6 6

Table 11: Single-operand (format II) instruction execution cycles (except RETI) (worst case)

Instruction /
Operation

Branches 3

RETI 7

Interrupt 6

Table 12: Special instructions / operations execution cycles

Average Instruction Execution Time

If  all  instruction types  and formats  (except  interrupts  and RETI)  are  executed in  an equally distributed
manner (worst case10), the average CPI (cycles per instruction) evaluates to  ~7.33 cycles per instruction
resulting in ~0.136 MIPS per MHz.

10 Using the most complex addressing modes (in terms of required execution cycles).
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2.1.7. System Bus

All components of the NEO430 processor are connected to the CPU via the main system bus. Since the
connected devices are accessed using a memory-mapped scheme, simple load and store operations are used
to transfer data to or from the devices.

Name Width Dir Function

WREN 2 out Write enable for each of the two transferred bytes

RDEN 1 out Read enable (always full-word)

ADDR 16 out Address signal

DO 16 out Write data

DI 16 in Read data (one cycle latency)

Table 13: System bus signals (direction seen from CPU)

In the figure below you can see the signal  timings when performing a write or read transaction.  When
conducting a write operation to a specific module, the actual 16-bit address and the data, that shall be written,
are applied together with the write enable signals. For single byte transmission, only the corresponding bit of
the  WREN signal  is  set.  A complete  write  transaction  only  requires  a  single  cycle  to  complete.  Read
operations require two clock cycles to complete. Here, the read enable signals is applied together with the
source address. In the next cycle, the accessed data word is read. Even when performing an explicit read
operation of a single byte, the full 16-bit word is transferred.

The data output signals of all  devices are OR-ed together before the resulting signal is fed to the CPU.
Hence, only the actually accessed device must generate an output different than 0x0000. Therefore, read
transactions are subdivided into two consecutive cycles: In the first cycle, the address and the read enabled
signal are applied. Now, each device can check whether it is accessed or not. If there is an address match, the
according device fetches data from the accessed location and applies it to its data output port in the  next
cycle. In any other situation, the data output of that module must be set to 0x0000.

You can add (or replace) custom modules to the processor-internal bus, but that requires a good
understanding of the address space layout and the general NEO430 architecture. Instead, I encourage
you to use the custom functions unit (CFU) or the Wishbone bus interface to implement or attach
custom logic.
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2.2. Internal Instruction Memory (IMEM)

The internal instruction memory (VHDL component neo430_imem.vhd) stores the code of the actual user
program. It is located at base address 0x0000 of the address space. The actual IMEM size can be configured
via the IMEM_SIZE generic (see below) of the processor top entity (see cut-out below). Make sure the IMEM
size does not exceed 48 kB. During run time the size can be obtained by a program by reading a specific
CPUID register from the SYSCONFIG module (will be discussed later).

  
  IMEM_SIZE => 4*1024, -- internal IMEM size in bytes, max 48kB (default=4kB)

By default, the IMEM is implemented as RAM, so the content can be modified during run time. This is
required when using a bootloader that can update the content of the IMEM at any time. With the default
implementation as RAM the  r_flag in the CPU’s status register  has to be set  in order to allow write
accesses to the instruction memory. If you do not need the bootloader, because your application development
is done and you want the program to permanently reside in the IMEM, the IMEM can also be implemented
as true read-only memory. In this case set the IMEM_AS_ROM generic of the processor’s top entity to “true”.

  
  IMEM_AS_ROM : boolean := false -- implement IMEM as read-only memory? (default=false)

When the IMEM is implemented as ROM, it will be initialized during synthesis with the actual application
program. The toolchain will generate a VHDL initialization file (neo430_application_image.vhd) from
your application, which is automatically inserted into the IMEM. If the IMEM is implemented as RAM, the
memory will not be initialized at all.

2.3. Internal Data Memory (DMEM)

The internal data memory (VHDL component neo430_dmem.vhd) serves as general data memory / RAM
for the currently executed program. It is located at base address 0xC000 of the address space. This address is
fixed and must not be altered. The actual RAM size can be configured via the  DMEM_SIZE generic of the
processor top entity (see cut-out below). Make sure the RAM size does not exceed 12 kB. During run time,
the size can be obtained by a program by reading a specific CPUID register from the SYSCONFIG module
(will be discussed later). Remember, that the first 8 byte of the DMEM are used by the hardware for storing
the interrupt vectors and are not available for the actual program.

  
  DMEM_SIZE => 2*1024, -- internal DMEM size in bytes, max 12kB (default=2kB)
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2.4. Boot ROM

As the name already suggests, the boot ROM (VHDL component  neo430_boot_rom.vhd) contains the
read-only bootloader image, which is executed right after a system reset. It is located at address 0xF000 of
the address space. This address is fixed and must not be modified, since it represents the hardware-defined
boot address. The ROM size can be configured in the neo430_package.vhd file (see cut-out below) if you
want to write your own custom bootloader, but the size must not exceed 2kB. During synthesis, the VHDL
boot ROM is initialized using the neo430_bootloader_image.vhd file (which is generated by the image
generator auxiliary program during compilation process).

  
  constant boot_size_c : natural := 2*1024; -- bytes, max 2kB (default=2kB)

If you are using the IMEM as true ROM – initialized with your application code during synthesis – the
bootloader is  (in most cases) no longer necessary. In this case you can disable the implementation of the
bootloader. Use the BOOTLD_USE generic of the processor top entity (see cut-out below) to exclude it. If the
bootloader implementation is  deactivated,  the CPU starts  booting your application  from address 0x0000
instead from the base address of the boot ROM at 0xF000.

  
   BOOTLD_USE => true, -- implement and use bootloader? (default=true)

Boot Configuration

The default configuration of the NEO430 processor includes all optional modules (except for the custom
functions  unit)  and  also  provides  a  build-in  serial  bootloader.  This  bootloader  is  very  suitable  for  the
evaluation process, since the application program can be re-uploaded at every time using a standard UART
connection.  Furthermore,  the  bootloader  provides  an  automatic  boot  configuration,  which  automatically
boots from an external SPI flash after a specific UART console timeout. This feature allows to implement a
non-volatile program storage, which can still can be altered after implementation.

For a mature design the bootloader feature might not be required anymore. For this scenario the bootloader
can be excluded from the  design  via  the  according  generic  configuration switch (BOOTLD_USE).  If  the
bootloader is disabled, your application code will be directly executed after reset. Therefore, the application
program image remains permanently in the internal instruction memory (IMEM). Note that modifications of
the IMEM are still possible when the IMEM_AS_ROM switch is not disabled.

More information regarding the boot configuration can be found in chapter 3.2. Internal Bootloader.
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2.5. Wishbone Bus Interface (WB32)

The  default  NEO430  processor  setup  includes  a  Wishbone  bus  interface  adapter  (VHDL component
neo430_wb_interface.vhd). Several IP blocks (e.g., from opencores.org) provide a Wishbone interface.
Hence, a custom system-on-chip can be build using this bus standard. The Wishbone adapter features 32-bit
wide address and data buses. If required, only a subsection of the address and/or data buses can be connected
to create  a  Wishbone bus with  smaller  data  and/or  address buses.  The  neo430_wishbone.c hardware
driver  library in  the  sw/lib/neo430 folder  already  implements  the  most  common Wishbone  transfer
operations. These “driver functions” also take care of setting the according byte enable signals manipulating
the final address when performing 16-bit or even byte-aligned accesses.

Wishbone Bus Protocol

A detailed description of the implemented Wishbone bus protocol and the according interface signals can be
found in the opencores.org documentation data sheet “Wishbone B4 – WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores”. A copy of this document can be found in the doc folder
of this project.

Implementation Control

Use the WB32_USE generic of the processor top entity (see cut-out below) to control implementation. When
disabled, the dedicated Wishbone interface signals (see table) are not  functional. In this case, set all input
signals to low level and leave all output signals unconnected.

  
  WB32_USE => true, -- implement WB32 unit? (default=true)

Wishbone Transactions

To perform a Wishbone transaction, several tiny steps are required. At first, the according byte enable signals
(WB32_CT_WBSELx) and the transfer cycle type (see later) must be configured in the control register. The
byte enable signals directly drive the  wb_sel_o bus. Setting any of these four bits will also activate the
Wishbone adapter.  In contrast,  the adapter can be deactivated (for example if  an addressed slave is  not
responding) by clearing the control register.

In case of a write transfer, the data, which shall be written, must be loaded into the  WB32_LD (low 16-bit
part) and  WB32_HD (high 16-bit part) registers. Together, these registers directly drive the  wb_dat_o data
output bus. To start the actual transfer, the address is written to the WB32_LWA and WB32_HWA register. The
actual store access to the high address word register initiates the actual transfer. For a read transfer, the low
part of the address is stored to the WB32_LRA and WB32_HRA register. Just like before, a write access to the
high word register triggers the actual read transaction.

As soon as the transaction is started, the WB32_CT_PENDING bit in the unit's control register is set to indicate
a  pending transfer.  The transfer  was successfully  completed when this bit  returns  to zero.  A transfer  is
completed if the accesses slaves acknowledges the cycle by setting the ACK signal. If you wish to abort a
pending transfer, you must disable the device by clearing the WB32_CT control register.
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The Wishbone bus interface of the NEO430 processor cannot be used for instruction fetch or direct
data  access  via  the  standard  memory-access  instructions.  Instead,  the  bus  interface  is  a
communication device, that can be used by a program, which is executed from the internal memory,
to access processor-external peripheral devices like mass-storage memories, hardware accelerators
or additional communication interfaces.

The Wishbone interface adapter supports the standard or “classic” Wishbone transfer mode when connecting
slaves, which apply their acknowledge signal in an asynchronous way. When the accessed slave cannot apply
the acknowledge immediately – for example by registering the output signals in order to shorten the critical
path  –  the  implemented  Wishbone  protocol  differs  from the  standard.  The  NEO430  Wishbone  adapter
applies its STB signal only for one single cycle of an active transfer. The cycle is terminated when the
selected slave sets the acknowledge signal. This allows to implement slaves with registered outputs (higher
frequency!) while also allowing correct accesses to IP cores, which trigger their operation on the STB signal
(for instance a FIFO).

Long story short:  When the slave applies its acknowledge asynchronously signal in the  same cycle,  the
Wishbone transfer fulfills the  classic/standard mode protocol  specification.  When the slave applies its
acknowledge  signal  one  ore  more  cycles  later,  the  Wishbone  transfer  fulfills  the  specification  of  the
pipelined mode protocol.

Wishbone Bus Interface Signals

Signal name Width (#bits) Direction Function

wb_adr_o 32 Output  Access address

wb_dat_i 32 Input Read data input

wb_dat_o 32 Output Write data output

wb_we_o 1 Output Read/write access

wb_sel_o 4 Output Byte enable

wb_stb_o 1 Output Strobe signal

wb_cyc_o 1 Output Valid cycle indicator

wb_ack_i 1 Input Cycle acknowledge

Table 14: Wishbone bus interface adapter signals seen from the processor

The Wishbone bus uses the processor’s main clock for data bus operations.
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Figure 6: Pipelined Wishbone cycle
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Register Map

Address Name  Bit(s) (Name) R/W Function

0xFF90 WB32_CT 0 WB32_CT_WBSEL0 -/W Byte 0 transfer enable → wb_sel_o(0)

1 WB32_CT_WBSEL1 -/W Byte 1 transfer enable → wb_sel_o(1)

2 WB32_CT_WBSEL2 -/W Byte 2 transfer enable → wb_sel_o(2)

3 WB32_CT_WBSEL3 -/W Byte 3 transfer enable → wb_sel_o(3)

4..14 -/- Reserved, read as 0

15 WB32_CT_PENDING R/- Pending Wishbone transfer flag

0xFF92 WB32_LRA 0..15 -/W Low address word for read transfer

0xFF94 WB32_HRA 0..15 -/W High address word for read transfer 
(+trigger)

0xFF96 WB32_LWA 0..15 -/W Low address word for write transfer

0xFF98 WB32_HWA 0..15 -/W High address word for write transfer 
(+trigger)

0xFF9A WB32_LD 0..15 R/W Low word of read/write data, can be 
accessed in byte mode

0xFF9C WB32_HD 0..15 R/R High word of read/write data, can be 
accessed in byte mode

0xFF9E - 0..15 -/- Reserved

Table 15: Wishbone32 interface adapter address map

This unit needs to be reset by software before you can use it. The reset is performed by writing zero
to the unit's control register.

Do not read from registers, which do not provide a read access feature (e.g., when R/W is -/W),
since such accesses return undefined data.

Regarding Wishbone Bus Sizes

Although the wishbone adapter implements 32-bit wide data and address buses, you do not need to actually
use this sizes. If you have only some accessible addresses in you Wishbone network, then 16-bit address
width might by sufficient. Also, if you only use slaves with e.g., 16-bit data width, you do not actually need
the full32-bit provided by the adapter. By constraining the bus sizes to your actual needs the hardware can be
simplified by the synthesis tool to save hardware resources. Furthermore, if you use the according Wishbone
access functions for smaller data width (e.g., 16-bit transfers only), the Wishbone access can be conducted in
less CPU cycles increasing the performance.
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2.6. General Purpose Input and Output Ports (GPIO)

The general purpose parallel IO controller (VHDL component neo430_gpio.vhd) provides a simple 16-bit
parallel input port and a 16-bit parallel output port. These ports can be used chip-externally (e.g. to drive
LEDs, connect buttons, etc.) or system-internally to provide control signals for other IP modules.

Implementation Control

I know, hardware resources are precious. The GPIO module does not require a lot of logic and you won't
have this fancy blinking bootloader status signal, when you disable the module. However, if you do not need
the included GPIO ports, you can exclude the module from synthesis. Use the  GPIO_USE generic of the
processor top entity (see cut-out below) to control implementation. If the unit is excluded from synthesis, all
parallel output signals are set to low level and the pin change interrupt is permanently disabled.

  
  GPIO_USE => true, -- implement GPIO unit? (default=true)

Pin-Change Interrupt

The parallel  input  port  features  a  single  pin-change  interrupt.  To select  which input  pins  can cause  an
interrupt, the GPIO_IRQMAS register allows to select only the desired input pins.  The pin change interrupt is
deactivated if all bits of the mask register are cleared. When enabled, the interrupt will trigger if there is any
transition (rising edge or falling edge on one of the masked input pins. Therefore, it is not possible to directly
determine which input pin caused the interrupt. This mus be done by reading the input data and examining
the new state. Use the neo430_gpio.c hardware driver library in the sw/lib/neo430 folder to get access
to some of the most common IO operations like bit set, clear or toggle.

Address IRQ Vector Name Priority Source

0xC004 IRQVEC_GPIO 3 GPIO input pin change.

Table 16: GPIO pin-change interrupt vector

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFA8 - 0..15 -/- Reserved

0xFFAA GPIO_IRQMASK 0..15 -/W Enable according input pin(s) as interrupt trigger

0xFFAC GPIO_IN 0..15 R/- Parallel input port

0xFFAE GPIO_OUT 0..15 R/W Parallel output port

Table 17: GPIO module register map

PWM Modulation of the GPIO Output Port

The whole GPIO output port can be modulated by using the processor’s PWM controller. See chapter 2.16.
Pulse Width Modulation Controller (PWM) for more information.
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2.7. Universal Asynchronous Receiver and Transmitter (UART)

In most cases, the UART interface is used to establish a communication channel between the computer/user
and an application running in the processor. Of course, you can also use the UART for interfacing chip-
external peripheral devices. A standard configuration is used for the UART protocol layout: 8 data bits, 1
stop bit and no parity bit. These values are fixed and cannot be altered. The actual Baudrate is configurable
by software. This configuration is explained later.

After configuring the Baud rate, the UART must be activated by setting the  UART_CT_EN in the UART
control register  UART_CT. Now you can  transmit a character by writing it to the  UART_RTX register. The
transfer is in progress if the UART_CT_TX_BUSY bit in the control register is set. A received char is available
when bit #15 of the UART_RTX register is set. When reading this register, the available flag is automatically
cleared and you have your received character –  all done using a single access! That's cool, huh? A “char
available” or “transmission completed” interrupt can be activated by setting the according bits in the control
register. Note, that both interrupt sources trigger the same interrupt handler (IRQVEC_SERIAL)! To make the
usage of the UART a little bit easier, the neo430_uart.c hardware driver library in the sw/lib/neo430
folder features elementary function for sending and receiving data. The only thing you have to do by hand is
to enable the UART and call the Baud rate configuration. Well, actually you don't have to do this, since it is
already done by the bootloader. The bootloader computes the according Baud value based on the clock speed
from the SYSCONFIG for a final Baud rate of 19200.

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFA0 UART_CT 0 UART_CT_BAUD0 R/W Baud value config bit 0

1 UART_CT_BAUD1 R/W Baud value config bit 1

2 UART_CT_BAUD2 R/W Baud value config bit 2

3 UART_CT_BAUD3 R/W Baud value config bit 3

4 UART_CT_BAUD4 R/W Baud value config bit 4

5 UART_CT_BAUD5 R/W Baud value config bit 5

6 UART_CT_BAUD6 R/W Baud value config bit 6

7 UART_CT_BAUD7 R/W Baud value config bit 7

8 UART_CT_PRSC0 R/W Baud prescaler select bit 0

9 UART_CT_PRSC1 R/W Baud prescaler select bit 1

10 UART_CT_PRSC2 R/W Baud prescaler select bit 2

12 UART_CT_EN R/W UART enable

13 UART_CT_RX_IRQ R/W Enable RX interrupt

14 UART_CT_TX_IRQ R/W Enable TX interrupt

15 UART_CT_TX_BUSY R/- Trasmitter busy

0xFFA2 UART_RTX 0..7 UART RX/TX data R/W UART Rx/Tx data

15 UART_RTX_AVAIL R/- RX data available

Table 18: UART regitser map

This project is published under the BSD   3-Clause   License   (BSD)

36   2. Hardware Architecture May 15, 2020

https://github.com/stnolting/neo430
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
mailto:stnolting@gmail.com


The NEO430 Processor                                                          This project is hosted on GitHub
by Stephan Nolting                                                                                             stnolting@gmail.com

Implementation Control

By default, the UART is always synthesized. You can use the UART_USE generic of the processor top entity
(see cut-out below) to control implementation.

  
  UART_USE => true, -- implement UART? (default=true)

UART Baudrate

The actual transfer speed – the Baud rate – can be arbitrarily configured via the UART_CT_BAUDx bits in the
control  register.  These  bits  define  a  prescaler  value  (PRSC)  toegther  with  the  prescaler  selection  bits
UART_CT_PRSCx. The actual Baud rate of the UART interface is computed using the following formula:

Baudrate=
f main [ Hz ]

PRSC⋅BAUD

The BAUD parameter can be obtained by finding the largest number for a given clock frequency and a
selected prescaler, that fits into 8 bits. The following table shows different  BAUD values for 8 common
Baudrates using one of the 8 prescaler configurations. This setup assumes a clock frequency of 50MHz. The
red highlighted values are invalid, since they cannot fit into the 8-bit wide BAUD register. In contrast, the
green values are valid for the according prescaler selection, but you should always use the highest possible
BAUD value to minimize the Baudrate error.

Baudrate / Prescaler / BAUD Value Look-up-Table

Prescaler bits configuration: 000 001 010 011 100 101 110 111

Resulting clk prescaler PRSC: 2 4 8 64 128 1024 2048 4096

Baudrate = 1200 20833 10417 5208 651 326 41 20 10

Baudrate = 2400 10417 5208 2604 326 163 20 10 5

Baudrate = 4800 5208 2604 1302 163 81 10 5 3

Baudrate = 9600 2604 1302 651 81 41 5 3 1

Baudrate = 19200 1302 651 326 41 20 3 1 1

Baudrate = 28800 868 434 217 27 14 2 1 0

Baudrate = 57600 434 217 109 14 7 1 0 0

Baudrate = 115200 217 109 54 7 3 0 0 0

In this table the green highlighted numbers represent valid values for the 8-bit wide Baud value configuration
(BAUD).
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Example Baudrate Computation

Clock frequency: 50MHz
Desired Baudrate: 19200
Prescaler PRSC: 64 → 0b011
BAUD value: 41

Actually, you do not have to worry about the configuration of the UART Baud rate at all. A function
from the neo430_uart.h library does all the work for you – just call it once at program start.

UART Interrupt

The UART features a single interrupt output, which can be used to indicate a UART RX data available status
and/or  UART TX done status. When enabling all sources at the same time, you have to check the UART
control register to determine the actual causing event.  Note, that this interrupt channel can also be used by
the SPI or the TWI module.

Address IRQ Vector Name Priority Source

0xC002 IRQVEC_SERIAL 2 UART Rx available OR UART Tx done OR SPI 
transmission done OR TWI transmission done

Table 19: Serial interrupt vector
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2.8. Serial Peripheral Interface (SPI)

Just like the UART, the SPI  master unit  is a standard interface for accessing a wide variety of external
devices. The data transfer quantity  can either be 8 bit or 16 bit  for single transfer. However, larger data
'packets' can be implemented, since the actual  transferred  data size  is determined by the  actual number of
send/received  bytes during an active chip select (CS) of the connected device.  The unit already features 6
dedicated chip select lines, so no additional GPIO pins are required to access up to 6 slaves.

Operation

A transmission is started when writing a data byte to the  SPI_RTX register. The  SPI_CT_BUSY bit of the
control register indicates a transfer being in progress. The received data can be obtained by reading the
SPI_RTX register as soon as the transmission is done and the busy flag is cleared. The actual numbe rof bits
transferred during a single transmission can be configured via the  SPI_CT_SIZE flag (0 for 8-bit transfer
size, 1 for 16-bit transfer size). Note, that the resulting RX/TX data is always aligned to the LSB in the
SPI_RTX register regardless of the actual size. The RX/TX data is shifted MSB first when the SPI_CT_DIR
flag is cleared. Otherwise, the LSB is shifted first. The clock phase can be controlled via the SPI_CT_CPHA
flag (clock mode “0” when cleared, clock mode “1” when set)..  A “transmission done” interrupt can be
activated by setting the SPI_CT_IRQ bit. Note, that this interrupt also triggers the same interrupt handler as
the interrupt sources from the UART module and the TWI module.

Dedicated SPI Chip Select (CS) Lines

The SPI controller features eight dedicated chip select lines (signal  spi_cs_o(5 downto 0) from the
processor’s top entity) so you can directly connect up to six SPI slaves to the controller without using e.g.,
GPIO pins as chip select signals.  The six lines are accessible via the  SPI_CT_CS_SELx bits in the SPI
control register. The CS line is set low (enabled) when the according bit in the control register is set.

Implementation Control

By default, the SPI is always synthesized. You can use the SPI_USE generic of the processor top entity (see
cut-out below) to control implementation.

  
  SPI_USE => true, -- implement SPI? (default=true)

SPI Interrupt

The SPI features a single interrupt output, which can be used to indicate  a  SPI transmission done status.
Note, that this interrupt channel can also be used by the UART or the TWI module.

Address IRQ Vector Name Priority Source

0xC002 IRQVEC_SERIAL 2 UART Rx available OR UART Tx done OR SPI 
transmission done OR TWI transmission done

Table 20: Serial interrupt vector
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Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFA4 SPI_CT 0 SPI_CT_CS_SEL0 R/W Dedicated CS0 enable (low when set)

1 SPI_CT_CS_SEL1 R/W Dedicated CS1 enable (low when set)

2 SPI_CT_CS_SEL2 R/W Dedicated CS2 enable (low when set)

3 SPI_CT_CS_SEL3 R/W Dedicated CS3 enable (low when set)

4 SPI_CT_CS_SEL4 R/W Dedicated CS4 enable (low when set)

5 SPI_CT_CS_SEL5 R/W Dedicated CS5 enable (low when set)

6 SPI_CT_EN R/W Unit enabled when set

7 SPI_CT_CPHA R/W Clock phase

8 SPI_CT_IRQ R/W Transmission done interrupt enable

9 SPI_CT_PRSC0 R/W SPI clock prescaler bit 0

10 SPI_CT_PRSC0 R/W SPI clock prescaler bit 1

11 SPI_CT_PRSC0 R/W SPI clock prescaler bit 2

12 SPI_CT_DIR R/W Shift direction (0=MSB / 1=LSB first)

13 SPI_CT_SIZE R/W Transfer size (0=8-bit, 1=16-bit)

14 - -/- Reserved, read as 0

15 SPI_CT_BUSY R/- Transfer in progress when set

0xFFA6 SPI_RTX 0..7 RX/TX data R/W Send/receive data when in 8-bit mode

8..15 - R/- Reserved, read as zero when in 8-bit mode

0..15 RX/TX data R/W Send/receive data when in 16-bit mode

Table 21: SPI register map

Transmission Speed

The actual transmission speed is set via the three prescaler selection bits  SPI_CT_PRSCx of the control
register. The resulting main clock prescaler value PRSC is shown in the table below:

Prescaler bits configuration: 000 001 010 011 100 101 110 111

Resulting prescaler PRSC: 2 4 8 64 128 1024 2048 4096

Based on the PRSC prescaler value, the actual SPI clock frequency fSPI is determined by:

f SPI=
f main [Hz ]
2⋅PRSC

Software Libraries

In  the  neo430_spi.c hardware  driver  library you  can  find  elementary  functions  for  performing  SPI
transmissions and for controlling the dedicated chip-select signals of the module.
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2.9. Two Wire Serial Interface Master (TWI)

The two wire interface – actually called I²C – is a  quite famous interface for connecting several on-board
components. Since this interface only needs two signals (the serial data line SDA and the serial clock line
SCL) – despite of the number of connected devices – it allows easy interconnections of several slave nodes.

This unit implements a  TWI master,  which can be used to access several slave devices.  The TWI module
features “clock stretching”, so a slow slave can halt the transmission by pulling the SCL line low. Currently
no multi-master support is available. Also, the NEO430 TWI unit cannot operate in slave mode.

Implementation Control

By default, the TWI is always synthesized. You can use the TWI_USE generic of the processor top entity (see
cut-out below) to control implementation.

  
  TWI_USE => true, -- implement TWI? (default=true)

Electrical Requirements

Since the serial clock (SCL) and the serial data (SDA) lines can only be actively driven low by the master.
Hence, an external pull-up resistor is required for each signal. The resistance of the pull-ups can be estimated
by the following formula:

Operation

After the device has been enabled, the program can start / terminate a transmission by issuing a START or
STOP condition. These conditions are generated by setting the according bit in the devices control register.
Data is send by writing a byte to the TWI_RTX register. Received data can also be obtained from this register.
The  TWI  master  is  busy  (transmitting  or  performing  a  START  or  STOP condition)  as  long  as  the
TWI_CT_BUSY bit in the control register is set. An accessed slave has to acknowledge each transferred byte.
When the TWI_CT_ACK bit in the TWI_RTX register is set after a completed transmission, the accessed slave
has send an acknowledge. If it is cleared after a transmission, the slave has send a not-acknowledge (NACK).
The NEO430 TWI master can also send an ACK (→ a master acknowledge “MACK”) after a transmission
by pulling SDA in the ACK time slot low. Set bit  TWI_CT_MACK in the control register to activate this
feature. If this bit is cleared, the ACK/NACK of the slave is sampled in this time slot (normal mode).

In summary, the following independent TWI operations can be triggered by the application program:

• send START condition (also as REPEATED START condition)
• send STOP condition
• send (at least) one byte while also sampling one byte from the bus

 
In  the  neo430_twi.c hardware  driver  library you can  find  elementary  functions  for  performing  TWI
transmissions.
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Transmission Speed Configuration

The TWI transmission speed (or the clock frequency of the SCL line) is configured via the three prescaler
selection bits  TWI_CT_PRSCx of  the control  register.  The resulting main clock prescaler  value  PRSC is
shown in the table below:

Prescaler bits configuration: 000 001 010 011 100 101 110 111

Resulting prescaler PRSC: 2 4 8 64 128 1024 2048 4096

Based on the PRSC prescaler value, the actual TWI clock frequency fSCL is determined by:

f SCL=
f main[Hz ]
4⋅PRSC

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFE8 TWI_CT 0 TWI_CT_EN R/W Enable TWI

1 TWI_CT_START -/W Generate START condition

2 TW_CT_STOP -/W Generate STOP condition

3 TWI_CT_BUSY R/- TWI is currently busy

4 TWI_CT_PRSC0 R/W Clock prescaler select bit 0

5 TWI_CT_PRSC1 R/W Clock prescaler select bit 1

6 TWI_CT_PRSC2 R/W Clock prescaler select bit 2

7 TWI_IRQ_EN R/W Transmission done interrupt enable

8 TWI_CT_MACK R/W Issue a master ACK after trnasmission

9..15 - R/- Reserved, read as zero

0xFFEA TWI_RTX 0..7 RX/TX data R/W Send/receive data

8..14 - R/- Reserved, read as zero

15 TWI_DT_ACK R/- Set when an ACK has been received

Table 22: TWI register map

TWI Interrupt

The TWI features a single interrupt output, which can be used to indicate a TWI transmission done status.
Note, that this interrupt channel can also be used by the UART an/or the SPI module.

Address IRQ Vector Name Priority Source

0xC002 IRQVEC_SERIAL 2 UART Rx available OR UART Tx done OR SPI 
transmission done OR TWI transmission done

Table 23: Serial interrupt vector
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2.10. High-Precision Timer (TIMER)

A high-precision timer (VHDL component neo430_timer.vhd) is required by many real-time applications.
The timer unit of the NEO430 features a simple but powerful module to generate an interrupt in specific time
intervals.  Besides  selecting  the  main  clock-based  prescaler,  a  timer  threshold  can  be  configured  to
accomplish highly-accurate timing.

Implementation Control

By default, the timer is always synthesized. You can use the TIMER_USE generic of the processor top entity
(see cut-out below) to control implementation.

  
  TIMER_USE => true, -- implement timer? (default=true)

Timer Operation

An exact  timer  period is  configured using the three clock select  prescaler  bits  TMR_CT_PRSCx in the
control register  TMR_CT and setting a timer threshold  TMR_THRES. Corresponding to the three prescaler
selection bits, one of 8 different prescaler values can be selected:

Prescaler bits configuration: 000 001 010 011 100 101 110 111

Resulting prescaler PRSC: 2 4 8 64 128 1024 2048 4096

Based on the PRSC prescaler value and the THRES threshold value, the resulting interrupt “tick frequency”
(reciprocal time between two interrupts) is given by:

f tick=
f main

PRSC⋅(THRES+1)

Example

The desired tick frequency may be 2Hz at a main clock of 100MHz. Using the max. prescaler value (0b111
→ PRSC = 4096), the threshold value is computed by:

THRES=
f main

f tick⋅PRSC
−1=100000000 Hz

2 Hz⋅4096
−1=12207

The  neo430_timer.c hardware  driver  library  provides  elementary  functions  to  use  the  timer  unit.
Furthermore, it implements a function to automatically compute the prescaler bits and the threshold register
based on a given tick frequency.

The timer is enabled via the TMR_CT_EN bit. Clearing this bit will deactivate the interrupt capability of the
unit and will also clear the internal counter register (TMR_CNT). The timer increments the internal counter
register using the specified (→ prescaler bits) frequency as soon as the TMR_CT_RUN bit is set. This bit can
be cleared to pause the timer at any time. Whenever  the internal counter reaches the value stored in the
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threshold register, an interrupt request is asserted when enabled via the TMR_CT_IRQ bit. If the auto-reset bit
TMR_CT_ARST is set, the counter register is cleared when the threshold value is reached and counting starts
again. If not, the timer operates in one-shot mode and the user has to reset the timer counter by disabling and
re-enabling the timer.

Timer Interrupt

When the TMR_IRQ_EN bit and the TMR_CT_RUN bit in the timer's control register is set, interrupt request is
generated whenever a counter match occurs (TMR_THRES == TMR_CNT). Note, that the interrupt is only
triggered once when the auto-reset of the counter is deactivated. If the timer unit has been excluded from
synthesis (disabled), the timer's interrupt request signal is permanently deactivated.

Address IRQ Vector Name Priority Source

0xC000 IRQVEC_TIMER 1 (highest) The timer generates a threshold match.

Table 24: Timer interrupt vector

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFB0 TMR_CT 0 TMR_CT_EN R/W Timer enable

1 TMR_CT_ARST R/W Automatic reset on timer match

2 TMR_CT_IRQ R/W IRQ enable

3 TMR_CT_RUN R/W Timer run/stop

4 TMR_CT_PRSC0 R/W Timer counter increment clock 
prescaler PRSC5 TMR_CT_PRSC1 R/W

6 TMR_CT_PRSC2 R/W

7..15 R/- Reserved, read as 0

0xFFB2 TMR_CNT 0..15 R/- Counter register, read-only!

0xFFB4 TMR_THRES 0..15 -/W Threshold register, IRQ on match

0xFFB6 - 0..15 -/- reserved

Table 25: High-precision timer register map

The timer unit needs to be reset by software before you can use it. The reset is performed by writing
zero to the unit's control register.
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2.11. Watchdog Timer (WDT)

The WDT (VHDL component neo430_wdt.vhd) implements a watchdog timer. When enabled, an internal
16-bit counter is started. A program can reset this counter at any time. If the counter is not reset, a system
wide hardware reset is executed when the timer overflows. The watchdog is enabled by setting the WDT_EN
bit. Each write access to the watchdog must contain the watchdog access password (=0x47) in the upper 8
bits of the written data word. If the password is wrong and the watchdog is disabled, the access is simply
ignored. If the password is wrong and the watchdog is enabled, a hardware reset is generated. A user can
determine the cause of the last processor reset by reading the WDT_RCAUSE bti. If the bit is set, the last reset
was generated by the watchdog. If the bit is cleared, the reset was generated via the external reset  signal.
When the watchdog caused the reset, the WDT_RPW_FAIL flag indicates if this reset was caused by a normal
timeout  (’0’)  or  a  failed  access  (‘1’)  due  to  a  wrong password.  You can find  elementary functions  for
performing watchdog operations in the neo430_wdt.c hardware driver library.

To control the timeout period, one can select 1 of 8 different timeout periods via the WDT_PRSCx bits:

CLKSELx bits configuration: 000 001 010 011 100 101 110 111

Main clock prescaler: 2 4 8 64 128 1024 2048 4096

Timeout period in main clock 
cycles:

1
3
1
 
0
7
2

2
6
2
 
1
4
4

5
2
4
 
2
8
8

4
 
1
9
4
 
3
0
4

8
 
3
8
8
 
6
0
8

6
7
 
1
0
8
 
8
6
4

1
3
4
 
2
1
7
 
7
2
8

2
6
8
 
4
3
5
 
4
5
6

Implementation Control

Use the WDT_USE generic of the processor top entity (see cut-out below) to control implementation.

  
  WDT_USE => true, -- implement WDT? (default=true)

Register Map

Address Name  Bit(s) Name R/W Function

0xFFD8 WDT_CT 0..2 WDT_CT_PRSCx R/W Timeout interval selection

3 WDT_CT_EN R/W Watchdog enable bit

4 WDT_CT_RCAUSE R/- Cause of last processor reset (0=external reset, 
1=watchdog timeout)

5 WDT_CT_RPWFAIL R/- Reset caused by wrong-password access when 1

6..7 - R/- Reserved, read as 0

8..15 WDT_CT_PASSWORD -/W Access password, has to be 0b01000111 (0x47)

Table 26: Watchdog timer register map
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2.12. System Configuration Module (SYSCONFIG)

The system information  module  (VHDL component  neo430_sysconfig.vhd)  gives  access  to  various
system information, which are mainly defined by the generics of the processor’s top entity.

The  module,  which is  implemented  as  simple  ROM  with  eight 16-bit  locations,  provides  information
regarding the processor hardware configuration. By accessing this component, a program can determine the
available RAM space, check if specific instructions or hardware modules are  implemented and compute
timings (like the UART Baud rate) based on the actual clock speed during run time. Also, a custom user code
ca be checked. Most of these parameters are set using the configuration generics of the NEO430 top entity
during instantiation.

Address Name  Bit(s) (Name) R/W Function

0xFFF0 CPUID0 0..15: HW_VERSION R/- Hardware version

0xFFF2 CPUID1
/

SYS_FEATURES

0 SYS_MULDIV_EN R/- Set if MULDIV is implemented

1 SYS_WB32_EN R/- Set if WB32 is implemented

2 SYS_WDT_EN R/- Set if WDT is implemented

3 SYS_GPIO_EN R/- Set if GPIO is implemented

4 SYS_TIMER_EN R/- Set if TIMER is implemented

5 SYS_UART_EN R/- Set if UART is implemented

6 SYS_FREQ_GEN_E
N

R/- Set if FREQ_GEN is implemented

7 SYS_BTLD_EN R/- Set if bootloader is implemented and used

8 SYS_IROM_EN R/- Set if IMEM is implemented as true ROM

9 SYS_CRC_EN R/- Set if CRC unit is implemented

10 SYS_CFU_EN R/- Set if CFU is implemented

11 SYS_PWM_EN R/- Set if PWM controller is implemented

12 SYS_TWI_EN R/- Set if TWI is implemented

13 SYS_SPI_EN R/- Set if SPI is implemented

14 SYS_TRNG_EN R/- Set if TRNG is implemented

15 SYS_EXIRQ_EN R/- Set if EXIRQ is implemented

0xFFF4 CPUID2 0..15: USER_CODE R/- Custom user code, defined via top’s generic

0xFFF6 CPUID3 0..15: IMEM_SIZE R/- Size of IMEM in bytes

0xFFF8 CPUID4
/

NX_FEATURES

0 NX_DSP_MUL_EN R/- Set if DSPs are used for MULDIV.mul

1 NX_XALU_EN R/- Set if extended ALU functions are enabled

2 NX_LOWPOWER_EN R/- Set if low-power mode is synthesized

3..15 reserved R/- reserved

0xFFFA CPUID5 0..15: DMEM_SIZE R/- Size of DMEM in bytes

0xFFFC CPUID6 0..15: CLOCKSPEED_LO R/- Low word of clock speed (in Hz)

0xFFFE CPUID7 0..15: CLOCKSPEED_HI R/- High word of clock speed (in Hz)

Table 27: System information memory register map
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The information provided by the system information ROM is used by the bootloader to perform a
system  initialization  (configure  Baud  rate,  setup  the  timer  interval,  check  connectivity,  …).
Furthermore, the application start-up code (crt0.asm) uses the system information ROM for the
minimal-required hardware setup.
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2.13. Multiplier and Divider Unit (MULDIV)

By default the NEO430 processor includes a  serial multiplier and  serial divider unit (VHDL component
neo430_muldiv.vhd). This unit  is capable of computing 16-bit unsigned integer divisions (with 16-bit
quotient and 16-bit remainder) and 16x16-bit = 32-bit signed or unsigned integer multiplications.

The multiplier part of the MULDIV unit is not compatible to the original MSP430 16-bit multiplier.

Implementation Control

In case you do not need the multiply and divide unit, you can use the MULDIV_USE generic of the processor
top entity (see cut-out below) to control implementation.

  
  MULDIV_USE => true, -- implement multiplier/divider unit? (default=true)

Register Map

Address Name  Bit(s) R/W Function

0xFF80 MULDIV_OPA_RESX 0..15 R Low part of multiplication result or division’s quotient

W Operand A for all operations

0xFF82 MULDIV_OPB_UMUL_RESY 0..15 R High part of multiplication result or division’s remainder

W Operand B for unsigned multiplication (triggers operation)

0xFF84 MULDIV_OPB_SMUL 0..15 -/W Operand B for signed multiplication (triggers operation)

0xFF86 MULDIV_OPB_UDIV 0..15 -/W Operand B for unsigned division (triggers operation)

Table 28: Multiplier/divider unit register map

Operation

This unit features 4 registers, where the first 2 are write-only and the second ones are read-only. The read-
only registers contain the high and the low word of the multiplication or division result. The first two register
are used for operand transfer and also for function configuration. Note that the unit always has to be reset
and configured before  executing a  new operation (see below).  Register  MULDIV_OPA_CTRL is  used for
resetting and configuring the unit  as well  as for operand A transport.  Register  MULDIV_OPB is used for
storing the second operand. A write access to this second register will also trigger the actual processing. The
according result (32-bit product or the remainder and the quotient) can be read from the MULDIV_RESX and
MULDIV_RESY registers. The hardware itself needs 18 CPU cycles to  compute the requested results. The
MULDIV’s hardware driver library (neo430_muldiv.c) provides easy usage of the unit.

This project is published under the BSD   3-Clause   License   (BSD)

48   2. Hardware Architecture May 15, 2020

https://github.com/stnolting/neo430
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
mailto:stnolting@gmail.com


The NEO430 Processor                                                          This project is hosted on GitHub
by Stephan Nolting                                                                                             stnolting@gmail.com

Using Embedded Multipliers for the Multiplier

By  default,  the  multiplier  core  of  the  MULDIV unit  is  implemented  using  general  FPGA logic.  The
multiplications are computed using an iterative bit-by-bit scheme. If you want to use dedicated embedded
multipliers  (DSP blocks)  for  the  multiplication,  activate  this  advanced/experimental  (NX) option  in  the
processor package file (neo430_package.vhd):

  
  constant use_dsp_mul_c : boolean := false; -- use DSP blocks for MULDIV's multipl.

During runtime, you can check the NX_DSP_MUL_EN bit of the SYSCONFIG’s NX_FEATURES register to test if
the MULDIV’s multiplier was synthesized using DSP blocks.

Obviously, the approach using the DSP block is 16-times faster than the default iterative processing scheme.
To  take  advantage  of  this  speedup,  the  default  wait  states  in  the  MULDIV’s  hardware  driver  library
(neo430_muldiv.c) should be disabled. This can be done by adding the  NEO430_HWMUL_DSP flag to the
CC_USER_FLAGS variable during application compilation (add this to the variable and do not forget the “-D”
prefix):

  
  make clean_all compile CC_USER_FLAGS+=-DNEO430_HWMUL_DSP

Implicitly Invoking Multiplications

This is still quite experimental! However, using this method for compiling the CoreMark benchmark
works without problems. :)

The NEO430 MULDIV unit – or to be more precise: the multiplier core itself – is not compatible to the
original TI MSP430 16-bit multiplier unit. Besides a different set of provided operations, the MULDIV unit
uses has a different interface and the required registers are located at different addresses.

The “simplest” way to use the multiplication functions provided by this unit is to use the functions from the
MULDIV hardware driver library (neo430_muldiv.c). Obviously, it is easier to just write something like
A*B in your source code and let the compiler do all the mapping to the multiplier unit. Unfortunately, is it
quite complex to re-code all the original MSP430 math libraries. But there is a nice work around!

The NEO430 makefile and the linker script do not use the assembly-level functions for accessing the original
MSP430 peripherals (since we simply do not have these peripherals). And this is where the work around
kicks in: We can provide functions for the compiler’s low-level multiplication functions it tries to use when
the gcc is told that a multiplier is actually available. The following compiler primitives are supported:

  
 int16_t  __mulhi2(int16_t x, int16_t y);
 int32_t  __mulhisi2(int16_t x, int16_t y);
 uint32_t __umulhisi2(uint16_t x, uint16_t y);
 int32_t  __mulsi2(int32_t x, int32_t y);
 int32_t  __mulsidi2(int32_t x, int32_t y);
 uint64_t __umulsidi2(uint32_t x, uint32_t y);
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To be able to use implicit  multiplications using the MULDIV unit the  hwmult switch in the makefile is
configured for a 16-bit multiplier and the MULDIV driver library actually provides the primitive low-level
multiplication functions.

How to do this? Just  add the  NEO430_HWMUL_ABI_OVERRIDE flag to the  CC_USER_FLAGS variable when
compiling your project (don’t forget the “-D” prefix right before the flag):

  
  $ make clean_all compile CC_USER_FLAGS+=-DNEO430_HWMUL_ABI_OVERRIDE

Now you can use implicit  integer  multiplications  in  your  code.  This  option  can  be combined with  the
NEO430_HWMUL_DSP flag when using DSP blocks from your FPGA to further increase processing speed.

Obviously, you have to make sure the MULDIV unit was synthesized to make use of this feature.
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2.14. Cyclic Redundancy Checksum Unit (CRC)

Ever been in need to verify a data stream? Then the CRC unit (VHDL component neo430_crc.vhd) will
save your day! This unit implements a 32-bit shift register, 32-bit XOR mask and an 8-bit data input shift
register allowing to compute any CRC16 or CRC32 checksum. The unit operates on chunks of 8-bit input
data and can compute the programmed checksum very quickly. Furthermore, the start value of the internal
computation shift register can be set in order to specify custom init values.

Implementation Control

In case you do not need the checksum computation unit, you can use the CRC_USE generic of the processor
top entity (see cut-out below) to control implementation.

  
  CRC_USE => true, -- implement CRC unit? (default=true)

Operation

At  first,  the  actual  polynomial  must  be  written  as  according  XOR  mask  to  the  CRC_POLY_LO and
CRC_POLY_HI registers.  If  you are  using  a  CRC16 checksum,  you only  need  to  configure  the  lower
polynomial  register.  After that,  you can specify an initial  seed for the internal 32-bit  CRC shift  register
(CRC_RESX and CRC_RESY). In most cases the stat value is set to zero. After the initial configuration new
input data in chunks of 8-bit (so only thw lowest 8 bits are used) can be written to the  CRC_CRC16IN
register for 16-bit CRC computations or to the CRC_CRC32IN register for 32-bit CRC computations. The
final results can be obtained from the CRC_RESX register for 32-bit CRC computations and also from the
CRC_RESY register for 32-bit CRC computations. The provided  neo430_crc.c hardware driver library
features some of the mostly required CRC computations functions that also allow an easy and hardware
abstract handling of the CRC unit.

Register Map

Address Name  Bit(s) R/W Function

0xFFC0 CRC_POLY_LO 0..15 -/W Low 16-bit of the polynomial XOR mask

0xFFC2 CRC_POLY_HI 0..15 -/W High 16-bit of the polynomial XOR mask

0xFFC4 CRC_CRC16IN 0..7 -/W 8-bit input data for 16-bit CRC computation + operation trigger

0xFFC6 CRC_CRC32IN 0..7 -/W 8-bit input data for 32-bit CRC computation + operation trigger

0xFFC8 - 0..15 -/- reserved

0xFFCA - 0..15 -/- reserved

0xFFCC CRC_RESX 0..15 R/W CRC shift register (result / init value) low part

0xFFCE CRC_RESY 0..15 R/W CRC shift register (result / init value) high part

Table 29: CRC unit register map
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2.15. Custom Functions Unit (CFU)

The custom functions unit (VHDL component  neo430_cfu.vhd) is dedicated for user-defined processor
extensions. In contrast to specific hardware accelerators connected to the Wishbone bus interface, the CFU
allows the implementation of low-latency and tightly-coupled hardware extensions.

Implementation Control

In case you want to use the custom functions unit to implement user-defined hardware extensions use the
CFU_USE generic of the processor top entity (see cut-out below) to control implementation. By default, the
CFU will NOT be synthesized since the provided The actual CFU template does not implement any “useful”
operations- it is up to you to implement them ;)

  
  CFU_USE => false, -- implement custom functions unit? (default=false)

Operation

From a software point of view, the CFU implements 8 16-bit wide registers, that can be used for writing and
reading data. These register can only be accessed using full 16-bit-word read/write transfers. The default
CFU from the project’s rtl folder implements these 8 with no additional computation logic. Therefore, this
CFU behaves like a simple register file.

If you want to implement a custom functions, for instance some kind of cryptography computations, the
actual computations have to made based on data, which is available via one of the 8 CFU register addresses.
Take a look at the other processor modules like the GPIO controller or the Timer to get an idea on how to use
the register interface. Also make sure to get familiar with the CPU bus protocol, introduced at the beginning
of this chapter.

Take a look at the CFU VHDL file, which also features a lot of comments and documentation.

Register Map

Address Name  Bit(s) R/W Function

0xFFD0 CFU_REG0 0..15 R/W CFU control register

0xFFD2 CFU_REG1 0..15 R/W CFU user register 1

0xFFD4 CFU_REG2 0..15 R/W CFU user register 2

0xFFD6 CFU_REG3 0..15 R/W CFU user register 3

0xFFD8 CFU_REG4 0..15 R/W CFU user register 4

0xFFDA CFU_REG5 0..15 R/W CFU user register 5

0xFFDC CFU_REG6 0..15 R/W CFU user register 6

0xFFDE CFU_REG7 0..15 R/W CFU user register 7

Table 30: Custom functions unit register map
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2.16. Pulse Width Modulation Controller (PWM)

The  PWM  controller  (VHDL  component  neo430_pwm.vhd)  implements  a  pulse  width  modulation
controller with four independent channels and up to 8-bit resolution per channel.  It  is based on an 8-bit
counter with four programmable threshold comparators that define the actual duty cycle of each channel. The
output signals are available in the processor’s top entity via the pwm_o port. The controller can be used to
drive a fancy RGB-LED with 24-bit true color, to dim LCD backlight or even for motor control. An external
integrator (RC low-pass filter) can be used to smooth the generated “analog” signals.

The width of the internal counter can  be either set to 4 bit or 8 bit y writing  a flag in the unit’s control
register. By this, the resolution of the PWM module’s channels is reduced but also the sampling frequency is
increased.  The  neo430_pwm.c hardware  driver  library provides  basic  functions  for  using  the  PWM
controller. 

Implementation Control

If you do not need the processor-internal PWM controller (maybe you have attached a far more complex one
to the Wishbone bus), you can exclude it from synthesis using the  PWM_USE generic of the processor top
entity (see cut-out below).

  
  PWM_USE => true, -- implement PWM controller? (default=true)

Operation

The PWM controller is activated by setting the  PWM_CT_EN bit in the module’s control register  PWM_CT.
When this flag is cleared, the unit is reset and all output channels are set to zero.

The 8-bit duty cycle for each channel, which represents the channel’s “intensity", can be specified via the
according PWM_CHxx register. Note, that one control register is used to define the duty cycle for two channels
at once, so the  PWM_CH10 register defines the duty cycle for PWM outputs 0 and 1 and the  PWM_CH23
register defines the duty cycle for PWM outputs 3 and 4.

The effective bit width of the internal PWM counter can be defined to be  4 to 8 bit wide. The width is
configured via the  PWM_CT_SIZE_SEL flag in the unit’s control register. When this flag is set to zero the
effective PWM counter bit width is 4 bit wide. When the flag is set the effective PWM counter bit width is 8
bit wide. This configuration is used for all four PWM channels. Note, that a small effective bit width will
increase the sampling rate but will also decrease the resolution.

Based on the duty cycle PWM_Chxx the according analog output voltage (relative to the IO supply voltage) of
each channel can be computed by the formula below.

Intensity xx=
PWM_CHxx

24
%    for 4-bit counter width

Intensity xx=
PWM_CHxx

28
%    for 8-bit counter width
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The frequency of the generated PWM signals is defined by the  effective counter bit width  and the PWM
operating frequency.  This operating frequency is  derived from the main system clock and divided  by a
prescaler  via  the  three  PWM_CT_PRSCx bits  in  the  unit’s  control  register.  The  following  prescalers  are
available:

Prescaler bits configuration: 000 001 010 011 100 101 110 111

Resulting prescaler PRSC: 2 4 8 64 128 1024 2048 4096

The resulting PWM frequency is defined by:

f PWM =
f main

24⋅PRSC
  for 4-bit counter width

f PWM =
f main

28⋅PRSC
  for 8-bit counter width

Example

The system operates at 100MHz, the clock is divided by a prescaler of 2 (PWM_CT_PRSCx = 0b000) and the
effective bit width is set to 4 bits (PWM_CT_SIZE_SEL = 0):

f PWM =100 MHz

24⋅2
=3.125 MHz

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFE0 PWM_CT 0 PWM_CT_EN -/W Enable (activate) PWM controller

1 PWM_CT_PRSC0 -/W Clock prescaler select bit 0

2 PWM_CT_PRSC1 -/W Clock prescaler select bit 1

3 PWM_CT_PRSC2 -/W Clock prescaler select bit 2

4 PWM_CT_GPIO_PWM -/W Use channel 3 to modulate GPIO unit’s output

5 PWM_CT_SIZE_SEL -/W Counter size (1: 8bit, 0: 4bit)

6..15: reserved -/- Reserved, read as zero

0xFFE2 PWM_CH10 0..7 R/W Duty cycle for channel 0

8..15 R/W Duty cycle for channel 1

0xFFE4 PWM_CH32 0..7 R/W Duty cycle for channel 2

8..15 R/w Duty cycle for channel 3

0xFFE6 - 0..15 -/- Reserved, read as zero

Table 31: PWM controller register map
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PWM Modulation of the GPIO Unit’s Output Port

Channel 3 of the PWM controller can alternatively be used to modulate the output port of NEO430 general
purpose input/output  controller  (GPIO).  By setting the  PWM_CT_GPIO_PWM bit  in the  PWM controller’s
control register, output channel 3 (top entity port pwm_o(3)) is permanently set to zero and the according
PWM signal is routed to the GPIO unit to modulate the whole output port.

For example, this feature can be used to uniquely control several LEDs via the GPIO controller while also
controlling their intensity via the PWM controller.

This project is published under the BSD   3-Clause   License   (BSD)

55   2. Hardware Architecture May 15, 2020

https://github.com/stnolting/neo430
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
mailto:stnolting@gmail.com


The NEO430 Processor                                                          This project is hosted on GitHub
by Stephan Nolting                                                                                             stnolting@gmail.com

2.17. True Random Number Generator (TRNG)

The NEO430 true random number generator (VHDL component neo430_trng.vhd) provides true random
numbers for your application. Instead of using a pseudo RNG like a LFSR, the TRNG of the processor uses a
simple, straight-forward ring oscillator as physical entropy source. Hence, voltage and thermal fluctuations
are used to provide true physical random data. It features a platform independent architecture based on two
papers which are cited at the bottom of the following pages.

Implementation Control

By default, the TRNG will not be synthesized. You can enable synthesis by using the TRNG_USE generic of
the processor top entity (see cut-out below).

  
  TRNG_USE => false, -- implement TRNG? (default=false)

Architecture

The NEO430 TRNG is based on the GARO Galois Ring Oscillator TRNG11. Basically, this architecture is an
asynchronous LFSR  constructed from a chain of  inverters.  Before the output  signal  of  one oscillator  is
passed to the input of the next one, the signal can be XORed with the final output signal of the inverter chain
(see image below) using a switching mask (f).

The default setup of the NEO430 TRNG uses a total of 14 inverters and a software configurable GARO tap
configuration.  To prevent the synthesis tool from doing logic optimization and thus, removing all but one
inverter, the TRNG uses simple latches to decouple an inverter and its actual output. The latches are reset
when the TRNG is  disabled and are enabled one by one by a  simple  shift  register  when the TRNG is
activated.  By  this, the  TRNG  provides  a  platform  independent  architecture12 since no  specific  VHDL
attributes are required.

11 "Enhancing  the  Randomness  of  a  Combined  True  Random  Number  Generator  Based  on  the  Ring  Oscillator
Sampling Method" by Mieczyslaw Jessa and Lukasz Matuszewski

12 "Extended Abstract: The Butterfly PUF  Protecting IP on every FPGA" by Sandeep S. Kumar, Jorge Guajardo, Roel
Maesyz,  Geert-Jan Schrijen and Pim Tuyls, Philips Research Europe, 2008
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The single-bit  output  signal  of  the GARO array is  fed through flip flops to eliminate any metastability
beyond this point. Afterwards, a Von-Neuman de-biasing is applied to get rid of any any bias introduced by
the GARO array. If the de-biasing fails, an additional cycle is required to obtain a now random sample. This
process might replicate depending on the quality of the GARo oscillation.

This de-biased signal  is  used as input  for a simple chaos machine post-processing to provide a ‘better’
uniform distribution. This chaos machine is implemented as a 12-bit LFSR. As soon as 12 valid (so no errors
during the  de-biasing)  bits  have bin sampled,  the  resulting data  is  moved to the  output  register  and is
available for fetching by the CPU bus.

Quality of the Random Numbers

I’m not a math guy, so statistical analysis is not my favorite waste of time... However, I’ll try to show some
elementary statistical properties of the TRNG’s random numbers. The data used for evaluation was generated
by a NEO430 setup on an Intel Cyclone IV FPGA running at 100 MHz.

The histogram in the figure below shows the relative (percentage) occurrence of all possible random data
values (8-bit → 256 different values → 0 to 255) for  2 000 000 000 samples (blue boxes, “real”). For a
perfect uniform distribution, each possible value would account for x perfect=100 %÷256=0.390625 %
with  a  standard  deviation  of σ perfect=0 % of  the  total  sample  amount  (orange  line,  “perfect”).  The
arithmetic mean of the real occurrences also sum up to xreal=0.390625 % (due to the post-processing
LFSR) but with a standard deviation of σ real=0.00077993 % caused by the imperfect entropy source.
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Operation

The TRNG features  a  single  control  register  (TRNG_CT)  to  control  operation and to  read the generated
random data.  When the  TRNG_CT_EN bit  is  set,  the TRNG starts  operation.  Make sure to configure the
GARO taps using the TRNG_CT_TAPx-EN bits in advance.  As soon as the  TRNG_CT_VALID bit is set, the
current sampled 12-bit random data can be obtained from the lowest 12 bits of the unit’s control register
(most scenarios might only use the lowest 8 bit).  Note, that the TRNG needs at least 12 clock cycles to
generate a new random byte. During this sampling time the current output random data is kept in the output
register until a valid sampling of the new byte has completed.

The neo430_trng.c hardware driver library provides basic functions for using the TRNG.

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFEC TRNG_CT 0..11 TRNG_CT_DATAx R/- Random data word (read-only!)

0..14 TRNG_CT_TAPx_EN -/W GARO taps configuration (write-only!)

15 TRNG_CT_EN R/W Enable (activate) TRNG

15 TRNG_CT_VALID R/- Current random data word is valid

Table 32: TRNG register map

I  cannot  guarantee  the  NEO430  TRNG  is  a  cryptographically  secure  random  number
generator since I have not conducted any kind of a more sophisticated analysis. You can try to
enhance the theoretical entropy by increasing the number of inverters in the GARO array. A better
analysis regarding the TRNG cryptographical quality could be done by using dedicated test suites.
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2.18. External Interrupts Controller (EXIRQ)

To expand the IRQ capabilities of the CPU, the processor features a controller for external interrupts  (VHDL
component  neo430_exirq.vhd). This controller features eight external interrupt request lines (top entity
port ext_irq_i) with according acknowledge signals (top entity port ext_ack_o). All interrupt request line
trigger on high-level and can be individually activated or deactivated. Also, each interrupt channel can be
triggered by software (for traps, breakpoints, software interrupts, etc.).

Triggering on Rising/Falling Edges

The EXIRQ interrupt  request  lines  only  trigger on a  high level.  If  your  application  requires  an  edge
sensitive trigger, you need to add an according logic to these lines. The following VHDL example shows a
simple  rising-edge  detector  for  the  external  signal  ext_irq(0) triggering  the  EXIRQ’s  neo430_irq(0)
channel. Note that an additional register (ext_irq_ff(0)) is required as buffer for the edge detector.

  
  ext_irq_ff(0) <= ext_irq(0) when rising_edge(clk);   -– delay IRQ one cycle
  neo430_irq(0) <= ext_irq(0) and (not ext_irq_ff(0)); –- rising-edge detector

Implementation Control

By default,  the  EXIRQ will always be synthesized.  You can enable synthesis by using  the  EXIRQ_USE
generic of the processor top entity (see cut-out below).  Note that no external interrupts are available when
this unit is disabled for synthesis (→ ext_irq_i and ext_ack_o have no function).

  
  EXIRQ_USE => true, -- implement EXIRQ? (default=true)

When the external  interrupts controller  (EXIRQ) is  excluded from synthesis,  the CPU IRQ line
triggering IRQVEC_EXT is directly connected to the port  ext_irq_i(0) while all other interrupt
input lines are unused. Also, only ext_ack_o(0) is connected.

External Interrupt

Whenever  an enabled  interrupt  channel  of  the  controller  is  triggered,  the  according interrupt  request  is
brought to the CPU via the IRQVEC_EXT interrupt vector. So, regardless which channel is triggered, always
the  same  interrupt  handler  will  be  started.  However,  the  EXIRQ  hardware  driver  library
(neo430_exirq.c) allows to define unique handler functions for each external interrupt channel. More
details are presented in the further course of this chapter. 

Address IRQ Vector Name Priority Source

0xC006 IRQVEC_EXT 4 (lowest) External interrupt request

Table 33: EXIRQ interrupt vector
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Operation

The EXIRQ controller  features a single control register (EXIRQ_CT). The unit is globally enabled when
setting the  EXIRQ_CT_EN  bit.  If  this  bit  is  cleared during operation,  all  buffered interrupt  requests  are
deleted.  Each  interrupt  request  channel  features  a  unique  enable  signal  (EXIRQ_CT_IRQx_EN),  which
activates the according channel when set.

Channel 0 (ext_irq_i(0)) has the highest priority, while channel 7 (ext_irq_i(7)) has the lowest. If
several interrupt requests arise at the same time, the one with highest priority will be processed while the
remaining ones are internally buffered. Note, that all interrupt request lines trigger on high-level.

When an interrupt is signaled to the CPU, the application program can determine which channel caused the
request by reading the EXIRQ_CT_IRQ_SELx bits. A “000” indicates channel 0, a “001” channel 1 and so on.
The interrupt is acknowledged by writing a 1 to the EXIRQ_CT_ACK_IRQ control register bit.

The eight channels can also be triggered by software. For that, the SW IRQ enable bit EXIRQ_CT_SW_IRQ
has to be set while the EXIRQ_CT_IRQ_SELx bits define the channel to be triggered (e.g., “000” for channel
0).  A software triggering is  only possible  when the according IRQ channel  is  enabled and the EXIRQ
controller is activated at all.

Register Map

Address Name  Bit(s) (Name) R/W Function

0xFFEE EXIRQ_CT 0 EXIRQ_CT_IRQ_SEL0 R/W IRQ source bit 0 / SW IRQ select bit 0

1 EXIRQ_CT_IRQ_SEL1 R/W IRQ source bit 1 / SW IRQ select bit 1

2 EXIRQ_CT_IRQ_SEL2 R/W IRQ source bit 2 / SW IRQ select bit 2

3 EXIRQ_CT_EN R/W Global unit enable bit

4 EXIRQ_CT_SW_IRQ -/W Enable SW IRQ trigger, auto-clears after write

5 EXIRQ_CT_ACK_IRQ -/W ACK current IRQ, auto-clears after write

6..7 reserved R/- reserved, read as zero

8 EXIRQ_CT_IRQ0_EN R/W Enable IRQ channel 0

9 EXIRQ_CT_IRQ1_EN R/W Enable IRQ channel 1

10 EXIRQ_CT_IRQ2_EN R/W Enable IRQ channel 2

11 EXIRQ_CT_IRQ3_EN R/W Enable IRQ channel 3

12 EXIRQ_CT_IRQ4_EN R/W Enable IRQ channel 4

13 EXIRQ_CT_IRQ5_EN R/W Enable IRQ channel 5

14 EXIRQ_CT_IRQ6_EN R/W Enable IRQ channel 6

15 EXIRQ_CT_IRQ7_EN R/W Enable IRQ channel 7

Table 34: EXIRQ register map
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Using the EXIRQ Controller in Software

The complexity of the EXIRQ controller is hidden by the  neo430_exirq.c hardware driver library. For
configuring the EXIRQ controller you only need to use the  neo430_exirq_config() function from this
library. A specific struct (struct neo430_exirq_config) is passed to this function that includes the actual
configuration:

• uint16_t address(8) : A 16-bit wide and 8 entries deep array that stores the base address of the
handler functions for the external interrupt channels 0 to 7.

• uint8_t enable : An 8-bit wide variable to enable/disable each of the interrupt channels, i.e. bit #0
enables channel 0 and its according address(0) and so on.

When  the  EXIRQ configuration  function  (neo430_exirq_config)  is  called,  the  actual  configuration
stored in the struct is stored to a hidden global variable. Also, an actual interrupt handler that handles the
interrupt request from the EXIRQ controller is included and its base address is automatically stored to the
according  interrupt  vector  location  (IRQVEC_EXT).  Whenever  the  EXIRQ  triggers  this  interrupt,  this
interrupt handler is started. Now, the handler reads the according source bits from the EXIRQ to determine
the source  IRQ channel  with highest  priority  and  calls the  according handler  function for  this  channel
(defined by the configuration struct). Hence, the called handler for the external interrupt channels can be
normal functions, as the calling interrupt handler already does all the required stack operations.

A simple example for the configuration is shown below (a complete example project for using the EXIRQ
can be found in sw\example\exirq_test):

  // use this predefined struct for configuring the EXIRQ controller
  struct neo430_exirq_config_t exirq_config;

  // initialise handler addresses
  exirq_config.address[0] = (uint16_t)(&ext_irq_ch0_handler);
  exirq_config.address[1] = (uint16_t)(&ext_irq_ch1_handler);
  exirq_config.address[2] = (uint16_t)(&ext_irq_ch2_handler);
  exirq_config.address[3] = (uint16_t)(&ext_irq_ch3_handler);
  exirq_config.address[4] = 0; // set unused vectors to zero
  exirq_config.address[5] = 0;
  exirq_config.address[6] = 0;
  exirq_config.address[7] = (uint16_t)(&ext_irq_ch7_handler);

  // only enable the actually used IRQ channels
  exirq_config.enable = 0b10001111;

  // program configuration and activate EXIRQ controller
  neo430_exirq_config(exirq_config);
  neo430_exirq_enable();

  // enable global interrupts
  neo430_eint();

  // trigger EXIRQ channel 0 IRQ by software just for fun
  neo430_exirq_sw_irq(0);
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The  actual  handler  functions  for  the  external  interrupts  should  be  “normal  functions”  -  so  no  specific
attributes like “interrupt” should be used. Also, these handler functions must not have any parameters or
return values. One exemplary handler function (for channel 0) is shown below:

  void ext_irq_ch0_handler(void) {

    ...
  }

There is no need to use the “interrupt” attribute for the external interrupt channel handler functions
that are called by the EXIRQ controller.  All the stack handling and the correct interrupt return is
already done by the actual interrupt handler which calls the external interrupts handlers.
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2.19. Arbitrary Frequency Generator (FREQ_GEN)

The  programmable frequency  generator  (VHDL  component  neo430_freq_gen.vhd)  provides  three
independent  channels  capable  of  generating arbitrary frequencies.  Each channel  is  driven by a number-
controlled oscilaltor (NCO) which in terms is clocked using one out of eight clock prescalers. The generated
clock signals are available in the processor’s top entity via the freq_gen_o(2 downto 0) signal.

Implementation Control

By default, the  FREQ_GEN will be synthesized. You can disable synthesis by using  the  FREQ_GEN_USE
generic of the processor top entity (see cut-out below):

  
  FREQ_GEN_USE => true, -- implement FREQ_GEN? (default=true)

Theory of Operation

The frequency generator of each channel is based on a numerically-controlled oscillator (NCO), which is
basically  a  simple  accumulator.  In  every  new clock  cycle,  which  is  defined  by  the  channel’s  prescaler
selector, the so-called tuning word (TW) is added to the accumulator. The tuning word is 16-bit wide and the
accumulator is 17-bit wide. The most significant bit of the accumulator represents the actual channel output.

The “update clock” of each channel’s NCO is defined by one of eight prescaler configuration. The prescaler
(PRSC) is applied to the main processor clock (fCPU). The following prescaler selections / prescalers are
available:

Prescaler bits configuration: 000 001 010 011 100 101 110 111

Resulting prescaler PRSC: 2 4 8 64 128 1024 2048 4096

The  actual  prescaler  selection  for  each  channel’s  prescaler  PRSC(ch) is  configured  via  the
FREQ_GEN_CT_CHx_PRSC2 downto FREQ_GEN_CT_CHx_PRSC0 bits  in  the  units  control  register
FREQ_GEN_CT. The tuning word TW is defined via the FREQ_GEN_TW_CHx registers.

The resulting output frequency fout of channel ch can be calculated via the following formula:

f out (ch)=
f cpu⋅TW (ch)

PRSC (ch)⋅217    for channels ch = 0,1,2

fcpu Processor clock frequency
TW(ch) Tuning word of channel ch
PRSC(ch) Prescaler of channel ch

Each channel has a unique NCO enable flag in the control register (FREQ_GEN_CT_Chx_EN). When this flag
is cleared, the output of the according channel goes low and the channel’s NCO accumulator is cleared.
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Register Map

Address Name  Bit(s) (Name) R/W Function

0xFF88 FREQ_GEN_CT 0 FREQ_GEN_CT_CH0_EN R/W Enable channel 0

1 FREQ_GEN_CT_CH1_EN R/W Enable channel 1

2 FREQ_GEN_CT_CH2_EN R/W Enable channel 2

3 FREQ_GEN_CT_CH0_PRSC0 R/W Clock prescaler select for channel 0

4 FREQ_GEN_CT_CH0_PRSC1 R/W

5 FREQ_GEN_CT_CH0_PRSC2 R/W

6 FREQ_GEN_CT_CH1_PRSC0 R/W Clock prescaler select for channel 1

7 FREQ_GEN_CT_CH1_PRSC1 R/W

8 FREQ_GEN_CT_CH1_PRSC2 R/W

9 FREQ_GEN_CT_CH2_PRSC0 R/W Clock prescaler select for channel 2

10 FREQ_GEN_CT_CH2_PRSC1 R/W

11 FREQ_GEN_CT_CH2_PRSC2 R/W

12..15 R/- Reserved, read as 0

0xFF8A FREQ_GEN_TW_CH0 0..15 -/W Channel 0 tuning word

0xFF8C FREQ_GEN_TW_CH1 0..15 -/W Channel 1 tuning word

0xFF8E FREQ_GEN_TW_CH2 0..15 -/W Channel 2 tuning word

Table 35: Frequency Generator register map

Software Driver

The  neo430_freq_gen.c hardware  driver  provides  elementary  functions  for  using  the  frequency
generator. This library also provides a more or less complex function, which configures a channel (prescaler
and tuning word) for a given frequency.

Output Frequency Accuracy

The  NCO  architecture  is  based  on  integer  operations  triggered  by  the  main  processor  clock.  Hence,
quantization errors will occur. The output frequency is based on the formula given above. However, in some
cases this formula only defines the “average output frequency”. The actual output frequency might be a
combination of two base frequencies closely below and above the target frequency. In this case, the output
duty cycle is not exactly 50%.
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3. Software Architecture
Software development for the NEO430 is based on the freely-available TI msp430-gcc compiler toolchain,
which can be downloaded from (use the “compiler only” package):

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSPGCC/latest/index_FDS.html

With the compiler tool chain, you can turn your C/C++ programs into an NEO430 executable. Generating an
executable is done in several consecutive steps (all done by the provided compilation scripts):

1. The application start-up code (crt0.asm)  is  assembled into an object  file.  This  start-up codes is
responsible for the minimal required hardware initialization.

2. The actual application program is compiled together with all included files and libraries. The code is
optimized for size (-Os) by default. If required, all library functions are also compiled.

3. In the next step, all generated object files are linked together using the special NEO430 linker script
(neo430_linker_script.x).  This specific linker script generates a final object file, that already
represents  the  actual  memory  layout  of  the  NEO430.  Also,  an  ASM  listing  file  is  generated
(main.s) for debugging.

4. The final program object file is generated.

5. In the last step, the program image is converted into a NEO430 executable (main.bin) binary. This
file can be uploaded and executed by the NEO430 bootloader.  Additionally, an executable VHDL
memory  initialization  image  for  the  IMEM  is  generated  and  directly  installed  into  the
neo430_application_image.vhd file – no manual copy required. This is only relevant if the
instruction memory is configured as true ROM.

The last step is done by a small C program, which is located in the  sw/tools/image_gen folder.  It is
automatically compiled when you are using the NEO430 toolchain for the first time.

The size of the final executable, which is printed in your console by the make script, only represents
the size of the executable image. Additional RAM is required for allocating dynamic memory for the
stack and the head (actual size depends on the application program).
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3.1. Executable Program Image

As the last step of the program compilation flow, the NEO430 executables are generated. The binary version
can be uploaded to the processor to be executed directly and/or programmed into an external flash SPI. The
executable VHDL IMEM memory initialization data is directly inserted into the processor’s IMEM image
VHDL file. The compilation script uses a specific linker script to generate the final image:

3.1.1. Image Sections

The final executable image consists of the following three sections:

.text Executable instructions, including start-up, application and termination code

.rodata Read-only data (constants like strings)

.data Pre-initialized variables (will be copied into RAM during start-up)

3.1.2. Dynamic Memory

The remaining memory – the memory after the  .data section until the end of the RAM – is used for the
dynamic data during run time. This data includes the stack and the heap. The stack grows from the end of the
memory down to the end of the .data section. The heap grows from the end of the .data section up to the
end of the memory. Make sure there is no collision between the heap and the stack when using dynamic
memory allocation!

3.1.3. Application Start-Up Code

During  the  linking  process,  the  application  start-up  code  crt0.asm is  placed  right  before  the  actual
application. The resulting code represents the applications .text segment and thus, the final executable. The
start-up code implements a basic system initialization:

• Setup the stack-pointer according to the memory size configuration from the CPUID registers
• Set all IO device registers to 0x0000
• Clear complete DMEM, including .bss segment and the interrupt vectors, copy the .data section

from IMEM to DMEM
• Initialize all CPU data registers
• Call   the application’s main function
• If the main function returns, the watchdog timer is deactivated, interrupts are disabled and the CPU

is set to eternal sleep mode

This project is published under the BSD   3-Clause   License   (BSD)

66   3. Software Architecture May 15, 2020

Figure 9: Construction of the final program image

.data

.rodata .image

.text

https://github.com/stnolting/neo430
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
mailto:stnolting@gmail.com


The NEO430 Processor                                                          This project is hosted on GitHub
by Stephan Nolting                                                                                             stnolting@gmail.com

3.1.4. Executable Image Formats

The  auxiliary image generator  program  (sw\tools\image_gen)  is  used to  either  create  an executable
binary or an executable VHDL memory initialization image. The actual conversion target is given by the first
argument when executing the image generator. Valid target options are listed below. The second argument
determines the input file and the third argument specifies the output file.

-app_bin Generates an executable binary “main.bin” (for UART uploading via the 
bootloader) in the project’s folder (including a header!!!)

-app_img Generates an executable VHDL memory initialization image for the 
IMEM. This function is meant to generate the 
“neo430_application_image.vhd” file.

-bld_img Generates an executable VHDL memory initialization image for the 
BOOT ROM. This function is meant to generate the 
“neo430_bootloader_image.vhd” file.

There is a special thing about the binary executable format: This executable version has a very small header
consisting of three 16-bit words located right at the beginning of the file. The first word (red) is the signature
word and is always  0xCAFE. Based on this word, the bootloader can identify a valid image file. The next
word (green) represents the size in bytes of the program image (so this value is always 6 bytes less than the
actual  file size).  A simple XOR checksum of the program data is  given by the third word (blue).  This
checksum is computed by XOR-ing all program data words (no header data!) of the program image. Below
you can see an exemplary binary executable.

    CA FE 01 7A 19 59 43 03 42 18 FF E8 42 19 FF EA 58 09 43 02 49 01 83 21 43 82 FF
    9E 43 82 FF A6 43 82 FF B4 43 82 FF B2 43 82 FF C4 40 B2 47 00 FF D0 98 09 24 04
    43 88 00 00 53 28 3F FA 40 35 01 7A 40 36 01 7A 40 37 80 00 95 06 24 04 45 B7 00
    00 53 27 3F FA 43 04 43 05 43 06 43 07 43 08 43 09 43 0A 43 0B 43 0C 43 0D 43 0E
    43 0F 12 B0 00 72 43 02 D0 32 00 10 42 1F FF EE 42 1B FF EC 43 0C 43 0D 4F 0D 4B
    0E 43 0F DE 0C DF 0D 3C 04 50 3C 6A 00 63 3D 53 1F 93 1D 2F FA 90 3C 96 00 2F F7
    43 4E 3C 0E 93 6E 24 02 92 6E 20 07 C3 12 10 0F C3 12 10 0F C3 12 10 0F 3C 02 C3
    12 10 0F 53 5E 90 3F 01 00 2F EF 4E 4E 10 8E DF 0E 4E 82 FF A4 40 B2 FE 81 FF A6
    40 3F 01 3E 12 B0 01 16 B2 B2 FF E2 20 07 40 3F 01 5A 12 B0 01 16 43 1F 40 30 01
    14 43 82 FF B2 43 0F 4F 0E F0 3E 00 FF 53 1F 4E 82 FF B2 40 3E 00 0B 3C 04 43 3D
    43 03 53 3D 23 FD 53 3E 23 FA 3F F0 41 30 3C 0F 90 7E 00 0A 20 06 B2 B2 FF A6 23
    FD 40 B2 00 0D FF A2 B2 B2 FF A6 23 FD 11 8E 4E 82 FF A2 4F 7E 93 4E 23 EE 41 30
    42 0A 69 6C 6B 6E 6E 69 20 67 45 4C 20 44 65 64 6F 6D 70 20 6F 72 72 67 6D 61 00
    0A 72 45 6F 72 21 72 4E 20 20 6F 49 50 20 4F 6E 75 74 69 73 20 6E 79 68 74 73 65
    7A 69 64 65 00 21

Hex-view of an executable binary image including colorized header
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3.2. Internal Bootloader

The bootloader requires at least the TIMER and the UART units to be included into the design! The
GPIO unit is optional since it is just used for status indication. The SPI unit is only required, if you
want to use an external SPI flash for automatic application booting.

When the bootloader is  implemented (enabled via the  BOOTLD_USE generic)  the IMEM is not
initialized by the bitstream at all. This allows a mapping of the IMEM to memory primitives, that do
not support initialization during bitstream upload.

The included bootloader of the NEO430 processor allows you to upload new program images at every time.
If you have an external SPI flash connected to the processor (for example the FPGA configuration memory),
you can store the  program image to  it  and  the system can directly  boot it  after  reset  without  any user
interaction. But we will talk about that later…

To interact with the bootloader, attach the UART signals of  the  processor via a COM port (-adapter) to a
computer, configure your terminal program using the following settings and perform a reset of the processor.

Terminal console settings (19200-8-N-1):

• 19200 Baud
• 8 data bits
• No parity bit
• 1 stop bit
• Newline on “\r\n” (carriage return, newline)
• No transfer protocol for sending data, just the raw byte stuff

The bootloader uses bit #0 of the GPIO output port as high-active status LED (all other outputs are set to low
level by the bootloader). After reset, this LED  will start blinking at  ~2Hz and the following  intro screen
should show up in your terminal. This start-up screen also gives some brief information about the bootloader
version and several system parameters (all in hexadecimal representation, except for the bootloader version):

NEO430 Bootloader

BLV: Feb 10 2020 → Bootloader version (compile date)
HWV: 0x0340 → Hardware version
USR: 0x1ce4 → User code defined via the USER_CODE generic of the top entity
CLK: 0x0134fd90 → Clock speed in Hz
ROM: 0x8000 → Size of internal IMEM in bytes
RAM: 0x3000 → Size of internal DMEM in bytes
SYS: 0x74bd → System configuration (SYSCONFIG)

Autoboot in 4s. Press key to abort.

NEO430 bootloader start-up screen
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Now you have 4 seconds to press any key. Otherwise, the bootloader starts the auto boot sequence (see next
chapter). When you press any key within the 4 seconds, the actual bootloader user console starts:

NEO430 Bootloader

BLV: Feb 10 2020
HWV: 0x0340
USR: 0x1ce4
CLK: 0x0134fd90
ROM: 0x8000
RAM: 0x3000
SYS: 0x74bd

Autoboot in 4s. Press key to abort.

CMDs:
h: Help
r: Restart
u: Upload
p: Program
e: Execute
CMD:> 

NEO430 bootloader console

The  auto-boot  countdown is  stopped  and now you  can  enter  a  command  from the  list  to  perform the
corresponding operation:

• h: Show the help text (again)
• r: Restart the bootloader
• u: Upload new program executable image (raw *.bin file) via UART into the IMEM
• p: Write the complete IMEM content as boot image to the SPI flash (at SPI.CS0)
• e: Start the application, which is currently stored in IMEM

A new program is uploaded to the NEO430 by using the upload function. The compile scripts of this project
generate a compatible binary executable (*.bin format), which must be transmitted by your terminal program
without using any kind of protocol – just raw data. When the image is completely uploaded, it resides in the
IMEM and you can start executing it using the execute option.

The complete content of the IMEM can be stored to an external SPI flash by using the program command
(the programming can take some time). The bootloader will try to load this image from the SPI flash at start
up during the autoboot sequence and automatically launches it.

More information about using an external SPI flash for booting can be found in chapter 4.6. External
SPI Boot Flash.
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3.2.1. Auto Boot Sequence

When you reset the NEO430 processor, the bootloader waits  4 seconds for a console user input before it
starts the automatic boot sequence. This sequence tries to fetch a valid boot image from the external SPI
flash, connected to SPI chip select bit #0. If a valid boot image is found and can be successfully transferred
into the internal IMEM, it is automatically started. If no SPI flash was detected or if there was no valid boot
image found, the bootloader stalls and the status LED is permanently activated.

3.2.2. Error Codes

If something goes wrong during the bootloader operation, an error code is shown. In this case, the processor
stalls,  a  bell  command and one of the following error codes is  send to the terminal,  the status LED is
permanently activated and the system must be manually reset.

• ERR_00: This error occurs if the attached SPI flash cannot be accessed during write transfers. Make
sure you have the right type of flash and that it is connected properly to the NEO430's SPI port at
chip select #0 (CS0).

• ERR_01: If you have implemented the IMEM as true ROM (so it cannot be written) this error pops
up when trying to install a new application image (e.g. via the UART). Set the  IMEM_AS_ROM
configuration generic of the processor top entity to ‘false’ to implement the IMEM as writable RAM.

• ERR_02: If you try to transfer an invalid executable (via UART or from the external SPI flash), this
error message shows up. Also, if no SPI flash was found during a boot attempt, this message will be
displayed.

• ERR_04: Your program is  way  too big for the internal  IMEM.  Increase the IMEM size of your
NEO430 project or reduce your application code.

• ERR_08: This indicates a checksum error. Something went wrong during the transfer of the program
image (upload via UART or loading it from  the external SPI flash). If the error was caused by a
UART upload, just try it again. When the error was generated during a flash access, the stored image
might be corrupted.
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3.3. Software Libraries

The NEO430 project provides a set of C libraries that allow an easy usage of all of the core’s peripheral and
CPU features. All you need to do is to include the main NEO430 library file in your application’s main C
file. The main library file as well as all sub-libraries are located in sw/lib/neo430 and are automatically
added by the makefile to the include path.

 #include <neo430.h>

This main include file will automatically include all driver libraries (e.g. the drivers for the UART). The
following list shows all the included driver libraries, which are located in the  sw/lib/neo430/include
folder. The according source files are located in  sw/lib/neo430/source. Take a look at the according
library file when you want to use the according hardware unit – you will find a rich set of handy functions :)

Library file HW module

neo430.h All (mandatory for all other libraries)

neo430_cpu.h /.c CPU

neo430_crc.h /.c Cyclic redundancy check unit (CRC)

neo430_exirq.h /.c External interrupts controller (EXIRQ)

neo430_freq_gen.h /.c Programmable frequency generator (FREQ_GEN)

neo430_gpio.h /.c General purpose input/output unit (GPIO)

neo430_muldiv.h /.c Multiplier/divider unit (MULDIV)

neo430_pwm.h /.c Pulse-width modulation unit (PWM)

neo430_spi.h /.c Serial peripheral interface (SPI)

neo430_timer.h /.c High-precision timer (TIMER)

neo430_trng.h /.c True random number generator (TRNG)

neo430_twi.h /.c Two wire serial interface (TWI)

neo430_uart.h /.c Universal asynchronous receiver and transmitter (UART)

neo430_wdt.h /.c Watchdog timer unit (WDT)

neo430_wishbone.h /.c Wishbone bus interface unit (WB32)

Table 36:NEO430 software library files

The NEO430 software library provides driver functions for the CPU and all  peripheral  devices.
Check the sw\lib\neo430\source folder – each driver library is highly commented to explain
how to use all the provided functions.
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3.4. NEO430 Application Makefile

A software project for the NEO430 is built using a custom makefile. Hence, each (example) project folder in
sw\example consists at least of one source code file (e.g., main.c) and the makefile itself. When creating a
new project, copy this makefile to your new project folder.  I  suggest to create new projects also in  sw\
example to keep the file dependencies. Of course, these dependencies can be manually configured when
your project is located somewhere else.

The NEO430 makefile was tested on a native Linux, on the Linux subsystem for Windows, on
Windows Powershell and cygwin.

Before you can use the makefiles, you need to download and install the msp430-gcc toolchain. Also, you
have to add the installation folder of the compiler to your system’s PATH variable. More information can be
found in chapter 4. Let's Get It Started!.

The makefile is invoked by simply executing make in your console:

 .../sw/example/blink_led$ make

Just executing make will show the help menu showing all available targets:

 NEO430 Application Compilation Script
 Make sure to add the msp430-gcc bin folder to your system's PATH variable.
 Targets:
  help      - show this text
  check     - check toolchain
  info      - show makefile configuration
  compile   - compile and generate *.bin executable for upload via bootloader
  install   - compile, generate and install VHDL boot image
  all       - compile and generate *.bin executable for upload via bootloader and
              generate and install VHDL boot image
  clean     - clean up project
  clean_all - clean up project, core libraries and helper tools
 CC_USER_FLAGS (usage example: CC_USER_FLAGS+=-DNEO430_HWMUL_ABI_OVERRIDE)
  NEO430_HWMUL_ABI_OVERRIDE - implicit usage of MULDIV.mul unit (make sure it is
                              synthesized)
  NEO430_HWMUL_DSP          - use embedded multiplier for MULDIV.mul unit (make also sure
                              this option is synthesized)

If your software project is not located in the NEO430’s default sw\example folder, you need to specify the
path (relative or absolute) to the NEO430 home folder (the base folder of the NEO430 project, where the
rtl, sw, sim, … folders are located):

 .../sw/example/blink_led$ make NEO430_HOME=path_to_neo430_home_folder
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3.4.1. Targets

This is a short explanation of the available targets of the application makefile.

Target Description

help Show the help menu, which gives a short description of all available targets. This is also the fall-
back when make is invoked without any targets.

check
This check option checks the correct installation of the msp430-gcc toolchain by executing each 
required program (compiler, linker, assembler, …). Also, this targets check for the correct 
configuration of the NEO430 home folder.

info Shows the current configuration of all makefile-relevant variables.

compile Compile the sources files and generate assembly listing file for debugging and executable file 
(*.bin) for upload via the bootloader.

install Just like ‘compile’, but this target will also install the compiled application to the IMEM, so it can 
be directly booted (when the bootloader is disabled).

clean Delete all generated files in the current project.

clean_all Clean all generated files inclusind compiled libraries and auxiliary programs.

Table 37:NEO430 processor-specific makefile flags

3.4.2. NEO430-Specific Flags

The makefiles provide custom flags to optimize the compilation for a specific hardware configuration of the
NEO430 processor. The following flags are available:

Flag Function

NEO430_HWMUL_ABI_OVERRIDE Implicit multiplications in the source code will be mapped (via compiler 
primitives) to the NEO430 MULDIV’s multiplier.  Only use this flag when 
the MULDIV unit is synthesized. See chapter 2.13. Multiplier and Divider 
Unit (MULDIV) for more information.

NEO430_HWMUL_DSP This flag assumes the MULDIV’s multiplier core is built from DSP blocks. 
Therefore,  flag will eliminate the required wait states for the default serial 
multiplier. Only use this flag when the MULDIV unit is synthesized and the 
use_dsp_mul_c adavenced/experimental (NX) flag in the processor 
VHDL package file is enabled. See chapter 2.13. Multiplier and Divider 
Unit (MULDIV) for more information.

Table 38:NEO430 processor-specific makefile flags

To use a flag, it has to be appended to the CC_USER_FLAGS variable when involing make. Also, you have to
use the ‘-D’ prefix to make this variable also available as “define” for the source files:

  
  $ make clean_all compile CC_USER_FLAGS+=-DNEO430_HWMUL_ABI_OVERRIDE
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4. Let's Get It Started!
To make your NEO430 project run, follow the guides from the upcoming sections. There are several guides
for the application compilation and all details of the project.

4.1. General Hardware Setup

Follow these steps to build the FPGA hardware of your NEO430 project. In this tutorial, we will use a test
implementation of the processor – using most of the processor’s optional modules but just propagating the
minimal signals to the outer world. Hence, this guide is intended as evaluation project to check out the
NEO430. A little note: The order of the following steps might be a little different for your specific EDA tool.

1. Create a new project with your FPGA EDA tool of choice (Xilinx Vivado, Intel Quartus, Lattice
Diamond/Radiant, …).

2. Add all VHDL files from the project's rtl/core folder to your project. Make sure to reference the
files only – do not copy them.

3. Make sure to add all the rtl files to a new library called “neo430”.

4. The neo430_top.vhd file is the top entity of the NEO430 processor. If you already have a design,
instantiate this unit into your design and proceed. If you do not have a design yet and just want to
check  out  the  NEO430  –  no  problem!  Use  the  neo430_test.vhd file  from  the
rtl/top_templates folder as top entity. Of course, you also need to add this file to your project.
This tutorial assumes to use this test entity as top entity, but the basic steps are the same when using
the core itself as part of your project.

5. The configuration of the NEO430 processor is done using the generics of the instantiated processor
top entity (here, done in the neo430_test.vhd file). Let’s keep things simple at first and use the
default configuration (see below). But there is one generic, that has to be set according to your FPGA
/ board: The clock frequency of the top’s clock input signal (clk_i). Use the CLOCK_SPEED generic
to specify your clock source’s frequency in Hertz (Hz). The default value, that you need to adapt, is
marked in red:
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  neo430_top_test_inst: neo430_top
  generic map (
    -- general configuration --
    CLOCK_SPEED  => 100000000,     -- main clock in Hz
    IMEM_SIZE    => 4*1024,        -- internal IMEM size in bytes, max 48kB (default=4kB)
    DMEM_SIZE    => 2*1024,        -- internal DMEM size in bytes, max 12kB (default=2kB)
    -- additional configuration --
    USER_CODE    => x"4788",       -- custom user code
    -- module configuration --
    MULDIV_USE   => true,  -- implement multiplier/divider unit? (default=true)
    WB32_USE     => true,  -- implement WB32 unit? (default=true)
    WDT_USE      => true,  -- implement WDT? (default=true)
    GPIO_USE     => true,  -- implement GPIO unit? (default=true)
    TIMER_USE    => true,  -- implement timer? (default=true)
    UART_USE     => true,  -- implement UART? (default=true)
    CRC_USE      => true,  -- implement CRC unit? (default=true)
    CFU_USE      => false, -- implement custom functions unit? (default=false)
    PWM_USE      => true,  -- implement PWM controller? (default=true)
    TWI_USE      => true,  -- implement two wire serial interface? (default=true)
    SPI_USE      => true,  -- implement serial peripheral interface? (default=true)
    TRNG_USE     => false, -- implement true random number generator? (default=false)
    EXIRQ_USE    => true,  -- implement external interrupts controller? (default=true)
    FREQ_GEN_USE => true,  -- implement arbitrary frequency generator? (default=true)
    -- boot configuration --
    BOOTLD_USE   => true,  -- implement and use bootloader? (default=true)
    IMEM_AS_ROM  => false  -- implement IMEM as read-only memory? (default=false)
  )

6. If you feel  like it –  or if  your FPGA does not  provide enough resources –  you can modify the
memory  sizes  (IMEM  and  DMEM)  or  exclude  certain  modules  from  implementation.  But  as
mentioned above, let’s keep things simple and use the standard configuration for now. We will come
back to the customization of all those configuration generics in later chapters.

7. Depending on your FPGA tool of choice, it is time now (or later?) to assign the signals of the test
setup top entity to the according pins of your FPGA board. All the signals can be found in the entity:

  entity neo430_test is
    port (
      -- global control --
      clk_i      : in  std_ulogic; -- global clock, rising edge
      rst_i      : in  std_ulogic; -- global reset, async, LOW-active
      -- gpio --
      gpio_o     : out std_ulogic_vector(07 downto 0); -- parallel output
      -- serial com --
      uart_txd_o : out std_ulogic; -- UART send data
      uart_rxd_i : in  std_ulogic  -- UART receive data
    );
  end neo430_test;

8. Attach the clock input to your clock source and connect the reset line to a button of your FPGA
board. Check whether it is low-active or high-active – the reset signal of the processor must be low-
active,  so maybe you need to invert the input signal. If possible, connected  at least  bit #0 of the
GPIO output port to a high-active LED (invert the signal when your LEDs are low-active). Finally,
connect  the UART signals to your serial  host  interface (dedicated pins,  USB-to-serial  converter,
etc.). The final test setup is illustrated in the figure below.
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9. Perform the project HDL compilation (synthesis, mapping, bitstream generation).

10. Download the generated bitstream into your FPGA (“program” it) and press the reset button (just to
make sure everything is sync).

11. Done! If you have assigned the bootloader status LED (bit #0 of the GPIO output port), it should be
flashing now and you should receive the bootloader start prompt via the UART.
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4.2. General Software Setup

So, the hardware thing is done. Now it is time to prepare the general part of the software flow.

1. At  first,  download the  latest  version of  the TI msp430-gcc compiler tool  chain.  Make sure to
download the Windows version when using the Windows Powershell. Download the Linux version
when you are using the Windows Bash Subsystem or a native Linux system. You can downloaded
the  compiler  without  registration  (select  the  “compiler  only”  package)  from  http://software-
dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSPGCC/latest/index_FDS.html.

2. Extract/install  all  files into a folder somewhere in your file system. Remember where you have
installed the compiler, since this will be important for the setup of compilation scripts in the next
chapter(s).

3. Changing Memory Sizes:   You need to tell the linker the size of the internal RAM (the data memory,
“DMEM”, DMEM_SIZE generic) and the internal ROM (instruction memory, “IMEM”, IMEM_SIZE
generic)  of  the  NEO430  (you  defined  that  during  the  previous  tutorial).  Open  the
neo430_linker_script.x in  the  sw/common folder  with a text  editor  and set  the  parameter
LENGTH of the ROM memory section according to the previously configured  IMEM_SIZE generic
and  the  RAM  memory  section  according  to  the  previously  configured  DMEM_SIZE generic
(hexadecimal   representation!  ). The cut-out below shows the default configuration – if you have not
changed the memory sizes before you can keep everything in its current state and proceed.

  MEMORY
  {
    rom  (rx) : ORIGIN = 0x0000, LENGTH = 0x1000
    ram (rwx) : ORIGIN = 0xC008, LENGTH = 0x0800 - 8
  }

(Only edit the values marked in red!)

Make sure you do not delete the “-8” right after the length of the RAM! This subtraction is required
due to the interrupt vectors, which are located at the beginning of the DMEM. Additionally, the
origin of the DMEM is set to 0xC008 for the compiler so it does not use the first 8 bytes at all. Of
course, the “real” base address of the data memory module is still 0xC000.

Every time you change the hardware configuration of the IMEM and/or DMEM you need to do the
same modifications in the linker script file.

4. Make sure to have a  native CCC compiler installed. The native GCC is required to compile the
image  generator  helper  tool.  Furthermore,  GNU  Make is  required.  When  using  the  Windows
Powershell you can use MinGW to get GCC and GNU Make. Make sure all these tools are up-to-
date.

5. You can check the correct installation of the toolchain and the correct configuration of the makefile:

 .../sw/example/blink_led$ make check
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4.3. Application Program Compilation using Windows Powershell

Use this guide if you want to compile programs using the Windows Powershell.

1. Double-check you have downloaded  and installed  the Windows version of the  TI MSP430GCC
compiler.

2. Now open a Windows Powershell console. Just hit the Windows key,  type “Powershell” and press
enter.

3. Next we  need  to  add  the  MSP430-gcc  compiler  binaries  to  the  system’s  PATH  environment
variable so the makefiles can actually use all the compiler tools. In the following example the binary
compiler sources are located in the folder C:\msp430-gcc-8.3.0.16_win64\bin. Make sure to
use the absolute path here.

 PS c:\> $env:PATH=”$env:PATH;C:\msp430-gcc-8.3.0.16_win64\bin”

4. This environment variable is only modified for the current console session. After closing and re-
opening the console you need to assign the variable again.

5. That’s all for now! Now you can start compiling programs. At first, we will begin with a simple
example program. Navigate with your console to the  blink_led folder in the project's software
examples folder: sw\example

6. Execute the actual compilation make script in the current example folder to see all provided targets:

 .../sw/example/blink_led$ make
 NEO430 Application Compilation Script
 Make sure to add the msp430-gcc bin folder to your system's PATH variable.
 Targets:
  help      - show this text
  check     - check toolchain
  info      - show makefile configuration
  compile   - compile and generate *.bin executable for upload via bootloader
  install   - compile, generate and install VHDL boot image
  all       - compile and generate *.bin executable for upload via bootloader and
              generate and install VHDL boot image
  clean     - clean up project
  clean_all - clean up project, core libraries and helper tools

7. Execute  a “make  clean_all  all”.  If  an error  regarding the msp430-elf-objdump appears,  simply
execute “make all” again (I’m working on this…). See the following tutorial for more information
regarding the available targets.

8. That’s all, you have just compiled your first application.
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4.4. Application Program Compilation using the Windows Bash Subsystem or a Native
Linux System

Use this guide if you want to compile programs using the Windows Subsystem for Linux or native Linux. 

1. Double-check  you  have  downloaded  and  installed  the  Linux  version  of  the  TI  MSP430GCC
compiler.

2. Open  a  terminal  console.  When  using  the  Windows  Subsystem  for  Linux  you  can  do  this  by
executing “bash” in a normal CMD console.

3. Next  we  need  to  add  the  MSP430-gcc  compiler  binaries  to  the  system’s  PATH  environment
variable so the makefiles can actually use all the compiler tools. In the following exampl example
(Windows  Bash)  the  binary  compiler  sources  are  located  in  the  folder  /mnt/c/msp430-gcc-
8.3.0.16_linux64/bin. Make sure to use the absolute path here.

§ export PATH=$PATH:/mnt/c/msp430-gcc-8.3.0.16_linux64/bin

4. This environment variable is only set for the current console session. After closing and re-opening
the console you need to assign the variable again. Alternatively, you can add this command to your
bashrc. By this, the environment variable is automatically configured when opening a new console.

5. That’s all for now! Now you can start compiling programs. At first, we will begin with a simple
example program. Open a terminal and navigate to the blink_led folder in the project's software
examples folder: sw/example

6. Execute the actual compilation make script in the current example folder to see all provided targets:

.../sw/example/blink_led$ make
 NEO430 Application Compilation Script
 Make sure to add the msp430-gcc bin folder to your system's PATH variable.
 Targets:
  help      - show this text
  check     - check toolchain
  info      - show makefile configuration
  compile   - compile and generate *.bin executable for upload via bootloader
  install   - compile, generate and install VHDL boot image
  all       - compile and generate *.bin executable for upload via bootloader and
              generate and install VHDL boot image
  clean     - clean up project
  clean_all - clean up project, core libraries and helper tools

7. The  target  “help” will  display the same text  again.  “compile”  compiles  the  current  project  and
generates a binary file, that can be uploaded via the NEO430 bootloader. The target “install” also
compiles the project and will also create a VHDL memory initialization file, which can be directly
used for booting the application when not using the bootloader. “all” will execute both of these steps.
Via “clean” you can clean the current project. A “clean_all” will also clean the NEO430 libraries and
the auxiliary tools. For now, execute a “make clean_all all”.
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.../sw/example/blink_led$ make clean_all all
Memory utilization:
   text    data     bss     dec     hex filename
    680       0       0     680     2a8 main.elf
Installing application image to rtl/core/neo430_application_image.vhd

8. At  first,  the  memory utilization/distribution  is  shown (in  bytes).  After  that,  a  status  message is
shown, that confirms the “installation” process of the generated program image into the instruction
memory VHDL component using the neo430_application_image.vhd file in the rtl folder.

9. That’s it!
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4.5. Uploading and Starting of a Binary Executable Image via UART

When compiling an application, two final files are generated in the project folder:

◦ main.bin – The binary executable used for uploading via the bootloader.
◦ main.s   – The ASM listing file of the compiled application (for debugging).

The  generated  binary  executable  must  be  uploaded  to  the  NEO430  to  be  executed.  This  tutorial  uses
TeraTerm as an exemplary serial terminal program for Windows, but the general procedure is the same for
other terminal programs and/or build environments / operating systems.

1. Connect the UART interface of your FPGA (board) to a COM port of your computer or use an USB-
to-serial adapter.

2. Start a terminal program. In this tutorial, I am using TeraTerm for Windows. You can download it
from: https://ttssh2.osdn.jp/index.html.en

3. Open  a  connection  to  the  corresponding  COM  port.  Configure  the  terminal  according  to  the
following parameters:

• 19200 Baud
• 8 data bits
• 1 stop bit
• No parity bits
• No transmission/flow control protocol (just raw byte mode)
• Newline on “\r\n” = carriage return & newline (if configurable at all)

4. Also make sure, that single chars are transmitted without any consecutive “new line” or “carriage
return” commands (this is highly dependent on your terminal application of choice, TeraTerm only
sends the raw chars by default).
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5. Press the NEO430's reset button  to restart the bootloader. The status LED starts blinking and the
bootloader intro screen appears in your console. Hurry up and press any key (hit space!) to abort the
automatic boot sequence and to start the actual bootloader user interface console.

NEO430 Bootloader

BLV: Feb 11 2020
HWV: 0x0340
USR: 0x1ce4
CLK: 0x0134fd90
ROM: 0x8000
RAM: 0x3000
SYS: 0x74bd

Autoboot in 4s. Press key to abort.

CMDs:
h: Help
r: Restart
u: Upload
p: Program
e: Execute
CMD:> 

6. Execute the “Upload” command by typing u. Now, the bootloader is waiting for a binary executable
to be send.

CMD:> u
Awaiting BINEXE...

7. Use the “send file” option of your terminal program to transmit the previously generated binary
executable (main.bin) from the sw\example\blink_led folder to the NEO430.
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8. Make sure to transmit the executable in raw binary mode (no transfer protocol, no additional header
stuff). When using TeraTerm, select the “binary” option in the send file dialog:

9. If everything went fine, OK will appear in your terminal:

CMD:> u
Awaiting BINEXE...OK

10. The program image now resides in the internal IMEM of your NEO430. To execute the program
right now, start the application by pressing  e. The  blink_led program starts, prints “Blinking
LED demo program” and will begin displaying an incrementing counter on the 8 LEDs connected
to the GPIO output port.

CMD:> e
Booting...

Blinking LED demo program

11. That’s all. Now you are prepared to start your own project! ;)
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4.6. External SPI Boot Flash

If you want the NEO430 bootloader to automatically fetch and execute an application image at start-up (→
auto boot configuration), you can store it to an external SPI flash. The advantage of the external memory is
to have a non-volatile program storage, which can be re-programed at any time just by executing some
bootloader commands. Thus, no FPGA bitstream recompilation is required at all.

SPI Flash Requirements

The bootloader can access an SPI compatible flash via the processor’s SPI port (see top entity). The flash
must  be capable  of operating at  least  at  1/8 of the  processor’s main clock.  Only single  read and write
operations are used. The address has to be 24 bit long. Furthermore, the SPI flash has to support at least the
following commands:

• READ
• READ STATUS
• WRITE ENABLE
• PAGE PROGRAM
• SECTOR ERASE
• READ ID
• (POWER DOWN & RELEASE FROM POWER DOWN)

The base address for storing the application image to the SPI flash is defined in the bootloader source code
(sw/bootloader/bootloader.c):

// SPI flash boot base address
#define SPI_FLASH_BOOT_ADR 0x00040000L

If  you  change  this  base  address,  you  have  to  recompile  the  bootloader  (4.9.  Re-Building  the  Internal
Bootloader) and do a new synthesis of the project. Make sure to keep the L, since the base address is a 32-bit
constant.

Most  FPGAs,  that  use  an external  configuration flash,  store  the  golden configuration  bitstream at  base
address 0. Make sure there is no address collision between the FPGA bitstream and the application image.

Some compatible (FGPA configuration) SPI flash memories are for example the Winbond W25Q64FV or
the Micron N25Q032A.

Programming the SPI Flash

You need an SPI flash, that is compatible to a Micron ® SPI flash like the N25Q032A, with 24-bit addresses.
The flash must be at least as big as the internal IMEM. 

This tutorial explains how to program the external SPI flash assuming it is already connected properly to the
NEO430 core top entity SPI port. Make sure to use the SPI chip select #0 signal (spi_cs_o(0)) as the chip
select for the flash.
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1. At  first,  reset  the  NEO430 processor and wait  until  the  bootloader start  screen appears  in your
terminal program.

2. Abort the auto boot sequence and start the user console by pressing any key.

3. Press u to upload the program image, that you want to store to the external flash. Send the binary in
raw binary via your terminal program.

CMD:> u
Awaiting image...

4. When the uploaded is completed and OK appears, press  p to begin programming of the flash. You
need to do this now – do not execute your program to prevent changes in the image!

CMD:> u
Awaiting image...OK
CMD:> p
...OK

5. If OK appears in the terminal line, the writing process was successful. Now you can use the auto boot
sequence to automatically boot your application from the flash at system start-up without any user
interaction.
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4.7. Setup of a New Application Program Project

Done with all  the introduction tutorials and those example programs? Then it  is time to start  your own
application project!

1. The easiest way of creating a new project is to copy an existing one (like the blink_led project)
and use that copy as starting point. Just copy an example project and keep it in that folder. If your
project folder is located somewhere else, you need to define the path of the NEO430 home folder
(e.g., NEO430_HOME = /mnt/n/projects/neo430):

# Relative or absolute path to the NEO430 home folder
NEO430_HOME = ../../..

2. Now you can start modifying the main.c file according to your new project.

3. If your project contains additional program files beside the  main.c file, you have to include the
header files in your your main.c file using the C pre-processor macro. 

  #include <neo430.h>
  #include "awesome_library.h" // one of your project’s included libraries

4. Also, you need to add the source folder of the included library to the sources path of the toolchain.
Open the makefile in your project folder and add your sources to the APP_SRC variable:

# User's application sources (add additional files here)
APP_SRC += -I awesome_library/source/awesome_library.c

5. Finally,  you  need  to  add  the  include  folder  of  the  included  library  to  the  include  path  of  the
toolchain. Open the makefile in your project folder and add your sources to the APP_INC variable:

# User's application include folders (don't forget the '-I before each entry)
APP_INC = -I . -I awesome_library/include

6. If you want, you can change the optimization level for your project:

# Compiler effort (-Os = optimize for size)
EFFORT = -Os
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4.8. Simulating the Processor

If you do not have a FPGA board, if you want to check things or if you want to see what's going on, you can
do a simulation of the processor. For this purpose, a simple testbench was implemented (neo430_tb.vhd,
located  in  the  project's  sim folder).  This  testbench  instantiates  the  top  entity  of  the  processor  system
(neo430_top.vhd) and also includes a serial UART receiver unit, which outputs the transmitted UART
data to the simulator console. Additionally, the output is printed to a text file (neo430.uart_tx.txt),
which is generated in the simulator project home folder.

By default,  the  testbench does  not  simulate  the  system setup using the bootloader.  Instead,  your  actual
application code (in IMEM) will be simulated:

  BOOTLD_USE => false, -- implement and use bootloader? (default=true)

Xilinx ISIM

In case you are using Xilinx ISIM simulator (or the Vivado simulator), a pre-defined waveform configuration
including all relevant processor signals can be found in the sim/ISIM folder (neo430_tb.wcfg). Note, that
you have to create a new project before, that needs to include all required rtl VHDL files. The generated
neo430.uart_tx.txt file (processor's UART output log file) is a little bit hard to find, but should be
located in: <Xilinx_project_home_folder>\<project_name>.sim\sim_1\behav.

ModelSim

When you are  using ModelSim, you can start  a new simulation project  by executing a script  from the
sim/modelsim folder.  Navigate  to  the  folder  using  the  ModelSim simulator  console  and  execute  the
following command:

do simulate.do

This will also open a pre-configured waveform to analyze the most important signals of the processor. The
UART’s output log file (neo430.uart_tx.txt) will also be generated in the sim/modelsim folder.

GHDL

If you are interested in a free and open source simulator – ghdl might be the answer for you. Download and
install  it  from  http://ghdl.free.fr/.  To run a  console-only simualtion,  navigate  to the  sim/gdhl  folder  and
execute the shell script:

sh ghdl_run.sh

Also, the UART output log file neo430.uart_tx.txt is generated in the sw/ghdl folder.
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4.9. Re-Building the Internal Bootloader

Rebuilding the bootloader is not necessary, since it is designed to work independently of the actual
hardware configuration and system setup.

If you want to modify or customize the internal bootloader, you need to re-build it.

• After you have modified the bootloader’s main source file according to your wishes, open a console
and navigate to the bootloader source folder (sw\bootloader). Execute “make clean_all all”. Make
sure the environment variable for the compiler’s binaries is set (→ PATH).

• Now perform a new synthesis / HDL compilation to update the bitstream with the new bootloader
image. 

4.10. Building a Non-Volatile Application (Program Fixed in IMEM)

The purpose of the bootloaders is to re-upload your application code at any time via UART. Additionally,
you can use an external SPI flash as non-volatile program storage, that still can be updated at every time via
the bootloader console. This provides a lot of flexibility, especially during development. But when you have
completed  your  software  development  and your  application  code  is  fixed,  the  bootloader  might  not  be
necessary  any  longer.  Thus,  you  can  disable  it  to  save  hardware  resources  and  to  directly  boot  your
application at start-up from the internal IMEM.

1. At  first,  compile  your  application  code  by  running  the  make  install command.  This  will
automatically install the according memory initialization image into the IMEM.

2. Now it is time to exclude the bootloader ROM from synthesis. Set the BOOTLD_USE generic in the
instantiation of the processor’s top entity (neo430_top) to ‘false’:

  BOOTLD_USE => false, -- implement and use bootloader? (default=true)

3. This will exclude the boot ROM from synthesis and also changes the CPU boot address from the
beginning of the boot ROM to the beginning of the IMEM. Thus, the CPU directly executed your
application code after reset.

4. The IMEM could be still modified by setting the R flag in the CPU’s status register allowing write
accesses. Hence, the IMEM is implemented as RAM. To prevent this and to implement the IMEM as
true  ROM (and  eventually  saving  some  more  hardware),  deactivate  this  feature  by  setting  the
IMEM_AS_ROM generic in the instantiation of the processor’s top entity to ‘false’:

 
  IMEM_AS_ROM => true -- implement IMEM as read-only memory? (default=false)

5. Perform a synthesis and upload your new bitstream. Your application code resides now unchangeable
in the processor’s IMEM and is directly executed after reset.
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4.11. Alternative Top Entities / Avalon Bus / AXI4 Lite Connectivity

The NEO430 processor  features  a  Wishbone-compatible  32-bit  bus  adapter  to  attach custom IP blocks.
Wishbone  is  only  one  protocol  for  on-chip  bus  systems.  Besides  Wishbone,  Avalon  is  a  quite  popular
interface standard, especially in terms of Intel FPGA systems.

If you want to connect the NEO430 to IP cores using a different bus protocol you can either use a custom
interface bridge or you can use one of the alternate processor top entities from the  rtl\top_templates
folder. These alternative top entities are a replacement of the default  neo430_top.vhd as they provide the
same interface ports as the default top entity. The only exception here is the actual on-chip bus protocol.
Internally, the alternative top entity implement a bridging logic to convert the processor’s native Wishbone
interface into an Avalon Master interface.

Additionally, an alternative version of the default  neo430_top.vhd top entity is provided, which only uses
resolved interface types (std_logic and std_ulogic).

Alternative top entity Description

neo430_test.vhd Simple test setup for fast implementation / evaluation of the NEO430.

neo430_top_avm.vhd Top entity with Avalon Master connectivity.

neo430_top_axi4lite.vhd Top entity with Axi4 Lite Master connectivity.

neo430_top_std_logic.vhd Top entity using only std_logic / std_logic_vector as port types.
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4.12. Troubleshooting

✔ Have you added all HDL files from the  rtl/core folder to your project? Make sure to add all
VHDL files to a new library called “neo430”.

✔ Have you enabled the peripheral modules you want to use in the processor’s top entity (generics)?

✔ Have you selected the correct top entity (e.g. neo430_test.vhd)?

✔ Have you assigned at  least  the  signals  for  the  clock  and reset,  the  status  LED and the  UART
communication lines? Have you terminated all unused input signals (logical low)?

✔ Does the reset button has the correct polarity (active low)?

✔ Is your main clock source running at all?

✔ Have you made a correct configuration of all the configuration generics of the processor top entity?
Especially the clock speed configuration is crucial for the test setup.

✔ Are the configured memory sizes in the linker script neo430_linker_script.x the same as in the
VHDL top entity generic configuration?

✔ Do you want  to  directly  execute  your  application  from the  IMEM or  do  you  want  to  use  the
bootloader?

✔ Have you installed your compiler correctly and have you configured the PATH environment variable
to include the absolute path to the compiler’s binaries folder? Did you install the correct compiler
(TI’s msp430-gcc) version (Linux/Windows)?

✔ If you are communicating with the bootloader via UART, have you configured your terminal with
the right settings (e.g., correct Baud rate)?

✔ Are you uploading the binary executable in raw-byte mode?

✔ Your application does not fit into the memory? Make the core’s memories a little bit larger (4.2.
General Software Setup).

✔ Was the application compilation process successful?

✔ Try a “make clean_all all” in your project folder to recreate everything.

✔ Check the toolchain using “make check”.

✔ Make sure to use an up-to-date version of all required tools (make, gcc, msp430-gcc,...).
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6. Change Log

Date
(DD.MM.YYYY)

HW
version

Modifications

06.01.2018 0x0150 Changed IO address space layout; added CRC module with according software library; 
added CFU; updated implementation results; added minimal configuration example

10.01.2018 0x0154 Moved IRQ vectors to beginning of DMEM

26.01.2018 0x0170 Added PWM controller; modified internal clock generator; fixed errors in address space 
declarations; clean-up of change log

24.04.2018 0x0180 r-flag is now read-only (and always zero) when implementing IMEM as true ROM

30.05.2018 0x0182 Added experimental low power mode; optimized IRQ controller logic; optimized SREG 
logic

01.06.2018 0x0183 Fixed bugs in Wishbone module and driver library; reduced ALU size

22.06.2018 0x0184 Fixed SEVERE bug in overflow flag computation! Thx Edward for that ;)
added warning regarding not to use floating point types

03.08.2018 0x0184 Added NEO430 SW library description

09.08.2018 0x0185 Changed memory partitioning: IMEM can be up to 48kB large, DMEM up to 12kB

07.11.2018 0x0187 Bug-fix in latency of external IRQ line; added IRQ test to testbench; fixed some typos

17.11.2018 0x0200 Added TWI module; separated USART into SPI and UART; SPI now has 8 dedicated CS 
lines

20.09.2019 0x0300

PWM has now 4 channels and a variable bit width for the resolution; changed VHDL code 
to prevent some VHDL-2008 warnings; removed pure-windows makefiles – toolchain is 
now completely based on Linux makefiles, which can also be executed by Windows 
Powershell; modified reset generator; renamed PWM and WDT register and bit names; 
reworked whole documentary; split NEO430 SW library into include and source files

23.09.2019 0x0300 Finally fixed linking issue of math.h lib in makefiles. Floating point types/operations are 
now supported.

01.10.2019 0x0300 Updated makefiles (msp430-gcc has to be part of PATH; more targets)

04.10.2019 0x0300 Removed “-flto” compiler flag from makefiles; added implementation results for Lattice 
iCE40 UltraPlus

05.10.2019 0x0301 TWI modules now supports clock stretching by the slave; added note in software setup to 
make sure a native C compiler is installed

14.11.2019 0x0304

CPU’s DADD instruction is disabled by default – can be enabled via package switch; new 
shift direction control for SPI module; timer CNT register is now read-only; added timer 
SW library files, removed old aux library; cleared old change log entries; updated 
implementation results; reworked several parts of this document; minor size optimization 
of CPU

16.11.2019 0x0305 ALU and IRQ controller size optimizations; added compiler warning explanation regarding
DADD instruction; added notes for adding include and source files to C projects

26.11.2019 0x0310 Fixed bug in CPU interrupt controller – now an interrupted program can execute at least 
one instruction even if there is a permanent interrupt request; added extended ALU 
functions (parity computation); SREG’s Q flag is write-only; added GARO TRNG incl. 
SW library and example project; constrained PWM counter sizes to 4 or 8 bit; added PWM 
option to modulate GPIO unit’s output port incl. example SW project; removed 

This project is published under the BSD   3-Clause   License   (BSD)

91   6. Change Log May 15, 2020

https://github.com/stnolting/neo430
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
mailto:stnolting@gmail.com


The NEO430 Processor                                                          This project is hosted on GitHub
by Stephan Nolting                                                                                             stnolting@gmail.com

Date
(DD.MM.YYYY)

HW
version

Modifications

DMEM_BASE from SYSCONFIG info memory

27.11.2019 0x0311 Added watchdog status flag to determine if a WDT reset was caused by a normal timeout 
or an access with wrong password; reduced TRNG to have only one accessible register

29.11.2019 0x0320 Added external interrupts controller (EXIRQ) incl. SW library and example project

06.12.2019 0x0321 Removed trigger option from EXIRQ – now triggers only on high-level (add external edge 
detector if required); added option to trigger the IRQs by software (added according 
function to library); small bug-fix in EXIRQ controller (→ accumulating external IRQs)

13.12.2019 0x0322 Added run/stop flag to TIMER; added coremark benchmark results (CPU Performance 
chapter) and according SW project to example folder

29.01.2020 0x0330 SPI now only has 6 dedicated CS lines (instead of 8); SPI unit now also supports 16-bit 
word transfers; completely reassigned SPI unit’s control register; new SPI CS enable 
scheme; timer unit can only generate an IRQ when RUN flag is set; modified TRNG: 
added de-biasing step; LFSR post-processing results now in 12-bit data; added 
configurable GARO taps

30.01.2020 0x0331 Added master acknowledge (MACK) feature to TWI unit

11.02.2020 0x0340 Bootloader now uses SPI flash for storing auto-boot option; rewrote chapters regarding 
bootloader & SPI flash; CFU now has access to the system’s clock generator

12.02.2020 0x0341 Finally deprecated support of the DADD instruction

14.02.2020 0x0341 Added new travis & ghdl & fpga_specific rtl folder to folder overview

16.03.2020 0x0400 Changed license of project from LGPL-3.0 to BSD 3-Clause License 

23.03.2020 0x0401 Most instruction now require one cycle less for completion →  reduced average CPI by 1

29.03.2020 0x0404 Fixed severe bug in control (introduced with HW version 0x0401); modified function 
configuration of MULDIV unit; fixed bug in EXIRQ controller; removed XALU flag from 
sysconfig

31.03.2020 0x0404 Fixed chapter EXIRQ controller; TIMER’s THRES register is now write-only; corrected 
CoreMark results

14.04.2020 0x0405 MULDIV unit now supports hardware-based signed multiplication; modified MULDIV 
HW interface

18.04.2020 0x0406 Added new hardware unit: 3-channel arbitrary frequency generator (FREQ_GEN) incl. 
Software drivers and documentary; updated impl. results; reworked documentary

25.04.2020 0x0406 Added software support for implicit multiplications (to make use of the MULDIV unit)

13.05.2020 0x0407 Fixed error in EXIRQ and CPU interrupt controller (low-priority IRQs might never be 
executed); added new targets to sw makefiles: info (show config), check (check toolchain 
installation); added advanced hardware configuration flags (from VHDL package) to 
SYSCONFIG info memory; updated CoreMark results for new NEO430_HWMUL_DSP 
compile option; updated MULDIV chapter; added chapter focusing on the sw makefile; 
clean-up of change log history
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7. Citation

If you are using the NEO430 in some kind of publication, please cite it as follows:

S. Nolting, “The NEO430 Processor”, github.com/stnolting/neo430
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