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Preface

This document describes the RISC-V privileged architecture. This release, version 20211028-signoff,
will be used for public review of the following modules:

Module Version Status

Machine ISA 1.12 Frozen
Supervisor ISA 1.12 Frozen
Hypervisor ISA 1.0 Frozen

The Machine and Supervisor ISAs, version 1.11, have been ratified by RISC-V International. Ver-
sion 1.12 of these modules, described in this document, is a minor revision to version 1.11.

The following changes have been made since version 1.11, which, while not strictly backwards
compatible, are not anticipated to cause software portability problems in practice:

� Changed MRET and SRET to clear mstatus.MPRV when leaving M-mode.

� Reserved additional satp patterns for future use.

� Stated that the scause Exception Code field must implement bits 4–0 at minimum.

� Relaxed I/O regions have been specified to follow RVWMO. The previous specification implied
that PPO rules other than fences and acquire/release annotations did not apply.

� Constrained the LR/SC reservation set size and shape when using page-based virtual memory.

� PMP changes require an SFENCE.VMA on any hart that implements page-based virtual
memory, even if VM is not currently enabled.

Additionally, the following compatible changes have been made since version 1.11:

� Removed the N extension.

� Defined the mandatory RV32-only CSR mstatush, which contains most of the same fields as
the upper 32 bits of RV64’s mstatus.

� Defined the mandatory CSR mconfigptr, which if nonzero contains the address of a config-
uration data structure.

� Defined optional mseccfg and mseccfgh CSRs, which control the machine’s security config-
uration.

� Defined menvcfg, henvcfg, and senvcfg CSRs (and RV32-only menvcfgh and henvcfgh

CSRs), which control various characteristics of the execution environment.

� Designated part of SYSTEM major opcode for custom use.

� Permitted the unconditional delegation of less-privileged interrupts.

� Added optional big-endian and bi-endian support.

i
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� Made priority of load/store/AMO address-misaligned exceptions implementation-defined rel-
ative to load/store/AMO page-fault and access-fault exceptions.

� PMP reset values are now platform-defined.

� An additional 48 optional PMP registers have been defined.

� Software breakpoint exceptions are permitted to write either 0 or the PC to xtval.

� Clarified that bare S-mode need not support the SFENCE.VMA instruction.

� Specified relaxed constraints for implicit reads of non-idempotent regions.

Finally, the hypervisor architecture proposal has been extensively revised.
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Preface to Version 1.11

This is version 1.11 of the RISC-V privileged architecture. The document contains the following
versions of the RISC-V ISA modules:

Module Version Status

Machine ISA 1.11 Ratified
Supervisor ISA 1.11 Ratified
Hypervisor ISA 0.3 Draft

Changes from version 1.10 include:

� Moved Machine and Supervisor spec to Ratified status.

� Improvements to the description and commentary.

� Added a draft proposal for a hypervisor extension.

� Specified which interrupt sources are reserved for standard use.

� Allocated some synchronous exception causes for custom use.

� Specified the priority ordering of synchronous exceptions.

� Added specification that xRET instructions may, but are not required to, clear LR reserva-
tions if A extension present.

� The virtual-memory system no longer permits supervisor mode to execute instructions from
user pages, regardless of the SUM setting.

� Clarified that ASIDs are private to a hart, and added commentary about the possibility of a
future global-ASID extension.

� SFENCE.VMA semantics have been clarified.

� Made the mstatus.MPP field WARL, rather than WLRL.

� Made the unused xip fields WPRI, rather than WIRI.

� Made the unused misa fields WARL, rather than WIRI.

� Made the unused pmpaddr and pmpcfg fields WARL, rather than WIRI.

� Required all harts in a system to employ the same PTE-update scheme as each other.

� Rectified an editing error that misdescribed the mechanism by which mstatus.xIE is written
upon an exception.

� Described scheme for emulating misaligned AMOs.

� Specified the behavior of the misa and xepc registers in systems with variable IALIGN.

� Specified the behavior of writing self-contradictory values to the misa register.

� Defined the mcountinhibit CSR, which stops performance counters from incrementing to
reduce energy consumption.

� Specified semantics for PMP regions coarser than four bytes.

� Specified contents of CSRs across XLEN modification.

� Moved PLIC chapter into its own document.
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Preface to Version 1.10

This is version 1.10 of the RISC-V privileged architecture proposal. Changes from version 1.9.1
include:

� The previous version of this document was released under a Creative Commons Attribution
4.0 International License by the original authors, and this and future versions of this document
will be released under the same license.

� The explicit convention on shadow CSR addresses has been removed to reclaim CSR space.
Shadow CSRs can still be added as needed.

� The mvendorid register now contains the JEDEC code of the core provider as opposed to
a code supplied by the Foundation. This avoids redundancy and offloads work from the
Foundation.

� The interrupt-enable stack discipline has been simplified.

� An optional mechanism to change the base ISA used by supervisor and user modes has been
added to the mstatus CSR, and the field previously called Base in misa has been renamed
to MXL for consistency.

� Clarified expected use of XS to summarize additional extension state status fields in mstatus.

� Optional vectored interrupt support has been added to the mtvec and stvec CSRs.

� The SEIP and UEIP bits in the mip CSR have been redefined to support software injection
of external interrupts.

� The mbadaddr register has been subsumed by a more general mtval register that can now
capture bad instruction bits on an illegal instruction fault to speed instruction emulation.

� The machine-mode base-and-bounds translation and protection schemes have been removed
from the specification as part of moving the virtual memory configuration to sptbr (now
satp). Some of the motivation for the base and bound schemes are now covered by the PMP
registers, but space remains available in mstatus to add these back at a later date if deemed
useful.

� In systems with only M-mode, or with both M-mode and U-mode but without U-mode
trap support, the medeleg and mideleg registers now do not exist, whereas previously they
returned zero.

� Virtual-memory page faults now have mcause values distinct from physical-memory access
faults. Page-fault exceptions can now be delegated to S-mode without delegating exceptions
generated by PMA and PMP checks.

� An optional physical-memory protection (PMP) scheme has been proposed.

� The supervisor virtual memory configuration has been moved from the mstatus register to
the sptbr register. Accordingly, the sptbr register has been renamed to satp (Supervisor
Address Translation and Protection) to reflect its broadened role.

� The SFENCE.VM instruction has been removed in favor of the improved SFENCE.VMA
instruction.

� The mstatus bit MXR has been exposed to S-mode via sstatus.

� The polarity of the PUM bit in sstatus has been inverted to shorten code sequences involving
MXR. The bit has been renamed to SUM.

� Hardware management of page-table entry Accessed and Dirty bits has been made optional;
simpler implementations may trap to software to set them.
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� The counter-enable scheme has changed, so that S-mode can control availability of counters
to U-mode.

� H-mode has been removed, as we are focusing on recursive virtualization support in S-mode.
The encoding space has been reserved and may be repurposed at a later date.

� A mechanism to improve virtualization performance by trapping S-mode virtual-memory
management operations has been added.

� The Supervisor Binary Interface (SBI) chapter has been removed, so that it can be maintained
as a separate specification.
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Preface to Version 1.9.1

This is version 1.9.1 of the RISC-V privileged architecture proposal. Changes from version 1.9
include:

� Numerous additions and improvements to the commentary sections.

� Change configuration string proposal to be use a search process that supports various formats
including Device Tree String and flattened Device Tree.

� Made misa optionally writable to support modifying base and supported ISA extensions.
CSR address of misa changed.

� Added description of debug mode and debug CSRs.

� Added a hardware performance monitoring scheme. Simplified the handling of existing hard-
ware counters, removing privileged versions of the counters and the corresponding delta reg-
isters.

� Fixed description of SPIE in presence of user-level interrupts.
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Chapter 1

Introduction

This document describes the RISC-V privileged architecture, which covers all aspects of RISC-
V systems beyond the unprivileged ISA, including privileged instructions as well as additional
functionality required for running operating systems and attaching external devices.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

We briefly note that the entire privileged-level design described in this document could be replaced
with an entirely different privileged-level design without changing the unprivileged ISA, and pos-
sibly without even changing the ABI. In particular, this privileged specification was designed to
run existing popular operating systems, and so embodies the conventional level-based protection
model. Alternate privileged specifications could embody other more flexible protection-domain
models. For simplicity of expression, the text is written as if this was the only possible privileged
architecture.

1.1 RISC-V Privileged Software Stack Terminology

This section describes the terminology we use to describe components of the wide range of possible
privileged software stacks for RISC-V.

Figure 1.1 shows some of the possible software stacks that can be supported by the RISC-V archi-
tecture. The left-hand side shows a simple system that supports only a single application running
on an application execution environment (AEE). The application is coded to run with a particular
application binary interface (ABI). The ABI includes the supported user-level ISA plus a set of
ABI calls to interact with the AEE. The ABI hides details of the AEE from the application to al-
low greater flexibility in implementing the AEE. The same ABI could be implemented natively on
multiple different host OSs, or could be supported by a user-mode emulation environment running
on a machine with a different native ISA.

Our graphical convention represents abstract interfaces using black boxes with white text, to
separate them from concrete instances of components implementing the interfaces.

1
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Figure 1.1: Different implementation stacks supporting various forms of privileged execution.

The middle configuration shows a conventional operating system (OS) that can support multipro-
grammed execution of multiple applications. Each application communicates over an ABI with
the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary
interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of
SBI function calls. Using a single SBI across all SEE implementations allows a single OS binary
image to run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a
low-end hardware platform, or a hypervisor-provided virtual machine in a high-end server, or a
thin translation layer over a host operating system in an architecture simulation environment.

Most supervisor-level ISA definitions do not separate the SBI from the execution environment
and/or the hardware platform, complicating virtualization and bring-up of new hardware plat-
forms.

The rightmost configuration shows a virtual machine monitor configuration where multiple multi-
programmed OSs are supported by a single hypervisor. Each OS communicates via an SBI with
the hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execu-
tion environment (HEE) using a hypervisor binary interface (HBI), to isolate the hypervisor from
details of the hardware platform.

The ABI, SBI, and HBI are still a work-in-progress, but we are now prioritizing support for
Type-2 hypervisors where the SBI is provided recursively by an S-mode OS.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE).

1.2 Privilege Levels

At any time, a RISC-V hardware thread (hart) is running at some privilege level encoded as a mode
in one or more CSRs (control and status registers). Three RISC-V privilege levels are currently
defined as shown in Table 1.1.

Privilege levels are used to provide protection between different components of the software stack,
and attempts to perform operations not permitted by the current privilege mode will cause an
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Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

Table 1.1: RISC-V privilege levels.

exception to be raised. These exceptions will normally cause traps into an underlying execution
environment.

In the description, we try to separate the privilege level for which code is written, from the
privilege mode in which it runs, although the two are often tied. For example, a supervisor-
level operating system can run in supervisor-mode on a system with three privilege modes, but
can also run in user-mode under a classic virtual machine monitor on systems with two or
more privilege modes. In both cases, the same supervisor-level operating system binary code can
be used, coded to a supervisor-level SBI and hence expecting to be able to use supervisor-level
privileged instructions and CSRs. When running a guest OS in user mode, all supervisor-level
actions will be trapped and emulated by the SEE running in the higher-privilege level.

The machine level has the highest privileges and is the only mandatory privilege level for a RISC-V
hardware platform. Code run in machine-mode (M-mode) is usually inherently trusted, as it has
low-level access to the machine implementation. M-mode can be used to manage secure execution
environments on RISC-V. User-mode (U-mode) and supervisor-mode (S-mode) are intended for
conventional application and operating system usage respectively.

Each privilege level has a core set of privileged ISA extensions with optional extensions and variants.
For example, machine-mode supports an optional standard extension for memory protection. Also,
supervisor mode can be extended to support Type-2 hypervisor execution as described in Chapter 5.

Implementations might provide anywhere from 1 to 3 privilege modes trading off reduced isolation
for lower implementation cost, as shown in Table 1.2.

Number of levels Supported Modes Intended Usage

1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

Table 1.2: Supported combinations of privilege modes.

All hardware implementations must provide M-mode, as this is the only mode that has unfettered
access to the whole machine. The simplest RISC-V implementations may provide only M-mode,
though this will provide no protection against incorrect or malicious application code.

The lock feature of the optional PMP facility can provide some limited protection even with only
M-mode implemented.
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Many RISC-V implementations will also support at least user mode (U-mode) to protect the rest
of the system from application code. Supervisor mode (S-mode) can be added to provide isolation
between a supervisor-level operating system and the SEE.

A hart normally runs application code in U-mode until some trap (e.g., a supervisor call or a timer
interrupt) forces a switch to a trap handler, which usually runs in a more privileged mode. The hart
will then execute the trap handler, which will eventually resume execution at or after the original
trapped instruction in U-mode. Traps that increase privilege level are termed vertical traps, while
traps that remain at the same privilege level are termed horizontal traps. The RISC-V privileged
architecture provides flexible routing of traps to different privilege layers.

Horizontal traps can be implemented as vertical traps that return control to a horizontal trap
handler in the less-privileged mode.

1.3 Debug Mode

Implementations may also include a debug mode to support off-chip debugging and/or manufac-
turing test. Debug mode (D-mode) can be considered an additional privilege mode, with even more
access than M-mode. The separate debug specification proposal describes operation of a RISC-V
hart in debug mode. Debug mode reserves a few CSR addresses that are only accessible in D-mode,
and may also reserve some portions of the physical address space on a platform.



Chapter 2

Control and Status Registers (CSRs)

The SYSTEM major opcode is used to encode all privileged instructions in the RISC-V ISA. These
can be divided into two main classes: those that atomically read-modify-write control and status
registers (CSRs), which are defined in the Zicsr extension, and all other privileged instructions.
The privileged architecture requires the Zicsr extension; which other privileged instructions are
required depends on the privileged-architecture feature set.

In addition to the unprivileged state described in Volume I of this manual, an implementation
may contain additional CSRs, accessible by some subset of the privilege levels using the CSR
instructions described in Volume I. In this chapter, we map out the CSR address space. The
following chapters describe the function of each of the CSRs according to privilege level, as well as
the other privileged instructions which are generally closely associated with a particular privilege
level. Note that although CSRs and instructions are associated with one privilege level, they are
also accessible at all higher privilege levels.

Standard CSRs do not have side effects on reads but may have side effects on writes.

2.1 CSR Address Mapping Conventions

The standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
By convention, the upper 4 bits of the CSR address (csr[11:8]) are used to encode the read and
write accessibility of the CSRs according to privilege level as shown in Table 2.1. The top two bits
(csr[11:10]) indicate whether the register is read/write (00, 01, or 10) or read-only (11). The next
two bits (csr[9:8]) encode the lowest privilege level that can access the CSR.

The CSR address convention uses the upper bits of the CSR address to encode default access
privileges. This simplifies error checking in the hardware and provides a larger CSR space, but
does constrain the mapping of CSRs into the address space.

Implementations might allow a more-privileged level to trap otherwise permitted CSR ac-
cesses by a less-privileged level to allow these accesses to be intercepted. This change should be
transparent to the less-privileged software.

5
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Attempts to access a non-existent CSR raise an illegal instruction exception. Attempts to access a
CSR without appropriate privilege level or to write a read-only register also raise illegal instruction
exceptions. A read/write register might also contain some bits that are read-only, in which case
writes to the read-only bits are ignored.

Table 2.1 also indicates the convention to allocate CSR addresses between standard and custom
uses. The CSR addresses designated for custom uses will not be redefined by future standard
extensions.

Machine-mode standard read-write CSRs 0x7A0–0x7BF are reserved for use by the debug system.
Of these CSRs, 0x7A0–0x7AF are accessible to machine mode, whereas 0x7B0–0x7BF are only visible
to debug mode. Implementations should raise illegal instruction exceptions on machine-mode access
to the latter set of registers.

Effective virtualization requires that as many instructions run natively as possible inside a virtu-
alized environment, while any privileged accesses trap to the virtual machine monitor [1]. CSRs
that are read-only at some lower privilege level are shadowed into separate CSR addresses if they
are made read-write at a higher privilege level. This avoids trapping permitted lower-privilege ac-
cesses while still causing traps on illegal accesses. Currently, the counters are the only shadowed
CSRs.

2.2 CSR Listing

Tables 2.2–2.6 list the CSRs that have currently been allocated CSR addresses. The timers, coun-
ters, and floating-point CSRs are standard unprivileged CSRs. The other registers are used by
privileged code, as described in the following chapters. Note that not all registers are required on
all implementations.
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CSR Address Hex Use and Accessibility
[11:10] [9:8] [7:4]

Unprivileged and User-Level CSRs

00 00 XXXX 0x000-0x0FF Standard read/write
01 00 XXXX 0x400-0x4FF Standard read/write
10 00 XXXX 0x800-0x8FF Custom read/write
11 00 0XXX 0xC00-0xC7F Standard read-only
11 00 10XX 0xC80-0xCBF Standard read-only
11 00 11XX 0xCC0-0xCFF Custom read-only

Supervisor-Level CSRs

00 01 XXXX 0x100-0x1FF Standard read/write
01 01 0XXX 0x500-0x57F Standard read/write
01 01 10XX 0x580-0x5BF Standard read/write
01 01 11XX 0x5C0-0x5FF Custom read/write
10 01 0XXX 0x900-0x97F Standard read/write
10 01 10XX 0x980-0x9BF Standard read/write
10 01 11XX 0x9C0-0x9FF Custom read/write
11 01 0XXX 0xD00-0xD7F Standard read-only
11 01 10XX 0xD80-0xDBF Standard read-only
11 01 11XX 0xDC0-0xDFF Custom read-only

Hypervisor and VS CSRs

00 10 XXXX 0x200-0x2FF Standard read/write
01 10 0XXX 0x600-0x67F Standard read/write
01 10 10XX 0x680-0x6BF Standard read/write
01 10 11XX 0x6C0-0x6FF Custom read/write
10 10 0XXX 0xA00-0xA7F Standard read/write
10 10 10XX 0xA80-0xABF Standard read/write
10 10 11XX 0xAC0-0xAFF Custom read/write
11 10 0XXX 0xE00-0xE7F Standard read-only
11 10 10XX 0xE80-0xEBF Standard read-only
11 10 11XX 0xEC0-0xEFF Custom read-only

Machine-Level CSRs

00 11 XXXX 0x300-0x3FF Standard read/write
01 11 0XXX 0x700-0x77F Standard read/write
01 11 100X 0x780-0x79F Standard read/write
01 11 1010 0x7A0-0x7AF Standard read/write debug CSRs
01 11 1011 0x7B0-0x7BF Debug-mode-only CSRs
01 11 11XX 0x7C0-0x7FF Custom read/write
10 11 0XXX 0xB00-0xB7F Standard read/write
10 11 10XX 0xB80-0xBBF Standard read/write
10 11 11XX 0xBC0-0xBFF Custom read/write
11 11 0XXX 0xF00-0xF7F Standard read-only
11 11 10XX 0xF80-0xFBF Standard read-only
11 11 11XX 0xFC0-0xFFF Custom read-only

Table 2.1: Allocation of RISC-V CSR address ranges.
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Number Privilege Name Description

Unprivileged Floating-Point CSRs

0x001 URW fflags Floating-Point Accrued Exceptions.
0x002 URW frm Floating-Point Dynamic Rounding Mode.
0x003 URW fcsr Floating-Point Control and Status Register (frm + fflags).

Unprivileged Counter/Timers

0xC00 URO cycle Cycle counter for RDCYCLE instruction.
0xC01 URO time Timer for RDTIME instruction.
0xC02 URO instret Instructions-retired counter for RDINSTRET instruction.
0xC03 URO hpmcounter3 Performance-monitoring counter.
0xC04 URO hpmcounter4 Performance-monitoring counter.

...
0xC1F URO hpmcounter31 Performance-monitoring counter.
0xC80 URO cycleh Upper 32 bits of cycle, RV32 only.
0xC81 URO timeh Upper 32 bits of time, RV32 only.
0xC82 URO instreth Upper 32 bits of instret, RV32 only.
0xC83 URO hpmcounter3h Upper 32 bits of hpmcounter3, RV32 only.
0xC84 URO hpmcounter4h Upper 32 bits of hpmcounter4, RV32 only.

...
0xC9F URO hpmcounter31h Upper 32 bits of hpmcounter31, RV32 only.

Table 2.2: Currently allocated RISC-V unprivileged CSR addresses.

Number Privilege Name Description

Supervisor Trap Setup

0x100 SRW sstatus Supervisor status register.
0x104 SRW sie Supervisor interrupt-enable register.
0x105 SRW stvec Supervisor trap handler base address.
0x106 SRW scounteren Supervisor counter enable.

Supervisor Configuration

0x10A SRW senvcfg Supervisor environment configuration register.

Supervisor Trap Handling

0x140 SRW sscratch Scratch register for supervisor trap handlers.
0x141 SRW sepc Supervisor exception program counter.
0x142 SRW scause Supervisor trap cause.
0x143 SRW stval Supervisor bad address or instruction.
0x144 SRW sip Supervisor interrupt pending.

Supervisor Protection and Translation

0x180 SRW satp Supervisor address translation and protection.

Debug/Trace Registers

0x5A8 SRW scontext Supervisor-mode context register.

Table 2.3: Currently allocated RISC-V supervisor-level CSR addresses.
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Number Privilege Name Description

Hypervisor Trap Setup

0x600 HRW hstatus Hypervisor status register.
0x602 HRW hedeleg Hypervisor exception delegation register.
0x603 HRW hideleg Hypervisor interrupt delegation register.
0x604 HRW hie Hypervisor interrupt-enable register.
0x606 HRW hcounteren Hypervisor counter enable.
0x607 HRW hgeie Hypervisor guest external interrupt-enable register.

Hypervisor Trap Handling

0x643 HRW htval Hypervisor bad guest physical address.
0x644 HRW hip Hypervisor interrupt pending.
0x645 HRW hvip Hypervisor virtual interrupt pending.
0x64A HRW htinst Hypervisor trap instruction (transformed).
0xE12 HRO hgeip Hypervisor guest external interrupt pending.

Hypervisor Configuration

0x60A HRW henvcfg Hypervisor environment configuration register.
0x61A HRW henvcfgh Additional hypervisor env. conf. register, RV32 only.

Hypervisor Protection and Translation

0x680 HRW hgatp Hypervisor guest address translation and protection.

Debug/Trace Registers

0x6A8 HRW hcontext Hypervisor-mode context register.

Hypervisor Counter/Timer Virtualization Registers

0x605 HRW htimedelta Delta for VS/VU-mode timer.
0x615 HRW htimedeltah Upper 32 bits of htimedelta, HSXLEN=32 only.

Virtual Supervisor Registers

0x200 HRW vsstatus Virtual supervisor status register.
0x204 HRW vsie Virtual supervisor interrupt-enable register.
0x205 HRW vstvec Virtual supervisor trap handler base address.
0x240 HRW vsscratch Virtual supervisor scratch register.
0x241 HRW vsepc Virtual supervisor exception program counter.
0x242 HRW vscause Virtual supervisor trap cause.
0x243 HRW vstval Virtual supervisor bad address or instruction.
0x244 HRW vsip Virtual supervisor interrupt pending.
0x280 HRW vsatp Virtual supervisor address translation and protection.

Table 2.4: Currently allocated RISC-V hypervisor and VS CSR addresses.
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Number Privilege Name Description

Machine Information Registers

0xF11 MRO mvendorid Vendor ID.
0xF12 MRO marchid Architecture ID.
0xF13 MRO mimpid Implementation ID.
0xF14 MRO mhartid Hardware thread ID.
0xF15 MRO mconfigptr Pointer to configuration data structure.

Machine Trap Setup

0x300 MRW mstatus Machine status register.
0x301 MRW misa ISA and extensions
0x302 MRW medeleg Machine exception delegation register.
0x303 MRW mideleg Machine interrupt delegation register.
0x304 MRW mie Machine interrupt-enable register.
0x305 MRW mtvec Machine trap-handler base address.
0x306 MRW mcounteren Machine counter enable.
0x310 MRW mstatush Additional machine status register, RV32 only.

Machine Trap Handling

0x340 MRW mscratch Scratch register for machine trap handlers.
0x341 MRW mepc Machine exception program counter.
0x342 MRW mcause Machine trap cause.
0x343 MRW mtval Machine bad address or instruction.
0x344 MRW mip Machine interrupt pending.
0x34A MRW mtinst Machine trap instruction (transformed).
0x34B MRW mtval2 Machine bad guest physical address.

Machine Configuration

0x30A MRW menvcfg Machine environment configuration register.
0x31A MRW menvcfgh Additional machine env. conf. register, RV32 only.
0x747 MRW mseccfg Machine security configuration register.
0x757 MRW mseccfgh Additional machine security conf. register, RV32 only.

Machine Memory Protection

0x3A0 MRW pmpcfg0 Physical memory protection configuration.
0x3A1 MRW pmpcfg1 Physical memory protection configuration, RV32 only.
0x3A2 MRW pmpcfg2 Physical memory protection configuration.
0x3A3 MRW pmpcfg3 Physical memory protection configuration, RV32 only.

...
0x3AE MRW pmpcfg14 Physical memory protection configuration.
0x3AF MRW pmpcfg15 Physical memory protection configuration, RV32 only.
0x3B0 MRW pmpaddr0 Physical memory protection address register.
0x3B1 MRW pmpaddr1 Physical memory protection address register.

...
0x3EF MRW pmpaddr63 Physical memory protection address register.

Table 2.5: Currently allocated RISC-V machine-level CSR addresses.
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Number Privilege Name Description

Machine Counter/Timers

0xB00 MRW mcycle Machine cycle counter.
0xB02 MRW minstret Machine instructions-retired counter.
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter.
0xB04 MRW mhpmcounter4 Machine performance-monitoring counter.

...
0xB1F MRW mhpmcounter31 Machine performance-monitoring counter.
0xB80 MRW mcycleh Upper 32 bits of mcycle, RV32 only.
0xB82 MRW minstreth Upper 32 bits of minstret, RV32 only.
0xB83 MRW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32 only.
0xB84 MRW mhpmcounter4h Upper 32 bits of mhpmcounter4, RV32 only.

...
0xB9F MRW mhpmcounter31h Upper 32 bits of mhpmcounter31, RV32 only.

Machine Counter Setup

0x320 MRW mcountinhibit Machine counter-inhibit register.
0x323 MRW mhpmevent3 Machine performance-monitoring event selector.
0x324 MRW mhpmevent4 Machine performance-monitoring event selector.

...
0x33F MRW mhpmevent31 Machine performance-monitoring event selector.

Debug/Trace Registers (shared with Debug Mode)

0x7A0 MRW tselect Debug/Trace trigger register select.
0x7A1 MRW tdata1 First Debug/Trace trigger data register.
0x7A2 MRW tdata2 Second Debug/Trace trigger data register.
0x7A3 MRW tdata3 Third Debug/Trace trigger data register.
0x7A8 MRW mcontext Machine-mode context register.

Debug Mode Registers

0x7B0 DRW dcsr Debug control and status register.
0x7B1 DRW dpc Debug PC.
0x7B2 DRW dscratch0 Debug scratch register 0.
0x7B3 DRW dscratch1 Debug scratch register 1.

Table 2.6: Currently allocated RISC-V machine-level CSR addresses.
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2.3 CSR Field Specifications

The following definitions and abbreviations are used in specifying the behavior of fields within the
CSRs.

Reserved Writes Preserve Values, Reads Ignore Values (WPRI)

Some whole read/write fields are reserved for future use. Software should ignore the values read
from these fields, and should preserve the values held in these fields when writing values to other
fields of the same register. For forward compatibility, implementations that do not furnish these
fields must hardwire them to zero. These fields are labeled WPRI in the register descriptions.

To simplify the software model, any backward-compatible future definition of previously reserved
fields within a CSR must cope with the possibility that a non-atomic read/modify/write sequence
is used to update other fields in the CSR. Alternatively, the original CSR definition must specify
that subfields can only be updated atomically, which may require a two-instruction clear bit/set
bit sequence in general that can be problematic if intermediate values are not legal.

Write/Read Only Legal Values (WLRL)

Some read/write CSR fields specify behavior for only a subset of possible bit encodings, with other
bit encodings reserved. Software should not write anything other than legal values to such a field,
and should not assume a read will return a legal value unless the last write was of a legal value,
or the register has not been written since another operation (e.g., reset) set the register to a legal
value. These fields are labeled WLRL in the register descriptions.

Hardware implementations need only implement enough state bits to differentiate between the
supported values, but must always return the complete specified bit-encoding of any supported
value when read.

Implementations are permitted but not required to raise an illegal instruction exception if an
instruction attempts to write a non-supported value to a WLRL field. Implementations can
return arbitrary bit patterns on the read of a WLRL field when the last write was of an illegal
value, but the value returned should deterministically depend on the illegal written value and the
value of the field prior to the write.

Write Any Values, Reads Legal Values (WARL)

Some read/write CSR fields are only defined for a subset of bit encodings, but allow any value to be
written while guaranteeing to return a legal value whenever read. Assuming that writing the CSR
has no other side effects, the range of supported values can be determined by attempting to write
a desired setting then reading to see if the value was retained. These fields are labeled WARL in
the register descriptions.
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Implementations will not raise an exception on writes of unsupported values to a WARL field.
Implementations can return any legal value on the read of a WARL field when the last write was of
an illegal value, but the legal value returned should deterministically depend on the illegal written
value and the architectural state of the hart.

2.4 CSR Width Modulation

If the width of a CSR is changed (for example, by changing MXLEN or UXLEN, as described in
Section 3.1.6.2), the values of the writable fields and bits of the new-width CSR are, unless specified
otherwise, determined from the previous-width CSR as though by this algorithm:

1. The value of the previous-width CSR is copied to a temporary register of the same width.

2. For the read-only bits of the previous-width CSR, the bits at the same positions in the
temporary register are set to zeros.

3. The width of the temporary register is changed to the new width. If the new width W is
narrower than the previous width, the least-significant W bits of the temporary register are
retained and the more-significant bits are discarded. If the new width is wider than the
previous width, the temporary register is zero-extended to the wider width.

4. Each writable field of the new-width CSR takes the value of the bits at the same positions in
the temporary register.

Changing the width of a CSR is not a read or write of the CSR and thus does not trigger any side
effects.
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Chapter 3

Machine-Level ISA, Version 1.12

This chapter describes the machine-level operations available in machine-mode (M-mode), which is
the highest privilege mode in a RISC-V system. M-mode is used for low-level access to a hardware
platform and is the first mode entered at reset. M-mode can also be used to implement features that
are too difficult or expensive to implement in hardware directly. The RISC-V machine-level ISA
contains a common core that is extended depending on which other privilege levels are supported
and other details of the hardware implementation.

3.1 Machine-Level CSRs

In addition to the machine-level CSRs described in this section, M-mode code can access all CSRs
at lower privilege levels.

3.1.1 Machine ISA Register misa

The misa CSR is a WARL read-write register reporting the ISA supported by the hart. This
register must be readable in any implementation, but a value of zero can be returned to indicate
the misa register has not been implemented, requiring that CPU capabilities be determined through
a separate non-standard mechanism.

MXLEN-1 MXLEN-2 MXLEN-3 26 25 0

MXL[1:0] (WARL) 0 (WARL) Extensions[25:0] (WARL)

2 MXLEN-28 26

Figure 3.1: Machine ISA register (misa).

The MXL (Machine XLEN) field encodes the native base integer ISA width as shown in Table 3.1.
The MXL field may be writable in implementations that support multiple base ISAs. The effective
XLEN in M-mode, MXLEN, is given by the setting of MXL, or has a fixed value if misa is zero.
The MXL field is always set to the widest supported ISA variant at reset.

15
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MXL XLEN

1 32
2 64
3 128

Table 3.1: Encoding of MXL field in misa

The misa CSR is MXLEN bits wide. If the value read from misa is nonzero, field MXL of that value
always denotes the current MXLEN. If a write to misa causes MXLEN to change, the position of
MXL moves to the most-significant two bits of misa at the new width.

The base width can be quickly ascertained using branches on the sign of the returned misa value,
and possibly a shift left by one and a second branch on the sign. These checks can be written
in assembly code without knowing the register width (XLEN) of the machine. The base width is

given by XLEN = 2MXL+4.
The base width can also be found if misa is zero, by placing the immediate 4 in a register

then shifting the register left by 31 bits at a time. If zero after one shift, then the machine is
RV32. If zero after two shifts, then the machine is RV64, else RV128.

The Extensions field encodes the presence of the standard extensions, with a single bit per letter
of the alphabet (bit 0 encodes presence of extension “A” , bit 1 encodes presence of extension “B”,
through to bit 25 which encodes “Z”). The “I” bit will be set for RV32I, RV64I, RV128I base ISAs,
and the “E” bit will be set for RV32E. The Extensions field is a WARL field that can contain
writable bits where the implementation allows the supported ISA to be modified. At reset, the
Extensions field shall contain the maximal set of supported extensions, and I shall be selected over
E if both are available.

When a standard extension is disabled by clearing its bit in misa, the instructions and CSRs defined
or modified by the extension revert to their defined or reserved behaviors as if the extension is not
implemented.

The design of the RV128I base ISA is not yet complete, and while much of the remainder of this
specification is expected to apply to RV128, this version of the document focuses only on RV32 and
RV64.

The “U” and “S” bits will be set if there is support for user and supervisor modes respectively.

The “X” bit will be set if there are any non-standard extensions.

The misa CSR exposes a rudimentary catalog of CPU features to machine-mode code. More
extensive information can be obtained in machine mode by probing other machine registers, and
examining other ROM storage in the system as part of the boot process.

We require that lower privilege levels execute environment calls instead of reading CPU
registers to determine features available at each privilege level. This enables virtualization layers
to alter the ISA observed at any level, and supports a much richer command interface without
burdening hardware designs.
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Bit Character Description

0 A Atomic extension
1 B Tentatively reserved for Bit-Manipulation extension
2 C Compressed extension
3 D Double-precision floating-point extension
4 E RV32E base ISA
5 F Single-precision floating-point extension
6 G Reserved
7 H Hypervisor extension
8 I RV32I/64I/128I base ISA
9 J Tentatively reserved for Dynamically Translated Languages extension
10 K Reserved
11 L Reserved
12 M Integer Multiply/Divide extension
13 N Tentatively reserved for User-Level Interrupts extension
14 O Reserved
15 P Tentatively reserved for Packed-SIMD extension
16 Q Quad-precision floating-point extension
17 R Reserved
18 S Supervisor mode implemented
19 T Reserved
20 U User mode implemented
21 V Tentatively reserved for Vector extension
22 W Reserved
23 X Non-standard extensions present
24 Y Reserved
25 Z Reserved

Table 3.2: Encoding of Extensions field in misa. All bits that are reserved for future use must
return zero when read.
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The “E” bit is read-only. Unless misa is hardwired to zero, the “E” bit always reads as the
complement of the “I” bit. An implementation that supports both RV32E and RV32I can select
RV32E by clearing the “I” bit.

If an ISA feature x depends on an ISA feature y, then attempting to enable feature x but disable
feature y results in both features being disabled. For example, setting “F”=0 and “D”=1 results
in both “F” and “D” being cleared.

An implementation may impose additional constraints on the collective setting of two or more misa
fields, in which case they function collectively as a single WARL field. An attempt to write an
unsupported combination causes those bits to be set to some supported combination.

Writing misa may increase IALIGN, e.g., by disabling the “C” extension. If an instruction that
would write misa increases IALIGN, and the subsequent instruction’s address is not IALIGN-bit
aligned, the write to misa is suppressed, leaving misa unchanged.

When software enables an extension that was previously disabled, then all state uniquely associated
with that extension is unspecified, unless otherwise specified by that extension.

3.1.2 Machine Vendor ID Register mvendorid

The mvendorid CSR is a 32-bit read-only register providing the JEDEC manufacturer ID of the
provider of the core. This register must be readable in any implementation, but a value of 0 can be
returned to indicate the field is not implemented or that this is a non-commercial implementation.

31 7 6 0

Bank Offset

25 7

Figure 3.2: Vendor ID register (mvendorid).

JEDEC manufacturer IDs are ordinarily encoded as a sequence of one-byte continuation codes 0x7f,
terminated by a one-byte ID not equal to 0x7f, with an odd parity bit in the most-significant bit
of each byte. mvendorid encodes the number of one-byte continuation codes in the Bank field, and
encodes the final byte in the Offset field, discarding the parity bit. For example, the JEDEC man-
ufacturer ID 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x8a (twelve
continuation codes followed by 0x8a) would be encoded in the mvendorid CSR as 0x60a.

In JEDEC’s parlance, the bank number is one greater than the number of continuation codes;
hence, the mvendorid Bank field encodes a value that is one less than the JEDEC bank number.

Previously the vendor ID was to be a number allocated by RISC-V International, but this du-
plicates the work of JEDEC in maintaining a manufacturer ID standard. At time of writing,
registering a manufacturer ID with JEDEC has a one-time cost of $500.
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3.1.3 Machine Architecture ID Register marchid

The marchid CSR is an MXLEN-bit read-only register encoding the base microarchitecture of the
hart. This register must be readable in any implementation, but a value of 0 can be returned to
indicate the field is not implemented. The combination of mvendorid and marchid should uniquely
identify the type of hart microarchitecture that is implemented.

MXLEN-1 0

Architecture ID

MXLEN

Figure 3.3: Machine Architecture ID register (marchid).

Open-source project architecture IDs are allocated globally by RISC-V International, and have
non-zero architecture IDs with a zero most-significant-bit (MSB). Commercial architecture IDs are
allocated by each commercial vendor independently, but must have the MSB set and cannot contain
zero in the remaining MXLEN-1 bits.

The intent is for the architecture ID to represent the microarchitecture associated with the repo
around which development occurs rather than a particular organization. Commercial fabrica-
tions of open-source designs should (and might be required by the license to) retain the original
architecture ID. This will aid in reducing fragmentation and tool support costs, as well as provide
attribution. Open-source architecture IDs are administered by RISC-V International and should
only be allocated to released, functioning open-source projects. Commercial architecture IDs can
be managed independently by any registered vendor but are required to have IDs disjoint from
the open-source architecture IDs (MSB set) to prevent collisions if a vendor wishes to use both
closed-source and open-source microarchitectures.

The convention adopted within the following Implementation field can be used to segregate
branches of the same architecture design, including by organization. The misa register also helps
distinguish different variants of a design.

3.1.4 Machine Implementation ID Register mimpid

The mimpid CSR provides a unique encoding of the version of the processor implementation. This
register must be readable in any implementation, but a value of 0 can be returned to indicate that
the field is not implemented. The Implementation value should reflect the design of the RISC-V
processor itself and not any surrounding system.

MXLEN-1 0

Implementation

MXLEN

Figure 3.4: Machine Implementation ID register (mimpid).

The format of this field is left to the provider of the architecture source code, but will often be
printed by standard tools as a hexadecimal string without any leading or trailing zeros, so the
Implementation value can be left-justified (i.e., filled in from most-significant nibble down) with
subfields aligned on nibble boundaries to ease human readability.
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3.1.5 Hart ID Register mhartid

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware
thread running the code. This register must be readable in any implementation. Hart IDs might
not necessarily be numbered contiguously in a multiprocessor system, but at least one hart must
have a hart ID of zero. Hart IDs must be unique within the execution environment.

MXLEN-1 0

Hart ID

MXLEN

Figure 3.5: Hart ID register (mhartid).

In certain cases, we must ensure exactly one hart runs some code (e.g., at reset), and so require
one hart to have a known hart ID of zero.

For efficiency, system implementers should aim to reduce the magnitude of the largest hart
ID used in a system.

3.1.6 Machine Status Registers (mstatus and mstatush)

The mstatus register is an MXLEN-bit read/write register formatted as shown in Figure 3.6 for
RV32 and Figure 3.7 for RV64. The mstatus register keeps track of and controls the hart’s current
operating state. A restricted view of mstatus appears as the sstatus register in the S-level ISA.

31 30 23 22 21 20 19 18 17

SD WPRI TSR TW TVM MXR SUM MPRV

1 8 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS[1:0] FS[1:0] MPP[1:0] WPRI SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI

2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.6: Machine-mode status register (mstatus) for RV32.

63 62 38 37 36 35 34 33 32 31 23 22 21 20 19 18

SD WPRI MBE SBE SXL[1:0] UXL[1:0] WPRI TSR TW TVM MXR SUM

1 25 1 1 2 2 9 1 1 1 1 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPRV XS[1:0] FS[1:0] MPP[1:0] WPRI SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI

1 2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.7: Machine-mode status register (mstatus) for RV64.

For RV32 only, mstatush is a 32-bit read/write register formatted as shown in Figure 3.8. Bits
30:4 of mstatush generally contain the same fields found in bits 62:36 of mstatus for RV64. Fields
SD, SXL, and UXL do not exist in mstatush.
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31 6 5 4 3 0

WPRI MBE SBE WPRI

26 1 1 4

Figure 3.8: Additional machine-mode status register (mstatush) for RV32.

3.1.6.1 Privilege and Global Interrupt-Enable Stack in mstatus register

Global interrupt-enable bits, MIE and SIE, are provided for M-mode and S-mode respectively.
These bits are primarily used to guarantee atomicity with respect to interrupt handlers in the
current privilege mode.

The global xIE bits are located in the low-order bits of mstatus, allowing them to be atomically
set or cleared with a single CSR instruction.

When a hart is executing in privilege mode x, interrupts are globally enabled when x IE=1 and
globally disabled when x IE=0. Interrupts for lower-privilege modes, w<x, are always globally
disabled regardless of the setting of any global wIE bit for the lower-privilege mode. Interrupts for
higher-privilege modes, y>x, are always globally enabled regardless of the setting of the global yIE
bit for the higher-privilege mode. Higher-privilege-level code can use separate per-interrupt enable
bits to disable selected higher-privilege-mode interrupts before ceding control to a lower-privilege
mode.

A higher-privilege mode y could disable all of its interrupts before ceding control to a lower-
privilege mode but this would be unusual as it would leave only a synchronous trap, non-maskable
interrupt, or reset as means to regain control of the hart.

To support nested traps, each privilege mode x that can respond to interrupts has a two-level
stack of interrupt-enable bits and privilege modes. xPIE holds the value of the interrupt-enable bit
active prior to the trap, and xPP holds the previous privilege mode. The xPP fields can only hold
privilege modes up to x, so MPP is two bits wide and SPP is one bit wide. When a trap is taken
from privilege mode y into privilege mode x, xPIE is set to the value of x IE; x IE is set to 0; and
xPP is set to y.

For lower privilege modes, any trap (synchronous or asynchronous) is usually taken at a higher
privilege mode with interrupts disabled upon entry. The higher-level trap handler will either
service the trap and return using the stacked information, or, if not returning immediately to
the interrupted context, will save the privilege stack before re-enabling interrupts, so only one
entry per stack is required.

An MRET or SRET instruction is used to return from a trap in M-mode or S-mode respectively.
When executing an xRET instruction, supposing xPP holds the value y, x IE is set to xPIE; the
privilege mode is changed to y; xPIE is set to 1; and xPP is set to the least-privileged supported
mode (U if U-mode is implemented, else M). If xPP̸=M, xRET also sets MPRV=0.

Setting xPP to the least-privileged supported mode on an xRET helps identify software bugs in
the management of the two-level privilege-mode stack.
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xPP fields are WARL fields that can hold only privilege mode x and any implemented privilege
mode lower than x. If privilege mode x is not implemented, then xPP must be hardwired to 0.

M-mode software can determine whether a privilege mode is implemented by writing that mode
to MPP then reading it back.

If the machine provides only U and M modes, then only a single hardware storage bit is
required to represent either 00 or 11 in MPP.

3.1.6.2 Base ISA Control in mstatus Register

For RV64 systems, the SXL and UXL fields are WARL fields that control the value of XLEN for
S-mode and U-mode, respectively. The encoding of these fields is the same as the MXL field of
misa, shown in Table 3.1. The effective XLEN in S-mode and U-mode are termed SXLEN and
UXLEN, respectively.

For RV32 systems, the SXL and UXL fields do not exist, and SXLEN=32 and UXLEN=32.

For RV64 systems, if S-mode is not supported, then SXL is hardwired to zero. Otherwise, it is
a WARL field that encodes the current value of SXLEN. In particular, an implementation may
make SXL be a read-only field whose value always ensures that SXLEN=MXLEN.

For RV64 systems, if U-mode is not supported, then UXL is hardwired to zero. Otherwise, it is a
WARL field that encodes the current value of UXLEN. In particular, an implementation may make
UXL be a read-only field whose value always ensures that UXLEN=MXLEN or UXLEN=SXLEN.

Whenever XLEN in any mode is set to a value less than the widest supported XLEN, all operations
must ignore source operand register bits above the configured XLEN, and must sign-extend results
to fill the entire widest supported XLEN in the destination register. Similarly, pc bits above XLEN
are ignored, and when the pc is written, it is sign-extended to fill the widest supported XLEN.

We require that operations always fill the entire underlying hardware registers with defined values
to avoid implementation-defined behavior.

To reduce hardware complexity, the architecture imposes no checks that lower-privilege modes
have XLEN settings less than or equal to the next-higher privilege mode. In practice, such
settings would almost always be a software bug, but machine operation is well-defined even in
this case.

If MXLEN is changed from 32 to a wider width, each of mstatus fields SXL and UXL, if not
restricted to a single value, gets the value corresponding to the widest supported width not wider
than the new MXLEN.

3.1.6.3 Memory Privilege in mstatus Register

The MPRV (Modify PRiVilege) bit modifies the privilege level at which loads and stores exe-
cute. When MPRV=0, loads and stores behave as normal, using the translation and protection
mechanisms of the current privilege mode. When MPRV=1, load and store memory addresses are
translated and protected, and endianness is applied, as though the current privilege mode were set
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to MPP. Instruction address-translation and protection are unaffected by the setting of MPRV.
MPRV is hardwired to 0 if U-mode is not supported.

An MRET or SRET instruction that changes the privilege mode to a mode less privileged than M
also sets MPRV=0.

The MXR (Make eXecutable Readable) bit modifies the privilege with which loads access virtual
memory. When MXR=0, only loads from pages marked readable (R=1 in Figure 4.18) will succeed.
When MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will succeed.
MXR has no effect when page-based virtual memory is not in effect. MXR is hardwired to 0 if
S-mode is not supported.

The MPRV and MXR mechanisms were conceived to improve the efficiency of M-mode routines
that emulate missing hardware features, e.g., misaligned loads and stores. MPRV obviates the
need to perform address translation in software. MXR allows instruction words to be loaded
from pages marked execute-only.

The current privilege mode and the privilege mode specified by MPP might have different
XLEN settings. When MPRV=1, load and store memory addresses are treated as though the
current XLEN were set to MPP’s XLEN, following the rules in Section 3.1.6.2.

The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode
loads and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
accessible by U-mode (U=1 in Figure 4.18) will fault. When SUM=1, these accesses are permitted.
SUM has no effect when page-based virtual memory is not in effect. Note that, while SUM is
ordinarily ignored when not executing in S-mode, it is in effect when MPRV=1 and MPP=S. SUM
is hardwired to 0 if S-mode is not supported or if satp.MODE is hardwired to 0.

The MXR and SUM mechanisms only affect the interpretation of permissions encoded in page-table
entries. In particular, they have no impact on whether access-fault exceptions are raised due to
PMAs or PMP.

3.1.6.4 Endianness Control in mstatus and mstatush Registers

The MBE, SBE, and UBE bits in mstatus and mstatush are WARL fields that control the
endianness of memory accesses other than instruction fetches. Instruction fetches are always little-
endian.

MBE controls whether non-instruction-fetch memory accesses made from M-mode (assuming
mstatus.MPRV=0) are little-endian (MBE=0) or big-endian (MBE=1).

If S-mode is not supported, SBE is hardwired to 0. Otherwise, SBE controls whether explicit load
and store memory accesses made from S-mode are little-endian (SBE=0) or big-endian (SBE=1).

If U-mode is not supported, UBE is hardwired to 0. Otherwise, UBE controls whether explicit load
and store memory accesses made from U-mode are little-endian (UBE=0) or big-endian (UBE=1).

For implicit accesses to supervisor-level memory management data structures, such as page tables,
endianness is always controlled by SBE. Since changing SBE alters the implementation’s interpre-
tation of these data structures, if any such data structures remain in use across a change to SBE,
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M-mode software must follow such a change to SBE by executing an SFENCE.VMA instruction
with rs1=x0 and rs2=x0.

Only in contrived scenarios will a given memory-management data structure be interpreted as
both little-endian and big-endian. In practice, SBE will only be changed at runtime on world
switches, in which case neither the old nor new memory-management data structure will be
reinterpreted in a different endianness. In this case, no additional SFENCE.VMA is necessary,
beyond what would ordinarily be required for a world switch.

If S-mode is supported, an implementation may make SBE be a read-only copy of MBE. If U-mode
is supported, an implementation may make UBE be a read-only copy of either MBE or SBE.

An implementation supports only little-endian memory accesses if fields MBE, SBE, and UBE
are all hardwired to 0. An implementation supports only big-endian memory accesses (aside
from instruction fetches) if MBE is hardwired to 1 and SBE and UBE are each hardwired to 1
when S-mode and U-mode are supported.

Volume I defines a hart’s address space as a circular sequence of 2XLEN bytes at consecutive
addresses. The correspondence between addresses and byte locations is fixed and not affected by
any endianness mode. Rather, the applicable endianness mode determines the order of mapping
between memory bytes and a multibyte quantity (halfword, word, etc.).

Standard RISC-V ABIs are expected to be purely little-endian-only or big-endian-only, with no
accommodation for mixing endianness. Nevertheless, endianness control has been defined so as
to permit, for instance, an OS of one endianness to execute user-mode programs of the opposite
endianness. Consideration has been given also to the possibility of nonstandard usages whereby
software flips the endianness of memory accesses as needed.

RISC-V instructions are uniformly little-endian to decouple instruction encoding from the cur-
rent endianness settings, for the benefit of both hardware and software. Otherwise, for instance,
a RISC-V assembler or disassembler would always need to know the intended active endianness,
despite that the endianness mode might change dynamically during execution. In contrast, by
giving instructions a fixed endianness, it is sometimes possible for carefully written software to
be endianness-agnostic even in binary form, much like position-independent code.

The choice to have instructions be only little-endian does have consequences, however, for
RISC-V software that encodes or decodes machine instructions. In big-endian mode, such soft-
ware must account for the fact that explicit loads and stores have endianness opposite that of
instructions, for example by swapping byte order after loads and before stores.

3.1.6.5 Virtualization Support in mstatus Register

The TVM (Trap Virtual Memory) bit is a WARL field that supports intercepting supervisor
virtual-memory management operations. When TVM=1, attempts to read or write the satp CSR
or execute the SFENCE.VMA instruction while executing in S-mode will raise an illegal instruction
exception. When TVM=0, these operations are permitted in S-mode. TVM is hard-wired to 0 when
S-mode is not supported.
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The TVM mechanism improves virtualization efficiency by permitting guest operating systems to
execute in S-mode, rather than classically virtualizing them in U-mode. This approach obviates
the need to trap accesses to most S-mode CSRs.

Trapping satp accesses and the SFENCE.VMA instruction provides the hooks necessary to
lazily populate shadow page tables.

The TW (Timeout Wait) bit is a WARL field that supports intercepting the WFI instruction (see
Section 3.3.3). When TW=0, the WFI instruction may execute in lower privilege modes when
not prevented for some other reason. When TW=1, then if WFI is executed in any less-privileged
mode, and it does not complete within an implementation-specific, bounded time limit, the WFI
instruction causes an illegal instruction exception. The time limit may always be 0, in which case
WFI always causes an illegal instruction exception in less-privileged modes when TW=1. TW is
hard-wired to 0 when there are no modes less privileged than M.

Trapping the WFI instruction can trigger a world switch to another guest OS, rather than
wastefully idling in the current guest.

When S-mode is implemented, then executing WFI in U-mode causes an illegal instruction excep-
tion, unless it completes within an implementation-specific, bounded time limit. A future revision
of this specification might add a feature that allows S-mode to selectively permit WFI in U-mode.
Such a feature would only be active when TW=0.

The TSR (Trap SRET) bit is a WARL field that supports intercepting the supervisor exception
return instruction, SRET. When TSR=1, attempts to execute SRET while executing in S-mode
will raise an illegal instruction exception. When TSR=0, this operation is permitted in S-mode.
TSR is hard-wired to 0 when S-mode is not supported.

Trapping SRET is necessary to emulate the hypervisor extension (see Chapter 5) on implemen-
tations that do not provide it.

3.1.6.6 Extension Context Status in mstatus Register

Supporting substantial extensions is one of the primary goals of RISC-V, and hence we define a
standard interface to allow unchanged privileged-mode code, particularly a supervisor-level OS, to
support arbitrary user-mode state extensions.

To date, the V extension is the only standard extension that defines additional state beyond the
floating-point CSR and data registers.

The FS[1:0] WARL field and the XS[1:0] read-only field are used to reduce the cost of context save
and restore by setting and tracking the current state of the floating-point unit and any other user-
mode extensions respectively. The FS field encodes the status of the floating-point unit, including
the CSR fcsr and floating-point data registers f0–f31, while the XS field encodes the status of
additional user-mode extensions and associated state. These fields can be checked by a context
switch routine to quickly determine whether a state save or restore is required. If a save or restore is
required, additional instructions and CSRs are typically required to effect and optimize the process.
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The design anticipates that most context switches will not need to save/restore state in either
or both of the floating-point unit or other extensions, so provides a fast check via the SD bit.

The FS and XS fields use the same status encoding as shown in Table 3.3, with the four possible
status values being Off, Initial, Clean, and Dirty.

Status FS Meaning XS Meaning

0 Off All off
1 Initial None dirty or clean, some on
2 Clean None dirty, some clean
3 Dirty Some dirty

Table 3.3: Encoding of FS[1:0] and XS[1:0] status fields.

If the F extension is implemented, the FS field shall not be hardwired to zero.

If neither the F extension nor S-mode is implemented, then FS is hardwired to zero. If S-mode is
implemented but the F extension is not, FS may optionally be hardwired to zero.

Implementations with S-mode but without the F extension are permitted, but not required, to
hardwire the FS field to zero. Some such implementations will choose not to hardwire the FS
field to zero, so as to enable emulation of the F extension for both S-mode and U-mode via
invisible traps into M-mode.

In systems without additional user extensions requiring new state, the XS field is hardwired to
zero. Every additional extension with state provides a CSR field that encodes the equivalent of the
XS states. The XS field represents a summary of all extensions’ status as shown in Table 3.3.

The XS field effectively reports the maximum status value across all user-extension status fields,
though individual extensions can use a different encoding than XS.

The SD bit is a read-only bit that summarizes whether either the FS field or XS field signals the
presence of some dirty state that will require saving extended user context to memory. If both XS
and FS are hardwired to zero, then SD is also always zero.

When an extension’s status is set to Off, any instruction that attempts to read or write the cor-
responding state will cause an illegal instruction exception. When the status is Initial, the corre-
sponding state should have an initial constant value. When the status is Clean, the corresponding
state is potentially different from the initial value, but matches the last value stored on a context
swap. When the status is Dirty, the corresponding state has potentially been modified since the
last context save.

During a context save, the responsible privileged code need only write out the corresponding state
if its status is Dirty, and can then reset the extension’s status to Clean. During a context restore,
the context need only be loaded from memory if the status is Clean (it should never be Dirty at
restore). If the status is Initial, the context must be set to an initial constant value on context
restore to avoid a security hole, but this can be done without accessing memory. For example, the
floating-point registers can all be initialized to the immediate value 0.
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The FS and XS fields are read by the privileged code before saving the context. The FS field is
set directly by privileged code when resuming a user context, while the XS field is set indirectly by
writing to the status register of the individual extensions. The status fields will also be updated
during execution of instructions, regardless of privilege mode.

Extensions to the user-mode ISA often include additional user-mode state, and this state can be
considerably larger than the base integer registers. The extensions might only be used for some
applications, or might only be needed for short phases within a single application. To improve
performance, the user-mode extension can define additional instructions to allow user-mode software
to return the unit to an initial state or even to turn off the unit.

For example, a coprocessor might require to be configured before use and can be “unconfigured”
after use. The unconfigured state would be represented as the Initial state for context save. If the
same application remains running between the unconfigure and the next configure (which would
set status to Dirty), there is no need to actually reinitialize the state at the unconfigure instruction,
as all state is local to the user process, i.e., the Initial state may only cause the coprocessor state
to be initialized to a constant value at context restore, not at every unconfigure.

Executing a user-mode instruction to disable a unit and place it into the Off state will cause an
illegal instruction exception to be raised if any subsequent instruction tries to use the unit before
it is turned back on. A user-mode instruction to turn a unit on must also ensure the unit’s state is
properly initialized, as the unit might have been used by another context meantime.

Changing the setting of FS has no effect on the contents of the floating-point register state. In
particular, setting FS=Off does not destroy the state, nor does setting FS=Initial clear the contents.
Other extensions might not preserve state when set to Off.

Implementations may choose to track the dirtiness of the floating-point register state imprecisely
by reporting the state to be dirty even when it has not been modified. On some implementations,
some instructions that do not mutate the floating-point state may cause the state to transition
from Initial or Clean to Dirty. On other implementations, dirtiness might not be tracked at all,
in which case the valid FS states are Off and Dirty, and an attempt to set FS to Initial or Clean
causes it to be set to Dirty.

This definition of FS does not disallow setting FS to Dirty as a result of errant speculation. Some
platforms may choose to disallow speculatively writing FS to close a potential side channel.

If an instruction explicitly or implicitly writes a floating-point register or the fcsr but does not
alter its contents, and FS=Initial or FS=Clean, it is implementation-defined whether FS transitions
to Dirty.

Table 3.4 shows all the possible state transitions for the FS or XS status bits. Note that the standard
floating-point extensions do not support user-mode unconfigure or disable/enable instructions.

Standard privileged instructions to initialize, save, and restore extension state are provided to
insulate privileged code from details of the added extension state by treating the state as an
opaque object.
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Current State Off Initial Clean Dirty
Action

At context save in privileged code

Save state? No No No Yes
Next state Off Initial Clean Clean

At context restore in privileged code

Restore state? No Yes, to initial Yes, from memory N/A
Next state Off Initial Clean N/A

Execute instruction to read state

Action? Exception Execute Execute Execute
Next state Off Initial Clean Dirty

Execute instruction that possibly modifies state, including configuration

Action? Exception Execute Execute Execute
Next state Off Dirty Dirty Dirty

Execute instruction to unconfigure unit

Action? Exception Execute Execute Execute
Next state Off Initial Initial Initial

Execute instruction to disable unit

Action? Execute Execute Execute Execute
Next state Off Off Off Off

Execute instruction to enable unit

Action? Execute Execute Execute Execute
Next state Initial Initial Initial Initial

Table 3.4: FS and XS state transitions.

Many coprocessor extensions are only used in limited contexts that allows software to safely
unconfigure or even disable units when done. This reduces the context-switch overhead of large
stateful coprocessors.

We separate out floating-point state from other extension state, as when a floating-point
unit is present the floating-point registers are part of the standard calling convention, and so
user-mode software cannot know when it is safe to disable the floating-point unit.

The XS field provides a summary of all added extension state, but additional microarchitectural
bits might be maintained in the extension to further reduce context save and restore overhead.

The SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e.,
SD=((FS==11) OR (XS==11))). This allows privileged code to quickly determine when no addi-
tional context save is required beyond the integer register set and PC.

The floating-point unit state is always initialized, saved, and restored using standard instructions
(F, D, and/or Q), and privileged code must be aware of FLEN to determine the appropriate space
to reserve for each f register.

All privileged modes share a single copy of the FS and XS bits. In a system with more than one
privileged mode, supervisor mode would normally use the FS and XS bits directly to record the
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status with respect to the supervisor-level saved context. Other more-privileged active modes must
be more conservative in saving and restoring the extension state in their corresponding version of
the context.

In any reasonable use case, the number of context switches between user and supervisor level
should far outweigh the number of context switches to other privilege levels. Note that coproces-
sors should not require their context to be saved and restored to service asynchronous interrupts,
unless the interrupt results in a user-level context swap.

3.1.7 Machine Trap-Vector Base-Address Register (mtvec)

The mtvec register is an MXLEN-bit WARL read/write register that holds trap vector configura-
tion, consisting of a vector base address (BASE) and a vector mode (MODE).

MXLEN-1 2 1 0

BASE[MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 3.9: Machine trap-vector base-address register (mtvec).

The mtvec register must always be implemented, but can contain a hardwired read-only value. If
mtvec is writable, the set of values the register may hold can vary by implementation. The value in
the BASE field must always be aligned on a 4-byte boundary, and the MODE setting may impose
additional alignment constraints on the value in the BASE field.

We allow for considerable flexibility in implementation of the trap vector base address. On the
one hand, we do not wish to burden low-end implementations with a large number of state bits,
but on the other hand, we wish to allow flexibility for larger systems.

Value Name Description

0 Direct All exceptions set pc to BASE.
1 Vectored Asynchronous interrupts set pc to BASE+4×cause.

≥2 — Reserved

Table 3.5: Encoding of mtvec MODE field.

The encoding of the MODE field is shown in Table 3.5. When MODE=Direct, all traps into
machine mode cause the pc to be set to the address in the BASE field. When MODE=Vectored,
all synchronous exceptions into machine mode cause the pc to be set to the address in the BASE
field, whereas interrupts cause the pc to be set to the address in the BASE field plus four times the
interrupt cause number. For example, a machine-mode timer interrupt (see Table 3.6 on page 39)
causes the pc to be set to BASE+0x1c.

When vectored interrupts are enabled, interrupt cause 0, which corresponds to user-mode soft-
ware interrupts, are vectored to the same location as synchronous exceptions. This ambiguity
does not arise in practice, since user-mode software interrupts are either disabled or delegated
to user mode.
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An implementation may have different alignment constraints for different modes. In particular,
MODE=Vectored may have stricter alignment constraints than MODE=Direct.

Allowing coarser alignments in Vectored mode enables vectoring to be implemented without a
hardware adder circuit.

Reset and NMI vector locations are given in a platform specification.

3.1.8 Machine Trap Delegation Registers (medeleg and mideleg)

By default, all traps at any privilege level are handled in machine mode, though a machine-mode
handler can redirect traps back to the appropriate level with the MRET instruction (Section 3.3.2).
To increase performance, implementations can provide individual read/write bits within medeleg

and mideleg to indicate that certain exceptions and interrupts should be processed directly by a
lower privilege level. The machine exception delegation register (medeleg) and machine interrupt
delegation register (mideleg) are MXLEN-bit read/write registers.

In systems with S-mode, the medeleg and mideleg registers must exist, and setting a bit in medeleg

or mideleg will delegate the corresponding trap, when occurring in S-mode or U-mode, to the S-
mode trap handler. In systems without S-mode, the medeleg and mideleg registers should not
exist.

In versions 1.9.1 and earlier , these registers existed but were hardwired to zero in M-mode only,
or M/U without N systems. There is no reason to require they return zero in those cases, as the
misa register indicates whether they exist.

When a trap is delegated to S-mode, the scause register is written with the trap cause; the sepc

register is written with the virtual address of the instruction that took the trap; the stval register
is written with an exception-specific datum; the SPP field of mstatus is written with the active
privilege mode at the time of the trap; the SPIE field of mstatus is written with the value of the
SIE field at the time of the trap; and the SIE field of mstatus is cleared. The mcause, mepc, and
mtval registers and the MPP and MPIE fields of mstatus are not written.

An implementation can choose to subset the delegatable traps, with the supported delegatable bits
found by writing one to every bit location, then reading back the value in medeleg or mideleg to
see which bit positions hold a one.

An implementation shall not hardwire any bits of medeleg to one, i.e., any synchronous trap that
can be delegated must support not being delegated. Similarly, an implementation shall not hardwire
to one any bits of mideleg corresponding to machine-level interrupts (but may do so for lower-level
interrupts).

Version 1.11 and earlier prohibited hardwiring any bits of mideleg to one. Platform standards
may always add such restrictions.

Traps never transition from a more-privileged mode to a less-privileged mode. For example, if M-
mode has delegated illegal instruction exceptions to S-mode, and M-mode software later executes
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an illegal instruction, the trap is taken in M-mode, rather than being delegated to S-mode. By
contrast, traps may be taken horizontally. Using the same example, if M-mode has delegated illegal
instruction exceptions to S-mode, and S-mode software later executes an illegal instruction, the trap
is taken in S-mode.

Delegated interrupts result in the interrupt being masked at the delegator privilege level. For
example, if the supervisor timer interrupt (STI) is delegated to S-mode by setting mideleg[5], STIs
will not be taken when executing in M-mode. By contrast, if mideleg[5] is clear, STIs can be taken
in any mode and regardless of current mode will transfer control to M-mode.

MXLEN-1 0

Synchronous Exceptions (WARL)

MXLEN

Figure 3.10: Machine Exception Delegation Register medeleg.

medeleg has a bit position allocated for every synchronous exception shown in Table 3.6 on page 39,
with the index of the bit position equal to the value returned in the mcause register (i.e., setting
bit 8 allows user-mode environment calls to be delegated to a lower-privilege trap handler).

MXLEN-1 0

Interrupts (WARL)

MXLEN

Figure 3.11: Machine Interrupt Delegation Register mideleg.

mideleg holds trap delegation bits for individual interrupts, with the layout of bits matching those
in the mip register (i.e., STIP interrupt delegation control is located in bit 5).

For exceptions that cannot occur in less privileged modes, the corresponding medeleg bits should
be hardwired to zero. In particular, medeleg[11] is hardwired to zero.

3.1.9 Machine Interrupt Registers (mip and mie)

The mip register is an MXLEN-bit read/write register containing information on pending interrupts,
while mie is the corresponding MXLEN-bit read/write register containing interrupt enable bits.
Interrupt cause number i (as reported in CSR mcause, Section 3.1.15) corresponds with bit i in
both mip and mie. Bits 15:0 are allocated to standard interrupt causes only, while bits 16 and
above are designated for platform or custom use.

MXLEN-1 0

Interrupts (WARL)

MXLEN

Figure 3.12: Machine Interrupt-Pending Register (mip).

An interrupt i will trap to M-mode (causing the privilege mode to change to M-mode) if all of
the following are true: (a) either the current privilege mode is M and the MIE bit in the mstatus

register is set, or the current privilege mode has less privilege than M-mode; (b) bit i is set in both
mip and mie; and (c) if register mideleg exists, bit i is not set in mideleg.
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MXLEN-1 0

Interrupts (WARL)

MXLEN

Figure 3.13: Machine Interrupt-Enable Register (mie).

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time
from when an interrupt becomes, or ceases to be, pending in mip, and must also be evaluated
immediately following the execution of an xRET instruction or an explicit write to a CSR on which
these interrupt trap conditions expressly depend (including mip, mie, mstatus, and mideleg).

Interrupts to M-mode take priority over any interrupts to lower privilege modes.

Each individual bit in register mip may be writable or may be read-only. When bit i in mip is
writable, a pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can become
pending but bit i in mip is read-only, the implementation must provide some other mechanism for
clearing the pending interrupt.

A bit in mie must be writable if the corresponding interrupt can ever become pending. Bits of mie
that are not writable must be hardwired to zero.

The standard portions (bits 15:0) of registers mip and mie are formatted as shown in Figures 3.14
and 3.15 respectively.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MEIP 0 SEIP 0 MTIP 0 STIP 0 MSIP 0 SSIP 0

4 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.14: Standard portion (bits 15:0) of mip.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MEIE 0 SEIE 0 MTIE 0 STIE 0 MSIE 0 SSIE 0

4 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.15: Standard portion (bits 15:0) of mie.

The machine-level interrupt registers handle a few root interrupt sources which are assigned a
fixed service priority for simplicity, while separate external interrupt controllers can implement
a more complex prioritization scheme over a much larger set of interrupts that are then muxed
into the machine-level interrupt sources.

The non-maskable interrupt is not made visible via the mip register as its presence is implicitly
known when executing the NMI trap handler.

Bits mip.MEIP and mie.MEIE are the interrupt-pending and interrupt-enable bits for machine-
level external interrupts. MEIP is read-only in mip, and is set and cleared by a platform-specific
interrupt controller.

Bits mip.MTIP and mie.MTIE are the interrupt-pending and interrupt-enable bits for machine
timer interrupts. MTIP is read-only in mip, and is cleared by writing to the memory-mapped
machine-mode timer compare register.
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Bits mip.MSIP and mie.MSIE are the interrupt-pending and interrupt-enable bits for machine-
level software interrupts. MSIP is read-only in mip, and is written by accesses to memory-mapped
control registers, which are used by remote harts to provide machine-level interprocessor interrupts.
A hart can write its own MSIP bit using the same memory-mapped control register. If a system
has only one hart, or if a platform standard supports the delivery of machine-level interprocessor
interrupts through external interrupts (MEI) instead, then mip.MSIP and mie.MSIE may both be
hardwired to zeros.

If supervisor mode is not implemented, bits SEIP, STIP, and SSIP of mip and SEIE, STIE, and
SSIE of mie are hardwired to zeros.

If supervisor mode is implemented, bits mip.SEIP and mie.SEIE are the interrupt-pending and
interrupt-enable bits for supervisor-level external interrupts. SEIP is writable in mip, and may be
written by M-mode software to indicate to S-mode that an external interrupt is pending. Addi-
tionally, the platform-level interrupt controller may generate supervisor-level external interrupts.
Supervisor-level external interrupts are made pending based on the logical-OR of the software-
writable SEIP bit and the signal from the external interrupt controller. When mip is read with a
CSR instruction, the value of the SEIP bit returned in the rd destination register is the logical-
OR of the software-writable bit and the interrupt signal from the interrupt controller, but the
signal from the interrupt controller is not used to calculate the value written to SEIP. Only the
software-writable SEIP bit participates in the read-modify-write sequence of a CSRRS or CSRRC
instruction.

For example, if we name the software-writable SEIP bit B and the signal from the external
interrupt controller E, then if csrrs t0, mip, t1 is executed, t0[9] is written with B || E,
then B is written with B || t1[9]. If csrrw t0, mip, t1 is executed, then t0[9] is written
with B || E, and B is simply written with t1[9]. In neither case does B depend upon E.

The SEIP field behavior is designed to allow a higher privilege layer to mimic external inter-
rupts cleanly, without losing any real external interrupts. The behavior of the CSR instructions
is slightly modified from regular CSR accesses as a result.

If supervisor mode is implemented, bits mip.STIP and mie.STIE are the interrupt-pending and
interrupt-enable bits for supervisor-level timer interrupts. STIP is writable in mip, and may be
written by M-mode software to deliver timer interrupts to S-mode.

If supervisor mode is implemented, bits mip.SSIP and mie.SSIE are the interrupt-pending and
interrupt-enable bits for supervisor-level software interrupts. SSIP is writable in mip and may also
be set to 1 by a platform-specific interrupt controller.

Multiple simultaneous interrupts destined for M-mode are handled in the following decreasing
priority order: MEI, MSI, MTI, SEI, SSI, STI.

The machine-level interrupt fixed-priority ordering rules were developed with the following ra-
tionale.

Interrupts for higher privilege modes must be serviced before interrupts for lower privilege
modes to support preemption.

The platform-specific machine-level interrupt sources in bits 16 and above have platform-
specific priority, but are typically chosen to have the highest service priority to support very fast
local vectored interrupts.
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External interrupts are handled before internal (timer/software) interrupts as external in-
terrupts are usually generated by devices that might require low interrupt service times.

Software interrupts are handled before internal timer interrupts, because internal timer in-
terrupts are usually intended for time slicing, where time precision is less important, whereas
software interrupts are used for inter-processor messaging. Software interrupts can be avoided
when high-precision timing is required, or high-precision timer interrupts can be routed via a
different interrupt path. Software interrupts are located in the lowest four bits of mip as these
are often written by software, and this position allows the use of a single CSR instruction with
a five-bit immediate.

Restricted views of the mip and mie registers appear as the sip and sie registers for supervisor
level. If an interrupt is delegated to S-mode by setting a bit in the mideleg register, it becomes
visible in the sip register and is maskable using the sie register. Otherwise, the corresponding
bits in sip and sie appear to be hardwired to zero.

3.1.10 Hardware Performance Monitor

M-mode includes a basic hardware performance-monitoring facility. The mcycle CSR counts the
number of clock cycles executed by the processor core on which the hart is running. The minstret
CSR counts the number of instructions the hart has retired. The mcycle and minstret registers
have 64-bit precision on all RV32 and RV64 systems.

The counter registers have an arbitrary value after the hart is reset, and can be written with a
given value. Any CSR write takes effect after the writing instruction has otherwise completed. The
mcycle CSR may be shared between harts on the same core, in which case writes to mcycle will
be visible to those harts. The platform should provide a mechanism to indicate which harts share
an mcycle CSR.

The hardware performance monitor includes 29 additional 64-bit event counters, mhpmcounter3–
mhpmcounter31. The event selector CSRs, mhpmevent3–mhpmevent31, are MXLEN-bit WARL
registers that control which event causes the corresponding counter to increment. The meaning
of these events is defined by the platform, but event 0 is defined to mean “no event.” All coun-
ters should be implemented, but a legal implementation is to hard-wire both the counter and its
corresponding event selector to 0.

63 0

mcycle

minstret

MXLEN-1 0

mhpmcounter3 mhpmevent3

mhpmcounter4 mhpmevent4
...

...
mhpmcounter30 mhpmevent30

mhpmcounter31 mhpmevent31

64 MXLEN

Figure 3.16: Hardware performance monitor counters.

The mhpmcounters are WARL registers that support up to 64 bits of precision on RV32 and RV64.
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A future revision of this specification will define a mechanism to generate an interrupt when a
hardware performance monitor counter overflows.

When MXLEN=32, reads of the mcycle, minstret, and mhpmcountern CSRs return bits 31–0 of
the corresponding counter, and writes change only bits 31–0; reads of the mcycleh, minstreth,
and mhpmcounternh CSRs return bits 63–32 of the corresponding counter, and writes change only
bits 63–32.

31 0

mcycleh

minstreth

mhpmcounter3h

mhpmcounter4h

...

mhpmcounter30h

mhpmcounter31h

32

Figure 3.17: Upper 32 bits of hardware performance monitor counters, RV32 only.

3.1.11 Machine Counter-Enable Register (mcounteren)

The counter-enable register mcounteren is a 32-bit register that controls the availability of the
hardware performance-monitoring counters to the next-lowest privileged mode.

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 3.18: Counter-enable register (mcounteren).

The settings in this register only control accessibility. The act of reading or writing this register
does not affect the underlying counters, which continue to increment even when not accessible.

When the CY, TM, IR, or HPMn bit in the mcounteren register is clear, attempts to read the
cycle, time, instret, or hpmcountern register while executing in S-mode or U-mode will cause
an illegal instruction exception. When one of these bits is set, access to the corresponding register
is permitted in the next implemented privilege mode (S-mode if implemented, otherwise U-mode).

The counter-enable bits support two common use cases with minimal hardware. For systems that
do not need high-performance timers and counters, machine-mode software can trap accesses and
implement all features in software. For systems that need high-performance timers and counters
but are not concerned with obfuscating the underlying hardware counters, the counters can be
directly exposed to lower privilege modes.

The cycle, instret, and hpmcountern CSRs are read-only shadows of mcycle, minstret, and
mhpmcountern, respectively. The time CSR is a read-only shadow of the memory-mapped mtime

register. Analogously, on RV32I the cycleh, instreth and hpmcounternh CSRs are read-only
shadows of mcycleh, minstreth and mhpmcounternh, respectively. On RV32I the timeh CSR is a
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read-only shadow of the upper 32 bits of the memory-mapped mtime register, while time shadows
only the lower 32 bits of mtime.

Implementations can convert reads of the time and timeh CSRs into loads to the memory-
mapped mtime register, or emulate this functionality in M-mode software.

In systems with U-mode, the mcounteren must be implemented, but all fields are WARL and may
be hardwired to zero, indicating reads to the corresponding counter will cause an illegal instruction
exception when executing in a less-privileged mode. In systems without U-mode, the mcounteren

register should not exist.

3.1.12 Machine Counter-Inhibit CSR (mcountinhibit)

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR 0 CY

1 1 1 23 1 1 1 1 1 1

Figure 3.19: Counter-inhibit register mcountinhibit.

The counter-inhibit register mcountinhibit is a 32-bit WARL register that controls which of the
hardware performance-monitoring counters increment. The settings in this register only control
whether the counters increment; their accessibility is not affected by the setting of this register.

When the CY, IR, or HPMn bit in the mcountinhibit register is clear, the cycle, instret, or
hpmcountern register increments as usual. When the CY, IR, or HPMn bit is set, the corresponding
counter does not increment.

The mcycle CSR may be shared between harts on the same core, in which case the
mcountinhibit.CY field is also shared between those harts, and so writes to mcountinhibit.CY
will be visible to those harts.

If the mcountinhibit register is not implemented, the implementation behaves as though the
register were set to zero.

When the cycle and instret counters are not needed, it is desirable to conditionally inhibit
them to reduce energy consumption. Providing a single CSR to inhibit all counters also allows
the counters to be atomically sampled.

Because the time counter can be shared between multiple cores, it cannot be inhibited with
the mcountinhibit mechanism.

3.1.13 Machine Scratch Register (mscratch)

The mscratch register is an MXLEN-bit read/write register dedicated for use by machine mode.
Typically, it is used to hold a pointer to a machine-mode hart-local context space and swapped
with a user register upon entry to an M-mode trap handler.
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MXLEN-1 0

mscratch

MXLEN

Figure 3.20: Machine-mode scratch register.

The MIPS ISA allocated two user registers (k0/k1) for use by the operating system. Although
the MIPS scheme provides a fast and simple implementation, it also reduces available user
registers, and does not scale to further privilege levels, or nested traps. It can also require both
registers are cleared before returning to user level to avoid a potential security hole and to provide
deterministic debugging behavior.

The RISC-V user ISA was designed to support many possible privileged system environments
and so we did not want to infect the user-level ISA with any OS-dependent features. The RISC-
V CSR swap instructions can quickly save/restore values to the mscratch register. Unlike the
MIPS design, the OS can rely on holding a value in the mscratch register while the user context
is running.

3.1.14 Machine Exception Program Counter (mepc)

mepc is an MXLEN-bit read/write register formatted as shown in Figure 3.21. The low bit of mepc
(mepc[0]) is always zero. On implementations that support only IALIGN=32, the two low bits
(mepc[1:0]) are always zero.

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example),
then, whenever IALIGN=32, bit mepc[1] is masked on reads so that it appears to be 0. This
masking occurs also for the implicit read by the MRET instruction. Though masked, mepc[1]
remains writable when IALIGN=32.

mepc is a WARL register that must be able to hold all valid virtual addresses. It need not be
capable of holding all possible invalid addresses. Prior to writing mepc, implementations may
convert an invalid address into some other invalid address that mepc is capable of holding.

When address translation is not in effect, virtual addresses and physical addresses are equal.
Hence, the set of addresses mepc must be able to represent includes the set of physical addresses
that can be used as a valid pc or effective address.

When a trap is taken into M-mode, mepc is written with the virtual address of the instruction
that was interrupted or that encountered the exception. Otherwise, mepc is never written by the
implementation, though it may be explicitly written by software.

MXLEN-1 0

mepc

MXLEN

Figure 3.21: Machine exception program counter register.
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3.1.15 Machine Cause Register (mcause)

The mcause register is an MXLEN-bit read-write register formatted as shown in Figure 3.22. When
a trap is taken into M-mode, mcause is written with a code indicating the event that caused the
trap. Otherwise, mcause is never written by the implementation, though it may be explicitly
written by software.

The Interrupt bit in the mcause register is set if the trap was caused by an interrupt. The Exception
Code field contains a code identifying the last exception or interrupt. Table 3.6 lists the possible
machine-level exception codes. The Exception Code is a WLRL field, so is only guaranteed to
hold supported exception codes.

MXLEN-1 MXLEN-2 0

Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 3.22: Machine Cause register mcause.

Note that load and load-reserved instructions generate load exceptions, whereas store, store-
conditional, and AMO instructions generate store/AMO exceptions.

Interrupts can be separated from other traps with a single branch on the sign of the mcause

register value. A shift left can remove the interrupt bit and scale the exception codes to index
into a trap vector table.

We do not distinguish privileged instruction exceptions from illegal opcode exceptions. This sim-
plifies the architecture and also hides details of which higher-privilege instructions are supported
by an implementation. The privilege level servicing the trap can implement a policy on whether
these need to be distinguished, and if so, whether a given opcode should be treated as illegal or
privileged.

If an instruction may raise multiple synchronous exceptions, the decreasing priority order of Ta-
ble 3.7 indicates which exception is taken and reported in mcause. The priority of any custom
synchronous exceptions is implementation-defined.

When a virtual address is translated into a physical address, the address translation algorithm
determines what specific exception may be raised.

Load/store/AMO address-misaligned exceptions may have either higher or lower priority than
load/store/AMO page-fault and access-fault exceptions.

The relative priority of load/store/AMO address-misaligned and page-fault exceptions is
implementation-defined to flexibly cater to two design points. Implementations that never sup-
port misaligned accesses can unconditionally raise the misaligned-address exception without per-
forming address translation or protection checks. Implementations that support misaligned ac-
cesses only to some physical addresses must translate and check the address before determining
whether the misaligned access may proceed, in which case raising the page-fault exception or
access is more appropriate.
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Interrupt Exception Code Description

1 0 Reserved
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt

1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt

1 8 Reserved
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt

1 12–15 Reserved
1 ≥16 Designated for platform use

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–23 Reserved
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 ≥64 Reserved

Table 3.6: Machine cause register (mcause) values after trap.
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Priority Exc. Code Description

Highest 3 Instruction address breakpoint

During instruction address translation:
12, 1 First encountered page fault or access fault

With physical address for instruction:
1 Instruction access fault

2 Illegal instruction
0 Instruction address misaligned

8, 9, 11 Environment call
3 Environment break
3 Load/store/AMO address breakpoint

Optionally:
4, 6 Load/store/AMO address misaligned

During address translation for an explicit memory access:
13, 15, 5, 7 First encountered page fault or access fault

With physical address for an explicit memory access:
5, 7 Load/store/AMO access fault

If not higher priority:
Lowest 4, 6 Load/store/AMO address misaligned

Table 3.7: Synchronous exception priority in decreasing priority order.

Instruction address breakpoints have the same cause value as, but different priority than, data
address breakpoints (a.k.a. watchpoints) and environment break exceptions (which are raised by
the EBREAK instruction).

Instruction address misaligned exceptions are raised by control-flow instructions with misaligned
targets, rather than by the act of fetching an instruction. Therefore, these exceptions have lower
priority than other instruction address exceptions.

3.1.16 Machine Trap Value Register (mtval)

The mtval register is an MXLEN-bit read-write register formatted as shown in Figure 3.23. When a
trap is taken into M-mode, mtval is either set to zero or written with exception-specific information
to assist software in handling the trap. Otherwise, mtval is never written by the implementation,
though it may be explicitly written by software. The hardware platform will specify which excep-
tions must set mtval informatively and which may unconditionally set it to zero. If the hardware
platform specifies that no exceptions set mtval to a nonzero value, then mtval is hardwired to zero.

If mtval is written with a nonzero value when a breakpoint, address-misaligned, access-fault, or
page-fault exception occurs on an instruction fetch, load, or store, then mtval will contain the
faulting virtual address.
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When page-based virtual memory is enabled, mtval is written with the faulting virtual address,
even for physical-memory access-fault exceptions. This design reduces datapath cost for most
implementations, particularly those with hardware page-table walkers.

MXLEN-1 0

mtval

MXLEN

Figure 3.23: Machine Trap Value register.

If mtval is written with a nonzero value when a misaligned load or store causes an access-fault or
page-fault exception, then mtval will contain the virtual address of the portion of the access that
caused the fault.

If mtval is written with a nonzero value when an instruction access-fault or page-fault exception
occurs on a system with variable-length instructions, then mtval will contain the virtual address of
the portion of the instruction that caused the fault, while mepc will point to the beginning of the
instruction.

The mtval register can optionally also be used to return the faulting instruction bits on an illegal
instruction exception (mepc points to the faulting instruction in memory). If mtval is written with
a nonzero value when an illegal-instruction exception occurs, then mtval will contain the shortest
of:

� the actual faulting instruction
� the first ILEN bits of the faulting instruction
� the first MXLEN bits of the faulting instruction

The value loaded into mtval on an illegal-instruction exception is right-justified and all unused
upper bits are cleared to zero.

Capturing the faulting instruction in mtval reduces the overhead of instruction emulation, po-
tentially avoiding several partial instruction loads if the instruction is misaligned, and likely data
cache misses or slow uncached accesses when loads are used to fetch the instruction into a data
register. There is also a problem of atomicity if another agent is manipulating the instruction
memory, as might occur in a dynamic translation system.

A requirement is that the entire instruction (or at least the first MXLEN bits) are fetched into
mtval before taking the trap. This should not constrain implementations, which would typically
fetch the entire instruction before attempting to decode the instruction, and avoids complicating
software handlers.

A value of zero in mtval signifies either that the feature is not supported, or an illegal zero
instruction was fetched. A load from the instruction memory pointed to by mepc can be used
to distinguish these two cases (or alternatively, the system configuration information can be
interrogated to install the appropriate trap handling before runtime).

For other traps, mtval is set to zero, but a future standard may redefine mtval’s setting for other
traps.

If mtval is not hardwired to zero, it is a WARL register that must be able to hold all valid virtual
addresses and the value zero. It need not be capable of holding all possible invalid addresses.
Prior to writing mtval, implementations may convert an invalid address into some other invalid
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address that mtval is capable of holding. If the feature to return the faulting instruction bits is
implemented, mtval must also be able to hold all values less than 2N , where N is the smaller of
MXLEN and ILEN.

3.1.17 Machine Configuration Pointer Register (mconfigptr)

mconfigptr is an MXLEN-bit read-only CSR, formatted as shown in Figure 3.24, that holds the
physical address of a configuration data structure. Software can traverse this data structure to
discover information about the harts, the platform, and their configuration.

MXLEN-1 0

mconfigptr

MXLEN

Figure 3.24: Machine Configuration Pointer register.

The pointer alignment in bits must be no smaller than the greatest supported MXLEN: i.e., if the
greatest supported MXLEN is 8× n, then mconfigptr[log2 n-1:0] must be hardwired to zero.

mconfigptr must be implemented, but it may be hardwired to zero to indicate the configuration
data structure does not exist or that an alternative mechanism must be used to locate it.

The format and schema of the configuration data structure have yet to be standardized.

While mconfigptr will simply be hardwired in some implementations, other implementations
may provide a means to configure the value returned on CSR reads. For example, mconfigptr
might present the value of a memory-mapped register that is programmed by the platform or by
M-mode software towards the beginning of the boot process.

3.1.18 Machine Environment Configuration Registers (menvcfg and menvcfgh)

The menvcfg CSR is an MXLEN-bit read/write register, formatted for MXLEN=64 as shown
in Figure 3.25, that controls certain characteristics of the execution environment for modes less
privileged than M.

63 62 8 7 6 5 4 3 1 0

STCE WPRI CBZE CBCFE CBIE WPRI FIOM

1 55 1 1 2 3 1

Figure 3.25: Machine environment configuration register (menvcfg) for MXLEN=64.

If bit FIOM (Fence of I/O implies Memory) is set to one in menvcfg, FENCE instructions executed
in modes less privileged than M are modified so the requirement to order accesses to device I/O
implies also the requirement to order main memory accesses. Table 3.8 details the modified inter-
pretation of FENCE instruction bits PI, PO, SI, and SO for modes less privileged than M when
FIOM=1.



Volume II: RISC-V Privileged Architectures V20211028-signoff 43

Similarly, for modes less privileged than M when FIOM=1, if an atomic instruction that accesses a
region ordered as device I/O has its aq and/or rl bit set, then that instruction is ordered as though
it accesses both device I/O and memory.

If S-mode is not supported, or if satp.MODE is hardwired to Bare, the implementation may
hardwire FIOM to zero.

Instruction bit Meaning when set

PI Predecessor device input and memory reads (PR implied)
PO Predecessor device output and memory writes (PW implied)

SI Successor device input and memory reads (SR implied)
SO Successor device output and memory writes (SW implied)

Table 3.8: Modified interpretation of FENCE predecessor and successor sets for modes less privi-
leged than M when FIOM=1.

Bit FIOM is needed in menvcfg so M-mode can emulate the hypervisor extension of Chapter 5,
which has an equivalent FIOM bit in the hypervisor CSR henvcfg.

The definition of the STCE field will be furnished by the forthcoming Sstc extension. Its allocation
within menvcfg may change prior to the ratification of that extension.

The definition of the CBZE field will be furnished by the forthcoming Zicboz extension. Its alloca-
tion within menvcfg may change prior to the ratification of that extension.

The definitions of the CBCFE and CBIE fields will be furnished by the forthcoming Zicbom ex-
tension. Their allocations within menvcfg may change prior to the ratification of that extension.

When MXLEN=32, menvcfg contains the same fields as bits 31:0 of menvcfg when MXLEN=64.
Additionally, when MXLEN=32, menvcfgh is a 32-bit read/write register that contains the same
fields as bits 63:32 of menvcfg when MXLEN=64. Register menvcfgh does not exist when
MXLEN=64.

If U-mode is not supported, then registers menvcfg and menvcfgh do not exist.

3.1.19 Machine Security Configuration Register (mseccfg)

mseccfg is an optional MXLEN-bit read/write register, formatted as shown in Figure 3.26, that
controls security features.

When MXLEN=32 only, mseccfgh is a 32-bit read/write register that contains the same fields as
mseccfg bits 63:32 when MXLEN=64.

XLEN-1 10 9 8 7 3 2 1 0

WPRI SSEED USEED WPRI RLB MMWP MML

XLEN-10 1 1 5 1 1 1

Figure 3.26: Machine security configuration register (mseccfg).
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The definitions of the SSEED and USEED fields will be furnished by the forthcoming entropy-
source extension, Zkr. Their allocations within mseccfg may change prior to the ratification of
that extension.

The definitions of the RLB, MMWP, and MML fields will be furnished by the forthcoming PMP-
enhancement extension, Smepmp. Their allocations within mseccfg may change prior to the rati-
fication of that extension.

3.2 Machine-Level Memory-Mapped Registers

3.2.1 Machine Timer Registers (mtime and mtimecmp)

Platforms provide a real-time counter, exposed as a memory-mapped machine-mode read-write
register, mtime. mtime must increment at constant frequency, and the platform must provide a
mechanism for determining the timebase of mtime. The mtime register will wrap around if the
count overflows.

The mtime register has a 64-bit precision on all RV32 and RV64 systems. Platforms provide a 64-
bit memory-mapped machine-mode timer compare register (mtimecmp). A machine timer interrupt
becomes pending whenever mtime contains a value greater than or equal to mtimecmp, treating the
values as unsigned integers. The interrupt remains posted until mtimecmp becomes greater than
mtime (typically as a result of writing mtimecmp). The interrupt will only be taken if interrupts
are enabled and the MTIE bit is set in the mie register.

63 0

mtime

64

Figure 3.27: Machine time register (memory-mapped control register).

63 0

mtimecmp

64

Figure 3.28: Machine time compare register (memory-mapped control register).

The timer facility is defined to use wall-clock time rather than a cycle counter to support modern
processors that run with a highly variable clock frequency to save energy through dynamic voltage
and frequency scaling.

Accurate real-time clocks (RTCs) are relatively expensive to provide (requiring a crystal
or MEMS oscillator) and have to run even when the rest of system is powered down, and so
there is usually only one in a system located in a different frequency/voltage domain from the
processors. Hence, the RTC must be shared by all the harts in a system and accesses to the RTC
will potentially incur the penalty of a voltage-level-shifter and clock-domain crossing. It is thus
more natural to expose mtime as a memory-mapped register than as a CSR.

Lower privilege levels do not have their own timecmp registers. Instead, machine-mode
software can implement any number of virtual timers on a hart by multiplexing the next timer
interrupt into the mtimecmp register.
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Simple fixed-frequency systems can use a single clock for both cycle counting and wall-clock
time.

Writes to mtime and mtimecmp are guaranteed to be reflected in MTIP eventually, but not neces-
sarily immediately.

A spurious timer interrupt might occur if an interrupt handler increments mtimecmp then im-
mediately returns, because MTIP might not yet have fallen in the interim. All software should be
written to assume this event is possible, but most software should assume this event is extremely
unlikely. It is almost always more performant to incur an occasional spurious timer interrupt
than to poll MTIP until it falls.

In RV32, memory-mapped writes to mtimecmp modify only one 32-bit part of the register. The
following code sequence sets a 64-bit mtimecmp value without spuriously generating a timer interrupt
due to the intermediate value of the comparand:

# New comparand is in a1:a0.

li t0, -1

la t1, mtimecmp

sw t0, 0(t1) # No smaller than old value.

sw a1, 4(t1) # No smaller than new value.

sw a0, 0(t1) # New value.

Figure 3.29: Sample code for setting the 64-bit time comparand in RV32, assuming a little-endian
memory system and that the registers live in a strongly ordered I/O region. Storing -1 to the
low-order bits of mtimecmp prevents mtimecmp from temporarily becoming smaller than the lesser
of the old and new values.

For RV64, naturally aligned 64-bit memory accesses to the mtime and mtimecmp registers are
additionally supported and are atomic.

3.3 Machine-Mode Privileged Instructions

3.3.1 Environment Call and Breakpoint

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
ECALL 0 PRIV 0 SYSTEM
EBREAK 0 PRIV 0 SYSTEM

The ECALL instruction is used to make a request to the supporting execution environment.
When executed in U-mode, S-mode, or M-mode, it generates an environment-call-from-U-mode
exception, environment-call-from-S-mode exception, or environment-call-from-M-mode exception,
respectively, and performs no other operation.



46 Volume II: RISC-V Privileged Architectures V20211028-signoff

ECALL generates a different exception for each originating privilege mode so that environment
call exceptions can be selectively delegated. A typical use case for Unix-like operating systems is
to delegate to S-mode the environment-call-from-U-mode exception but not the others.

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debug-
ging environment. It generates a breakpoint exception and performs no other operation.

As described in the “C” Standard Extension for Compressed Instructions in Volume I of this
manual, the C.EBREAK instruction performs the same operation as the EBREAK instruction.

ECALL and EBREAK cause the receiving privilege mode’s epc register to be set to the address of
the ECALL or EBREAK instruction itself, not the address of the following instruction. As ECALL
and EBREAK cause synchronous exceptions, they are not considered to retire, and should not
increment the minstret CSR.

3.3.2 Trap-Return Instructions

Instructions to return from trap are encoded under the PRIV minor opcode.

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
MRET/SRET 0 PRIV 0 SYSTEM

To return after handling a trap, there are separate trap return instructions per privilege level,
MRET and SRET. MRET is always provided. SRET must be provided if supervisor mode is
supported, and should raise an illegal instruction exception otherwise. SRET should also raise an
illegal instruction exception when TSR=1 in mstatus, as described in Section 3.1.6.5. An xRET
instruction can be executed in privilege mode x or higher, where executing a lower-privilege xRET
instruction will pop the relevant lower-privilege interrupt enable and privilege mode stack. In
addition to manipulating the privilege stack as described in Section 3.1.6.1, xRET sets the pc to
the value stored in the xepc register.

If the A extension is supported, the xRET instruction is allowed to clear any outstanding LR
address reservation but is not required to. Trap handlers should explicitly clear the reservation if
required (e.g., by using a dummy SC) before executing the xRET.

If xRET instructions always cleared LR reservations, it would be impossible to single-step through
LR/SC sequences using a debugger.

3.3.3 Wait for Interrupt

The Wait for Interrupt instruction (WFI) provides a hint to the implementation that the current
hart can be stalled until an interrupt might need servicing. Execution of the WFI instruction
can also be used to inform the hardware platform that suitable interrupts should preferentially be
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routed to this hart. WFI is available in all privileged modes, and optionally available to U-mode.
This instruction may raise an illegal instruction exception when TW=1 in mstatus, as described
in Section 3.1.6.5.

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
WFI 0 PRIV 0 SYSTEM

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt
exception will be taken on the following instruction, i.e., execution resumes in the trap handler and
mepc = pc + 4.

The following instruction takes the interrupt exception and trap, so that a simple return from
the trap handler will execute code after the WFI instruction.

The purpose of the WFI instruction is to provide a hint to the implementation, and so a legal
implementation is to simply implement WFI as a NOP.

If the implementation does not stall the hart on execution of the instruction, then the interrupt
will be taken on some instruction in the idle loop containing the WFI, and on a simple return
from the handler, the idle loop will resume execution.

The WFI instruction can also be executed when interrupts are disabled. The operation of WFI
must be unaffected by the global interrupt bits in mstatus (MIE and SIE) and the delegation
register mideleg (i.e., the hart must resume if a locally enabled interrupt becomes pending, even if
it has been delegated to a less-privileged mode), but should honor the individual interrupt enables
(e.g, MTIE) (i.e., implementations should avoid resuming the hart if the interrupt is pending but
not individually enabled). WFI is also required to resume execution for locally enabled interrupts
pending at any privilege level, regardless of the global interrupt enable at each privilege level.

If the event that causes the hart to resume execution does not cause an interrupt to be taken,
execution will resume at pc + 4, and software must determine what action to take, including
looping back to repeat the WFI if there was no actionable event.

By allowing wakeup when interrupts are disabled, an alternate entry point to an interrupt handler
can be called that does not require saving the current context, as the current context can be saved
or discarded before the WFI is executed.

As implementations are free to implement WFI as a NOP, software must explicitly check for
any relevant pending but disabled interrupts in the code following an WFI, and should loop back
to the WFI if no suitable interrupt was detected. The mip or sip registers can be interrogated
to determine the presence of any interrupt in machine or supervisor mode respectively.

The operation of WFI is unaffected by the delegation register settings.
WFI is defined so that an implementation can trap into a higher privilege mode, either im-

mediately on encountering the WFI or after some interval to initiate a machine-mode transition
to a lower power state, for example.

The same “wait-for-event” template might be used for possible future extensions that wait on
memory locations changing, or message arrival.
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3.3.4 Custom SYSTEM Instructions

The subspace of the SYSTEM major opcode shown in Figure 3.30 is designated for custom use. It
is recommended that these instructions use bits 29:28 to designate the minimum required privilege
mode, as do other SYSTEM instructions.

31 26 25 15 14 12 11 7 6 0

funct6 custom funct3 custom opcode Recommended Purpose
6 11 3 5 7

100011 custom 0 custom SYSTEM Unprivileged or User-Level
110011 custom 0 custom SYSTEM Unprivileged or User-Level
100111 custom 0 custom SYSTEM Supervisor-Level
110111 custom 0 custom SYSTEM Supervisor-Level
101011 custom 0 custom SYSTEM Hypervisor-Level
111011 custom 0 custom SYSTEM Hypervisor-Level
101111 custom 0 custom SYSTEM Machine-Level
111111 custom 0 custom SYSTEM Machine-Level

Figure 3.30: SYSTEM instruction encodings designated for custom use.

3.4 Reset

Upon reset, a hart’s privilege mode is set to M. The mstatus fields MIE and MPRV are reset to 0.
If little-endian memory accesses are supported, the mstatus/mstatush field MBE is reset to 0. The
misa register is reset to enable the maximal set of supported extensions and widest MXLEN, as
described in Section 3.1.1. For implementations with the “A” standard extension, there is no valid
load reservation. The pc is set to an implementation-defined reset vector. The mcause register is
set to a value indicating the cause of the reset. Writable PMP registers’ A and L fields are set to
0, unless the platform mandates a different reset value for some PMP registers’ A and L fields. No
WARL field contains an illegal value. All other hart state is unspecified.

The mcause values after reset have implementation-specific interpretation, but the value 0 should
be returned on implementations that do not distinguish different reset conditions. Implementations
that distinguish different reset conditions should only use 0 to indicate the most complete reset.

Some designs may have multiple causes of reset (e.g., power-on reset, external hard reset,
brownout detected, watchdog timer elapse, sleep-mode wakeup), which machine-mode software
and debuggers may wish to distinguish.

mcause reset values may alias mcause values following synchronous exceptions. There should
be no ambiguity in this overlap, since on reset the pc is typically set to a different value than
on other traps.
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3.5 Non-Maskable Interrupts

Non-maskable interrupts (NMIs) are only used for hardware error conditions, and cause an immedi-
ate jump to an implementation-defined NMI vector running in M-mode regardless of the state of a
hart’s interrupt enable bits. The mepc register is written with the virtual address of the instruction
that was interrupted, and mcause is set to a value indicating the source of the NMI. The NMI can
thus overwrite state in an active machine-mode interrupt handler.

The values written to mcause on an NMI are implementation-defined. The high Interrupt bit of
mcause should be set to indicate that this was an interrupt. An Exception Code of 0 is reserved
to mean “unknown cause” and implementations that do not distinguish sources of NMIs via the
mcause register should return 0 in the Exception Code.

Unlike resets, NMIs do not reset processor state, enabling diagnosis, reporting, and possible con-
tainment of the hardware error.

3.6 Physical Memory Attributes

The physical memory map for a complete system includes various address ranges, some correspond-
ing to memory regions, some to memory-mapped control registers, and some to vacant holes in the
address space. Some memory regions might not support reads, writes, or execution; some might
not support subword or subblock accesses; some might not support atomic operations; and some
might not support cache coherence or might have different memory models. Similarly, memory-
mapped control registers vary in their supported access widths, support for atomic operations, and
whether read and write accesses have associated side effects. In RISC-V systems, these properties
and capabilities of each region of the machine’s physical address space are termed physical memory
attributes (PMAs). This section describes RISC-V PMA terminology and how RISC-V systems
implement and check PMAs.

PMAs are inherent properties of the underlying hardware and rarely change during system oper-
ation. Unlike physical memory protection values described in Section 3.7, PMAs do not vary by
execution context. The PMAs of some memory regions are fixed at chip design time—for example,
for an on-chip ROM. Others are fixed at board design time, depending, for example, on which
other chips are connected to off-chip buses. Off-chip buses might also support devices that could
be changed on every power cycle (cold pluggable) or dynamically while the system is running (hot
pluggable). Some devices might be configurable at run time to support different uses that imply
different PMAs—for example, an on-chip scratchpad RAM might be cached privately by one core
in one end-application, or accessed as a shared non-cached memory in another end-application.

Most systems will require that at least some PMAs are dynamically checked in hardware later in
the execution pipeline after the physical address is known, as some operations will not be supported
at all physical memory addresses, and some operations require knowing the current setting of a
configurable PMA attribute. While many other architectures specify some PMAs in the virtual
memory page tables and use the TLB to inform the pipeline of these properties, this approach
injects platform-specific information into a virtualized layer and can cause system errors unless
attributes are correctly initialized in each page-table entry for each physical memory region. In
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addition, the available page sizes might not be optimal for specifying attributes in the physical
memory space, leading to address-space fragmentation and inefficient use of expensive TLB entries.

For RISC-V, we separate out specification and checking of PMAs into a separate hardware structure,
the PMA checker. In many cases, the attributes are known at system design time for each physical
address region, and can be hardwired into the PMA checker. Where the attributes are run-time
configurable, platform-specific memory-mapped control registers can be provided to specify these
attributes at a granularity appropriate to each region on the platform (e.g., for an on-chip SRAM
that can be flexibly divided between cacheable and uncacheable uses). PMAs are checked for any
access to physical memory, including accesses that have undergone virtual to physical memory
translation. To aid in system debugging, we strongly recommend that, where possible, RISC-
V processors precisely trap physical memory accesses that fail PMA checks. Precisely trapped
PMA violations manifest as instruction, load, or store access-fault exceptions, distinct from virtual-
memory page-fault exceptions. Precise PMA traps might not always be possible, for example, when
probing a legacy bus architecture that uses access failures as part of the discovery mechanism. In
this case, error responses from slave devices will be reported as imprecise bus-error interrupts.

PMAs must also be readable by software to correctly access certain devices or to correctly configure
other hardware components that access memory, such as DMA engines. As PMAs are tightly tied
to a given physical platform’s organization, many details are inherently platform-specific, as is the
means by which software can learn the PMA values for a platform. Some devices, particularly
legacy buses, do not support discovery of PMAs and so will give error responses or time out if
an unsupported access is attempted. Typically, platform-specific machine-mode code will extract
PMAs and ultimately present this information to higher-level less-privileged software using some
standard representation.

Where platforms support dynamic reconfiguration of PMAs, an interface will be provided to set
the attributes by passing requests to a machine-mode driver that can correctly reconfigure the
platform. For example, switching cacheability attributes on some memory regions might involve
platform-specific operations, such as cache flushes, that are available only to machine-mode.

3.6.1 Main Memory versus I/O versus Vacant Regions

The most important characterization of a given memory address range is whether it holds regular
main memory, or I/O devices, or is vacant. Regular main memory is required to have a number
of properties, specified below, whereas I/O devices can have a much broader range of attributes.
Memory regions that do not fit into regular main memory, for example, device scratchpad RAMs,
are categorized as I/O regions. Vacant regions are also classified as I/O regions but with attributes
specifying that no accesses are supported.

3.6.2 Supported Access Type PMAs

Access types specify which access widths, from 8-bit byte to long multi-word burst, are supported,
and also whether misaligned accesses are supported for each access width.
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Although software running on a RISC-V hart cannot directly generate bursts to memory, software
might have to program DMA engines to access I/O devices and might therefore need to know
which access sizes are supported.

Main memory regions always support read and write of all access widths required by the attached
devices, and can specify whether instruction fetch is supported.

Some platforms might mandate that all of main memory support instruction fetch. Other plat-
forms might prohibit instruction fetch from some main memory regions.

In some cases, the design of a processor or device accessing main memory might support other
widths, but must be able to function with the types supported by the main memory.

I/O regions can specify which combinations of read, write, or execute accesses to which data widths
are supported.

For systems with page-based virtual memory, I/O and memory regions can specify which combi-
nations of hardware page-table reads and hardware page-table writes are supported.

Unix-like operating systems generally require that all of cacheable main memory supports page-
table walks.

3.6.3 Atomicity PMAs

Atomicity PMAs describes which atomic instructions are supported in this address region. Support
for atomic instructions is divided into two categories: LR/SC and AMOs.

Some platforms might mandate that all of cacheable main memory support all atomic operations
required by the attached processors.

3.6.3.1 AMO PMA

Within AMOs, there are four levels of support: AMONone, AMOSwap, AMOLogical, and
AMOArithmetic. AMONone indicates that no AMO operations are supported. AMOSwap in-
dicates that only amoswap instructions are supported in this address range. AMOLogical indi-
cates that swap instructions plus all the logical AMOs (amoand, amoor, amoxor) are supported.
AMOArithmetic indicates that all RISC-V AMOs are supported. For each level of support, natu-
rally aligned AMOs of a given width are supported if the underlying memory region supports reads
and writes of that width. Main memory and I/O regions may only support a subset or none of the
processor-supported atomic operations.

We recommend providing at least AMOLogical support for I/O regions where possible.
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AMO Class Supported Operations

AMONone None
AMOSwap amoswap

AMOLogical above + amoand, amoor, amoxor
AMOArithmetic above + amoadd, amomin, amomax, amominu, amomaxu

Table 3.9: Classes of AMOs supported by I/O regions.

3.6.3.2 Reservability PMA

For LR/SC, there are three levels of support indicating combinations of the reservability and even-
tuality properties: RsrvNone, RsrvNonEventual, and RsrvEventual. RsrvNone indicates that no
LR/SC operations are supported (the location is non-reservable). RsrvNonEventual indicates that
the operations are supported (the location is reservable), but without the eventual success guaran-
tee described in the unprivileged ISA specification. RsrvEventual indicates that the operations are
supported and provide the eventual success guarantee.

We recommend providing RsrvEventual support for main memory regions where possible. Most
I/O regions will not support LR/SC accesses, as these are most conveniently built on top of a
cache-coherence scheme, but some may support RsrvNonEventual or RsrvEventual.

When LR/SC is used for memory locations marked RsrvNonEventual, software should provide
alternative fall-back mechanisms used when lack of progress is detected.

3.6.3.3 Alignment

Memory regions that support aligned LR/SC or aligned AMOs might also support misaligned
LR/SC or misaligned AMOs for some addresses and access widths. If, for a given address and
access width, a misaligned LR/SC or AMO generates an address-misaligned exception, then all
loads, stores, LRs/SCs, and AMOs using that address and access width must generate address-
misaligned exceptions.

The standard “A” extension does not support misaligned AMOs or LR/SC pairs. Support for
misaligned AMOs is provided by the standard “Zam” extension. Support for misaligned LR/SC
sequences is not currently standardized, so LR and SC to misaligned addresses must raise an
exception.

Mandating that misaligned loads and stores raise address-misaligned exceptions wherever
misaligned AMOs raise address-misaligned exceptions permits the emulation of misaligned AMOs
in an M-mode trap handler. The handler guarantees atomicity by acquiring a global mutex and
emulating the access within the critical section. Provided that the handler for misaligned loads
and stores uses the same mutex, all accesses to a given address that use the same word size will
be mutually atomic.

Implementations may raise access-fault exceptions instead of address-misaligned exceptions for
some misaligned accesses, indicating the instruction should not be emulated by a trap handler.
If, for a given address and access width, all misaligned LRs/SCs and AMOs generate access-fault
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exceptions, then regular misaligned loads and stores using the same address and access width are
not required to execute atomically.

3.6.4 Memory-Ordering PMAs

Regions of the address space are classified as eithermain memory or I/O for the purposes of ordering
by the FENCE instruction and atomic-instruction ordering bits.

Accesses by one hart to main memory regions are observable not only by other harts but also
by other devices with the capability to initiate requests in the main memory system (e.g., DMA
engines). Coherent main memory regions always have either the RVWMO or RVTSO memory
model. Incoherent main memory regions have an implementation-defined memory model.

Accesses by one hart to an I/O region are observable not only by other harts and bus mastering
devices but also by targeted slave I/O devices, and I/O regions may be accessed with either relaxed
or strong ordering. Accesses to an I/O region with relaxed ordering are generally observed by other
harts and bus mastering devices in a manner similar to the ordering of accesses to an RVWMO
memory region, as discussed in Section A.4.2 in Volume I of this specification. By contrast, accesses
to an I/O region with strong ordering are generally observed by other harts and bus mastering
devices in program order.

Each strongly ordered I/O region specifies a numbered ordering channel, which is a mechanism by
which ordering guarantees can be provided between different I/O regions. Channel 0 is used to
indicate point-to-point strong ordering only, where only accesses by the hart to the single associated
I/O region are strongly ordered.

Channel 1 is used to provide global strong ordering across all I/O regions. Any accesses by a hart to
any I/O region associated with channel 1 can only be observed to have occurred in program order
by all other harts and I/O devices, including relative to accesses made by that hart to relaxed I/O
regions or strongly ordered I/O regions with different channel numbers. In other words, any access
to a region in channel 1 is equivalent to executing a fence io,io instruction before and after the
instruction.

Other larger channel numbers provide program ordering to accesses by that hart across any regions
with the same channel number.

Systems might support dynamic configuration of ordering properties on each memory region.

Strong ordering can be used to improve compatibility with legacy device driver code, or to enable
increased performance compared to insertion of explicit ordering instructions when the imple-
mentation is known to not reorder accesses.

Local strong ordering (channel 0) is the default form of strong ordering as it is often straight-
forward to provide if there is only a single in-order communication path between the hart and
the I/O device.

Generally, different strongly ordered I/O regions can share the same ordering channel without
additional ordering hardware if they share the same interconnect path and the path does not
reorder requests.
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3.6.5 Coherence and Cacheability PMAs

Coherence is a property defined for a single physical address, and indicates that writes to that
address by one agent will eventually be made visible to other agents in the system. Coherence
is not to be confused with the memory consistency model of a system, which defines what values
a memory read can return given the previous history of reads and writes to the entire memory
system. In RISC-V platforms, the use of hardware-incoherent regions is discouraged due to software
complexity, performance, and energy impacts.

The cacheability of a memory region should not affect the software view of the region except
for differences reflected in other PMAs, such as main memory versus I/O classification, memory
ordering, supported accesses and atomic operations, and coherence. For this reason, we treat
cacheability as a platform-level setting managed by machine-mode software only.

Where a platform supports configurable cacheability settings for a memory region, a platform-
specific machine-mode routine will change the settings and flush caches if necessary, so the system
is only incoherent during the transition between cacheability settings. This transitory state should
not be visible to lower privilege levels.

We categorize RISC-V caches into three types: master-private, shared, and slave-private.
Master-private caches are attached to a single master agent, i.e., one that issues read/write
requests to the memory system. Shared caches are located between masters and slaves and may
be hierarchically organized. Slave-private caches do not impact coherence, as they are local to
a single slave and do not affect other PMAs at a master, so are not considered further here.
We use private cache to mean a master-private cache in the following section, unless explicitly
stated otherwise.

Coherence is straightforward to provide for a shared memory region that is not cached by any
agent. The PMA for such a region would simply indicate it should not be cached in a private or
shared cache.

Coherence is also straightforward for read-only regions, which can be safely cached by multiple
agents without requiring a cache-coherence scheme. The PMA for this region would indicate that
it can be cached, but that writes are not supported.

Some read-write regions might only be accessed by a single agent, in which case they can be
cached privately by that agent without requiring a coherence scheme. The PMA for such regions
would indicate they can be cached. The data can also be cached in a shared cache, as other
agents should not access the region.

If an agent can cache a read-write region that is accessible by other agents, whether caching
or non-caching, a cache-coherence scheme is required to avoid use of stale values. In regions
lacking hardware cache coherence (hardware-incoherent regions), cache coherence can be im-
plemented entirely in software, but software coherence schemes are notoriously difficult to im-
plement correctly and often have severe performance impacts due to the need for conservative
software-directed cache-flushing. Hardware cache-coherence schemes require more complex hard-
ware and can impact performance due to the cache-coherence probes, but are otherwise invisible
to software.

For each hardware cache-coherent region, the PMA would indicate that the region is coherent
and which hardware coherence controller to use if the system has multiple coherence controllers.
For some systems, the coherence controller might be an outer-level shared cache, which might
itself access further outer-level cache-coherence controllers hierarchically.

Most memory regions within a platform will be coherent to software, because they will be
fixed as either uncached, read-only, hardware cache-coherent, or only accessed by one agent.
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If a PMA indicates non-cacheability, then accesses to that region must be satisfied by the memory
itself, not by any caches.

For implementations with a cacheability-control mechanism, the situation may arise that a pro-
gram uncacheably accesses a memory location that is currently cache-resident. In this situation,
the cached copy must be ignored. This constraint is necessary to prevent more-privileged modes’
speculative cache refills from affecting the behavior of less-privileged modes’ uncacheable accesses.

3.6.6 Idempotency PMAs

Idempotency PMAs describe whether reads and writes to an address region are idempotent. Main
memory regions are assumed to be idempotent. For I/O regions, idempotency on reads and writes
can be specified separately (e.g., reads are idempotent but writes are not). If accesses are non-
idempotent, i.e., there is potentially a side effect on any read or write access, then speculative or
redundant accesses must be avoided.

For the purposes of defining the idempotency PMAs, changes in observed memory ordering created
by redundant accesses are not considered a side effect.

While hardware should always be designed to avoid speculative or redundant accesses to memory
regions marked as non-idempotent, it is also necessary to ensure software or compiler optimiza-
tions do not generate spurious accesses to non-idempotent memory regions.

Non-idempotent regions might not support misaligned accesses. Misaligned accesses to such
regions should raise access-fault exceptions rather than address-misaligned exceptions, indicating
that software should not emulate the misaligned access using multiple smaller accesses, which
could cause unexpected side effects.

For non-idempotent regions, implicit reads and writes must not be performed early or speculatively,
with the following exceptions. When a non-speculative implicit read is performed, an implementa-
tion is permitted to additionally read any of the bytes within a naturally aligned power-of-2 region
containing the address of the non-speculative implicit read. Furthermore, when a non-speculative
instruction fetch is performed, an implementation is permitted to additionally read any of the
bytes within the next naturally aligned power-of-2 region of the same size (with the address of the
region taken modulo 2XLEN). The results of these additional reads may be used to satisfy subse-
quent early or speculative implicit reads. The size of these naturally aligned power-of-2 regions
is implementation-defined, but, for systems with page-based virtual memory, must not exceed the
smallest supported page size.

3.7 Physical Memory Protection

To support secure processing and contain faults, it is desirable to limit the physical addresses
accessible by software running on a hart. An optional physical memory protection (PMP) unit
provides per-hart machine-mode control registers to allow physical memory access privileges (read,
write, execute) to be specified for each physical memory region. The PMP values are checked in
parallel with the PMA checks described in Section 3.6.
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The granularity of PMP access control settings are platform-specific, but the standard PMP en-
coding supports regions as small as four bytes. Certain regions’ privileges can be hardwired—for
example, some regions might only ever be visible in machine mode but in no lower-privilege layers.

Platforms vary widely in demands for physical memory protection, and some platforms may
provide other PMP structures in addition to or instead of the scheme described in this section.

PMP checks are applied to all accesses whose effective privilege mode is S or U, including instruction
fetches in S and U mode, data accesses in S and U mode when the MPRV bit in the mstatus register
is clear, and data accesses in any mode when the MPRV bit in mstatus is set and the MPP field
in mstatus contains S or U. PMP checks are also applied to page-table accesses for virtual-address
translation, for which the effective privilege mode is S. Optionally, PMP checks may additionally
apply to M-mode accesses, in which case the PMP registers themselves are locked, so that even
M-mode software cannot change them until the hart is reset. In effect, PMP can grant permissions
to S and U modes, which by default have none, and can revoke permissions from M-mode, which
by default has full permissions.

PMP violations are always trapped precisely at the processor.

3.7.1 Physical Memory Protection CSRs

PMP entries are described by an 8-bit configuration register and one MXLEN-bit address register.
Some PMP settings additionally use the address register associated with the preceding PMP entry.
Up to 64 PMP entries are supported. Implementations may implement zero, 16, or 64 PMP CSRs;
the lowest-numbered PMP CSRs must be implemented first. All PMP CSR fields are WARL and
may be hardwired to zero. PMP CSRs are only accessible to M-mode.

The PMP configuration registers are densely packed into CSRs to minimize context-switch time.
For RV32, sixteen CSRs, pmpcfg0–pmpcfg15, hold the configurations pmp0cfg–pmp63cfg for the 64
PMP entries, as shown in Figure 3.31. For RV64, eight even-numbered CSRs, pmpcfg0, pmpcfg2,
. . . , pmpcfg14, hold the configurations for the 64 PMP entries, as shown in Figure 3.32. For RV64,
the odd-numbered configuration registers, pmpcfg1, pmpcfg3, . . . , pmpcfg15, are illegal.

RV64 systems use pmpcfg2, rather than pmpcfg1, to hold configurations for PMP entries 8–15.
This design reduces the cost of supporting multiple MXLEN values, since the configurations for
PMP entries 8–11 appear in pmpcfg2[31:0] for both RV32 and RV64.

The PMP address registers are CSRs named pmpaddr0–pmpaddr63. Each PMP address register
encodes bits 33–2 of a 34-bit physical address for RV32, as shown in Figure 3.33. For RV64, each
PMP address register encodes bits 55–2 of a 56-bit physical address, as shown in Figure 3.34. Not
all physical address bits may be implemented, and so the pmpaddr registers are WARL.

The Sv32 page-based virtual-memory scheme described in Section 4.3 supports 34-bit physical
addresses for RV32, so the PMP scheme must support addresses wider than XLEN for RV32.
The Sv39 and Sv48 page-based virtual-memory schemes described in Sections 4.4 and 4.5 support
a 56-bit physical address space, so the RV64 PMP address registers impose the same limit.
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31 24 23 16 15 8 7 0

pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8
31 24 23 16 15 8 7 0

pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmpcfg1

8 8 8 8

...
31 24 23 16 15 8 7 0

pmp63cfg pmp62cfg pmp61cfg pmp60cfg pmpcfg15

8 8 8 8

Figure 3.31: RV32 PMP configuration CSR layout.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8 8 8 8 8
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

pmp15cfg pmp14cfg pmp13cfg pmp12cfg pmp11cfg pmp10cfg pmp9cfg pmp8cfg pmpcfg2

8 8 8 8 8 8 8 8

...
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

pmp63cfg pmp62cfg pmp61cfg pmp60cfg pmp59cfg pmp58cfg pmp57cfg pmp56cfg pmpcfg14

8 8 8 8 8 8 8 8

Figure 3.32: RV64 PMP configuration CSR layout.

31 0

address[33:2] (WARL)

32

Figure 3.33: PMP address register format, RV32.

63 54 53 0

0 (WARL) address[55:2] (WARL)

10 54

Figure 3.34: PMP address register format, RV64.

Figure 3.35 shows the layout of a PMP configuration register. The R, W, and X bits, when set,
indicate that the PMP entry permits read, write, and instruction execution, respectively. When
one of these bits is clear, the corresponding access type is denied. The R, W, and X fields form a
collectiveWARL field for which the combinations with R=0 and W=1 are reserved. The remaining
two fields, A and L, are described in the following sections.

7 6 5 4 3 2 1 0

L (WARL) 0 (WARL) A (WARL) X (WARL) W (WARL) R (WARL)

1 2 2 1 1 1

Figure 3.35: PMP configuration register format.
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Attempting to fetch an instruction from a PMP region that does not have execute permissions raises
an instruction access-fault exception. Attempting to execute a load or load-reserved instruction
which accesses a physical address within a PMP region without read permissions raises a load
access-fault exception. Attempting to execute a store, store-conditional, or AMO instruction which
accesses a physical address within a PMP region without write permissions raises a store access-fault
exception.

If MXLEN is changed, the contents of the pmpxcfg fields are preserved, but appear in the pmpcfgy
CSR prescribed by the new setting of MXLEN. For example, when MXLEN is changed from 64 to
32, pmp4cfg moves from pmpcfg0[39:32] to pmpcfg1[7:0]. The pmpaddr CSRs follow the usual CSR
width modulation rules described in Section 2.4.

Address Matching

The A field in a PMP entry’s configuration register encodes the address-matching mode of the
associated PMP address register. The encoding of this field is shown in Table 3.10. When A=0,
this PMP entry is disabled and matches no addresses. Two other address-matching modes are
supported: naturally aligned power-of-2 regions (NAPOT), including the special case of naturally
aligned four-byte regions (NA4); and the top boundary of an arbitrary range (TOR). These modes
support four-byte granularity.

A Name Description

0 OFF Null region (disabled)
1 TOR Top of range
2 NA4 Naturally aligned four-byte region
3 NAPOT Naturally aligned power-of-two region, ≥8 bytes

Table 3.10: Encoding of A field in PMP configuration registers.

NAPOT ranges make use of the low-order bits of the associated address register to encode the size
of the range, as shown in Table 3.11.

pmpaddr pmpcfg.A Match type and size

yyyy...yyyy NA4 4-byte NAPOT range
yyyy...yyy0 NAPOT 8-byte NAPOT range
yyyy...yy01 NAPOT 16-byte NAPOT range
yyyy...y011 NAPOT 32-byte NAPOT range

. . . . . . . . .
yy01...1111 NAPOT 2XLEN-byte NAPOT range
y011...1111 NAPOT 2XLEN+1-byte NAPOT range
0111...1111 NAPOT 2XLEN+2-byte NAPOT range
1111...1111 NAPOT 2XLEN+3-byte NAPOT range

Table 3.11: NAPOT range encoding in PMP address and configuration registers.

If TOR is selected, the associated address register forms the top of the address range, and the
preceding PMP address register forms the bottom of the address range. If PMP entry i’s A field is
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set to TOR, the entry matches any address y such that pmpaddri−1 ≤ y < pmpaddri (irrespective of
the value of pmpcfgi−1). If PMP entry 0’s A field is set to TOR, zero is used for the lower bound,
and so it matches any address y < pmpaddr0.

If pmpaddri−1 ≥ pmpaddri and pmpcfgi.A=TOR, then PMP entry i matches no addresses.

Although the PMP mechanism supports regions as small as four bytes, platforms may specify
coarser PMP regions. In general, the PMP grain is 2G+2 bytes and must be the same across all
PMP regions. When G ≥ 1, the NA4 mode is not selectable. When G ≥ 2 and pmpcfgi.A[1] is set,
i.e. the mode is NAPOT, then bits pmpaddri[G-2:0] read as all ones. When G ≥ 1 and pmpcfgi.A[1]
is clear, i.e. the mode is OFF or TOR, then bits pmpaddri[G-1:0] read as all zeros. Bits pmpaddri[G-
1:0] do not affect the TOR address-matching logic. Although changing pmpcfgi.A[1] affects the value
read from pmpaddri, it does not affect the underlying value stored in that register—in particular,
pmpaddri[G-1] retains its original value when pmpcfgi.A is changed from NAPOT to TOR/OFF
then back to NAPOT.

Software may determine the PMP granularity by writing zero to pmp0cfg, then writing all ones
to pmpaddr0, then reading back pmpaddr0. If G is the index of the least-significant bit set, the
PMP granularity is 2G+2 bytes.

If the current XLEN is greater than MXLEN, the PMP address registers are zero-extended from
MXLEN to XLEN bits for the purposes of address matching.

Locking and Privilege Mode

The L bit indicates that the PMP entry is locked, i.e., writes to the configuration register and
associated address registers are ignored. Locked PMP entries remain locked until the hart is reset.
If PMP entry i is locked, writes to pmpicfg and pmpaddri are ignored. Additionally, if PMP entry i
is locked and pmpicfg.A is set to TOR, writes to pmpaddri-1 are ignored.

Setting the L bit locks the PMP entry even when the A field is set to OFF.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are
enforced on M-mode accesses. When the L bit is set, these permissions are enforced for all privilege
modes. When the L bit is clear, any M-mode access matching the PMP entry will succeed; the
R/W/X permissions apply only to S and U modes.

Priority and Matching Logic

PMP entries are statically prioritized. The lowest-numbered PMP entry that matches any byte of
an access determines whether that access succeeds or fails. The matching PMP entry must match
all bytes of an access, or the access fails, irrespective of the L, R, W, and X bits. For example,
if a PMP entry is configured to match the four-byte range 0xC–0xF, then an 8-byte access to the
range 0x8–0xF will fail, assuming that PMP entry is the highest-priority entry that matches those
addresses.
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If a PMP entry matches all bytes of an access, then the L, R, W, and X bits determine whether the
access succeeds or fails. If the L bit is clear and the privilege mode of the access is M, the access
succeeds. Otherwise, if the L bit is set or the privilege mode of the access is S or U, then the access
succeeds only if the R, W, or X bit corresponding to the access type is set.

If no PMP entry matches an M-mode access, the access succeeds. If no PMP entry matches an
S-mode or U-mode access, but at least one PMP entry is implemented, the access fails.

If at least one PMP entry is implemented, but all PMP entries’ A fields are set to OFF, then
all S-mode and U-mode memory accesses will fail.

Failed accesses generate an instruction, load, or store access-fault exception. Note that a single
instruction may generate multiple accesses, which may not be mutually atomic. An access-fault
exception is generated if at least one access generated by an instruction fails, though other accesses
generated by that instruction may succeed with visible side effects. Notably, instructions that
reference virtual memory are decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be decom-
posed into multiple accesses, some of which may succeed before an access-fault exception occurs.
In particular, a portion of a misaligned store that passes the PMP check may become visible,
even if another portion fails the PMP check. The same behavior may manifest for floating-point
stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store address is
naturally aligned.

3.7.2 Physical Memory Protection and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based virtual
memory systems described in Chapter 4. When paging is enabled, instructions that access virtual
memory may result in multiple physical-memory accesses, including implicit references to the page
tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit
page-table accesses is S.

Implementations with virtual memory are permitted to perform address translations speculatively
and earlier than required by an explicit virtual-memory access. The PMP settings for the resulting
physical address may be checked at any point between the address translation and the explicit
virtual-memory access. Hence, when the PMP settings are modified in a manner that affects either
the physical memory that holds the page tables or the physical memory to which the page tables
point, M-mode software must synchronize the PMP settings with the virtual memory system. This
is accomplished by executing an SFENCE.VMA instruction with rs1=x0 and rs2=x0, after the
PMP CSRs are written.

If page-based virtual memory is not implemented, memory accesses check the PMP settings syn-
chronously, so no fence is needed.



Chapter 4

Supervisor-Level ISA, Version 1.12

This chapter describes the RISC-V supervisor-level architecture, which contains a common core
that is used with various supervisor-level address translation and protection schemes.

Supervisor mode is deliberately restricted in terms of interactions with underlying physical hard-
ware, such as physical memory and device interrupts, to support clean virtualization. In this
spirit, certain supervisor-level facilities, including requests for timer and interprocessor inter-
rupts, are provided by implementation-specific mechanisms. In some systems, a supervisor execu-
tion environment (SEE) provides these facilities in a manner specified by a supervisor binary in-
terface (SBI). Other systems supply these facilities directly, through some other implementation-
defined mechanism.

4.1 Supervisor CSRs

A number of CSRs are provided for the supervisor.

The supervisor should only view CSR state that should be visible to a supervisor-level operating
system. In particular, there is no information about the existence (or non-existence) of higher
privilege levels (machine level or other) visible in the CSRs accessible by the supervisor.

Many supervisor CSRs are a subset of the equivalent machine-mode CSR, and the machine-
mode chapter should be read first to help understand the supervisor-level CSR descriptions.

4.1.1 Supervisor Status Register (sstatus)

The sstatus register is an SXLEN-bit read/write register formatted as shown in Figure 4.1 when
SXLEN=32 and Figure 4.2 when SXLEN=64. The sstatus register keeps track of the processor’s
current operating state.

The SPP bit indicates the privilege level at which a hart was executing before entering supervisor
mode. When a trap is taken, SPP is set to 0 if the trap originated from user mode, or 1 otherwise.
When an SRET instruction (see Section 3.3.2) is executed to return from the trap handler, the
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31 30 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 2 1 0

SD WPRI MXR SUM WPRI XS[1:0] FS[1:0] WPRI SPP WPRI UBE SPIE WPRI SIE WPRI

1 11 1 1 1 2 2 4 1 1 1 1 3 1 1

Figure 4.1: Supervisor-mode status register (sstatus) when SXLEN=32.

63 62 34 33 32 31 20 19 18 17

SD WPRI UXL[1:0] WPRI MXR SUM WPRI

1 29 2 12 1 1 1

16 15 14 13 12 9 8 7 6 5 4 2 1 0

XS[1:0] FS[1:0] WPRI SPP WPRI UBE SPIE WPRI SIE WPRI

2 2 4 1 1 1 1 3 1 1

Figure 4.2: Supervisor-mode status register (sstatus) when SXLEN=64.

privilege level is set to user mode if the SPP bit is 0, or supervisor mode if the SPP bit is 1; SPP
is then set to 0.

The SIE bit enables or disables all interrupts in supervisor mode. When SIE is clear, interrupts
are not taken while in supervisor mode. When the hart is running in user-mode, the value in
SIE is ignored, and supervisor-level interrupts are enabled. The supervisor can disable individual
interrupt sources using the sie CSR.

The SPIE bit indicates whether supervisor interrupts were enabled prior to trapping into supervisor
mode. When a trap is taken into supervisor mode, SPIE is set to SIE, and SIE is set to 0. When
an SRET instruction is executed, SIE is set to SPIE, then SPIE is set to 1.

The sstatus register is a subset of the mstatus register.

In a straightforward implementation, reading or writing any field in sstatus is equivalent to
reading or writing the homonymous field in mstatus.

4.1.1.1 Base ISA Control in sstatus Register

The UXL field controls the value of XLEN for U-mode, termed UXLEN, which may differ from the
value of XLEN for S-mode, termed SXLEN. The encoding of UXL is the same as that of the MXL
field of misa, shown in Table 3.1.

When SXLEN=32, the UXL field does not exist, and UXLEN=32. When SXLEN=64, it is a
WARL field that encodes the current value of UXLEN. In particular, an implementation may
make UXL be a read-only field whose value always ensures that UXLEN=SXLEN.

If UXLEN ̸= SXLEN, instructions executed in the narrower mode must ignore source register
operand bits above the configured XLEN, and must sign-extend results to fill the widest supported
XLEN in the destination register.
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If UXLEN < SXLEN, user-mode instruction-fetch addresses and load and store effective addresses
are taken modulo 2UXLEN. For example, when UXLEN=32 and SXLEN=64, user-mode memory
accesses reference the lowest 4GiB of the address space.

4.1.1.2 Memory Privilege in sstatus Register

The MXR (Make eXecutable Readable) bit modifies the privilege with which loads access virtual
memory. When MXR=0, only loads from pages marked readable (R=1 in Figure 4.18) will succeed.
When MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will succeed.
MXR has no effect when page-based virtual memory is not in effect.

The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode
loads and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
accessible by U-mode (U=1 in Figure 4.18) will fault. When SUM=1, these accesses are permitted.
SUM has no effect when page-based virtual memory is not in effect, nor when executing in U-mode.
Note that S-mode can never execute instructions from user pages, regardless of the state of SUM.

SUM is hardwired to 0 if satp.MODE is hardwired to 0.

The SUM mechanism prevents supervisor software from inadvertently accessing user memory.
Operating systems can execute the majority of code with SUM clear; the few code segments that
should access user memory can temporarily set SUM.

The SUM mechanism does not avail S-mode software of permission to execute instructions
in user code pages. Legitimate uses cases for execution from user memory in supervisor context
are rare in general and nonexistent in POSIX environments. However, bugs in supervisors that
lead to arbitrary code execution are much easier to exploit if the supervisor exploit code can be
stored in a user buffer at a virtual address chosen by an attacker.

Some non-POSIX single address space operating systems do allow certain privileged software
to partially execute in supervisor mode, while most programs run in user mode, all in a shared
address space. This use case can be realized by mapping the physical code pages at multiple
virtual addresses with different permissions, possibly with the assistance of the instruction page-
fault handler to direct supervisor software to use the alternate mapping.

4.1.1.3 Endianness Control in sstatus Register

The UBE bit is a WARL field that controls the endianness of explicit memory accesses made from
U-mode, which may differ from the endianness of memory accesses in S-mode. An implementation
may make UBE be a read-only field that always specifies the same endianness as for S-mode.

UBE controls whether explicit load and store memory accesses made from U-mode are little-endian
(UBE=0) or big-endian (UBE=1).

UBE has no effect on instruction fetches, which are implicit memory accesses that are always
little-endian.

For implicit accesses to supervisor-level memory management data structures, such as page tables,
S-mode endianness always applies and UBE is ignored.
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Standard RISC-V ABIs are expected to be purely little-endian-only or big-endian-only, with no
accommodation for mixing endianness. Nevertheless, endianness control has been defined so as
to permit an OS of one endianness to execute user-mode programs of the opposite endianness.

4.1.2 Supervisor Trap Vector Base Address Register (stvec)

The stvec register is an SXLEN-bit read/write register that holds trap vector configuration, con-
sisting of a vector base address (BASE) and a vector mode (MODE).

SXLEN-1 2 1 0

BASE[SXLEN-1:2] (WARL) MODE (WARL)

SXLEN-2 2

Figure 4.3: Supervisor trap vector base address register (stvec).

The BASE field in stvec is a WARL field that can hold any valid virtual or physical address,
subject to the following alignment constraints: the address must be 4-byte aligned, and MODE
settings other than Direct might impose additional alignment constraints on the value in the BASE
field.

Value Name Description

0 Direct All exceptions set pc to BASE.
1 Vectored Asynchronous interrupts set pc to BASE+4×cause.

≥2 — Reserved

Table 4.1: Encoding of stvec MODE field.

The encoding of the MODE field is shown in Table 4.1. When MODE=Direct, all traps into
supervisor mode cause the pc to be set to the address in the BASE field. When MODE=Vectored,
all synchronous exceptions into supervisor mode cause the pc to be set to the address in the BASE
field, whereas interrupts cause the pc to be set to the address in the BASE field plus four times the
interrupt cause number. For example, a supervisor-mode timer interrupt (see Table 4.2) causes the
pc to be set to BASE+0x14. Setting MODE=Vectored may impose a stricter alignment constraint
on BASE.

4.1.3 Supervisor Interrupt Registers (sip and sie)

The sip register is an SXLEN-bit read/write register containing information on pending interrupts,
while sie is the corresponding SXLEN-bit read/write register containing interrupt enable bits.
Interrupt cause number i (as reported in CSR scause, Section 4.1.8) corresponds with bit i in
both sip and sie. Bits 15:0 are allocated to standard interrupt causes only, while bits 16 and
above are designated for platform or custom use.

An interrupt i will trap to S-mode if both of the following are true: (a) either the current privilege
mode is S and the SIE bit in the sstatus register is set, or the current privilege mode has less
privilege than S-mode; and (b) bit i is set in both sip and sie.
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SXLEN-1 0

Interrupts (WARL)

SXLEN

Figure 4.4: Supervisor interrupt-pending register (sip).

SXLEN-1 0

Interrupts (WARL)

SXLEN

Figure 4.5: Supervisor interrupt-enable register (sie).

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time
from when an interrupt becomes, or ceases to be, pending in sip, and must also be evaluated
immediately following the execution of an SRET instruction or an explicit write to a CSR on which
these interrupt trap conditions expressly depend (including sip, sie and sstatus).

Interrupts to S-mode take priority over any interrupts to lower privilege modes.

Each individual bit in register sip may be writable or may be read-only. When bit i in sip is
writable, a pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can become
pending but bit i in sip is read-only, the implementation must provide some other mechanism for
clearing the pending interrupt (which may involve a call to the execution environment).

A bit in sie must be writable if the corresponding interrupt can ever become pending. Bits of sie
that are not writable must be hardwired to zero.

The standard portions (bits 15:0) of registers sip and sie are formatted as shown in Figures 4.6
and 4.7 respectively.

15 10 9 8 6 5 4 2 1 0

0 SEIP 0 STIP 0 SSIP 0

6 1 3 1 3 1 1

Figure 4.6: Standard portion (bits 15:0) of sip.

15 10 9 8 6 5 4 2 1 0

0 SEIE 0 STIE 0 SSIE 0

6 1 3 1 3 1 1

Figure 4.7: Standard portion (bits 15:0) of sie.

Bits sip.SEIP and sie.SEIE are the interrupt-pending and interrupt-enable bits for supervisor-
level external interrupts. If implemented, SEIP is read-only in sip, and is set and cleared by the
execution environment, typically through a platform-specific interrupt controller.

Bits sip.STIP and sie.STIE are the interrupt-pending and interrupt-enable bits for supervisor-
level timer interrupts. If implemented, STIP is read-only in sip, and is set and cleared by the
execution environment.
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Bits sip.SSIP and sie.SSIE are the interrupt-pending and interrupt-enable bits for supervisor-
level software interrupts. If implemented, SSIP is writable in sip and may also be set to 1 by a
platform-specific interrupt controller.

Interprocessor interrupts are sent to other harts by implementation-specific means, which will
ultimately cause the SSIP bit to be set in the recipient hart’s sip register.

Each standard interrupt type (SEI, STI, or SSI) may not be implemented, in which case the
corresponding interrupt-pending and interrupt-enable bits are hardwired to zeros. All bits in sip

and sie are WARL fields. The implemented interrupts may be found by writing one to every bit
location in sie, then reading back to see which bit positions hold a one.

The sip and sie registers are subsets of the mip and mie registers. Reading any implemented
field, or writing any writable field, of sip/sie effects a read or write of the homonymous field
of mip/mie.

Bits 3, 7, and 11 of sip and sie correspond to the machine-mode software, timer, and
external interrupts, respectively. Since most platforms will choose not to make these interrupts
delegatable from M-mode to S-mode, they are shown as hardwired to 0 in Figures 4.6 and 4.7.

Multiple simultaneous interrupts destined for supervisor mode are handled in the following decreas-
ing priority order: SEI, SSI, STI.

4.1.4 Supervisor Timers and Performance Counters

Supervisor software uses the same hardware performance monitoring facility as user-mode software,
including the time, cycle, and instret CSRs. The implementation should provide a mechanism
to modify the counter values.

The implementation must provide a facility for scheduling timer interrupts in terms of the real-time
counter, time.

4.1.5 Counter-Enable Register (scounteren)

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 4.8: Counter-enable register (scounteren).

The counter-enable register scounteren is a 32-bit register that controls the availability of the
hardware performance monitoring counters to U-mode.

When the CY, TM, IR, or HPMn bit in the scounteren register is clear, attempts to read the cycle,
time, instret, or hpmcountern register while executing in U-mode will cause an illegal instruction
exception. When one of these bits is set, access to the corresponding register is permitted.
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scounteren must be implemented. However, any of the bits may contain a hardwired value of zero,
indicating reads to the corresponding counter will cause an exception when executing in U-mode.
Hence, they are effectively WARL fields.

The setting of a bit in mcounteren does not affect whether the corresponding bit in scounteren

is writable. However, U-mode may only access a counter if the corresponding bits in scounteren

and mcounteren are both set.

4.1.6 Supervisor Scratch Register (sscratch)

The sscratch register is an SXLEN-bit read/write register, dedicated for use by the supervisor.
Typically, sscratch is used to hold a pointer to the hart-local supervisor context while the hart is
executing user code. At the beginning of a trap handler, sscratch is swapped with a user register
to provide an initial working register.

SXLEN-1 0

sscratch

SXLEN

Figure 4.9: Supervisor Scratch Register.

4.1.7 Supervisor Exception Program Counter (sepc)

sepc is an SXLEN-bit read/write register formatted as shown in Figure 4.10. The low bit of sepc
(sepc[0]) is always zero. On implementations that support only IALIGN=32, the two low bits
(sepc[1:0]) are always zero.

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example),
then, whenever IALIGN=32, bit sepc[1] is masked on reads so that it appears to be 0. This
masking occurs also for the implicit read by the SRET instruction. Though masked, sepc[1]
remains writable when IALIGN=32.

sepc is a WARL register that must be able to hold all valid virtual addresses. It need not be
capable of holding all possible invalid addresses. Prior to writing sepc, implementations may
convert an invalid address into some other invalid address that sepc is capable of holding.

When a trap is taken into S-mode, sepc is written with the virtual address of the instruction
that was interrupted or that encountered the exception. Otherwise, sepc is never written by the
implementation, though it may be explicitly written by software.

SXLEN-1 0

sepc

SXLEN

Figure 4.10: Supervisor exception program counter register.
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4.1.8 Supervisor Cause Register (scause)

The scause register is an SXLEN-bit read-write register formatted as shown in Figure 4.11. When
a trap is taken into S-mode, scause is written with a code indicating the event that caused the trap.
Otherwise, scause is never written by the implementation, though it may be explicitly written by
software.

The Interrupt bit in the scause register is set if the trap was caused by an interrupt. The Exception
Code field contains a code identifying the last exception or interrupt. Table 4.2 lists the possible
exception codes for the current supervisor ISAs. The Exception Code is a WLRL field. It is
required to hold the values 0–31 (i.e., bits 4–0 must be implemented), but otherwise it is only
guaranteed to hold supported exception codes.

SXLEN-1 SXLEN-2 0

Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 4.11: Supervisor Cause register scause.

4.1.9 Supervisor Trap Value (stval) Register

The stval register is an SXLEN-bit read-write register formatted as shown in Figure 4.12. When
a trap is taken into S-mode, stval is written with exception-specific information to assist software
in handling the trap. Otherwise, stval is never written by the implementation, though it may
be explicitly written by software. The hardware platform will specify which exceptions must set
stval informatively and which may unconditionally set it to zero.

If stval is written with a nonzero value when a breakpoint, address-misaligned, access-fault, or
page-fault exception occurs on an instruction fetch, load, or store, then stval will contain the
faulting virtual address.

SXLEN-1 0

stval

SXLEN

Figure 4.12: Supervisor Trap Value register.

If stval is written with a nonzero value when a misaligned load or store causes an access-fault or
page-fault exception, then stval will contain the virtual address of the portion of the access that
caused the fault.

If stval is written with a nonzero value when an instruction access-fault or page-fault exception
occurs on a system with variable-length instructions, then stval will contain the virtual address of
the portion of the instruction that caused the fault, while sepc will point to the beginning of the
instruction.

The stval register can optionally also be used to return the faulting instruction bits on an illegal
instruction exception (sepc points to the faulting instruction in memory). If stval is written with
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Interrupt Exception Code Description

1 0 Reserved
1 1 Supervisor software interrupt
1 2–4 Reserved
1 5 Supervisor timer interrupt
1 6–8 Reserved
1 9 Supervisor external interrupt
1 10–15 Reserved
1 ≥16 Designated for platform use

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10–11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–23 Reserved
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 ≥64 Reserved

Table 4.2: Supervisor cause register (scause) values after trap. Synchronous exception priorities
are given by Table 3.7.

a nonzero value when an illegal-instruction exception occurs, then stval will contain the shortest
of:

� the actual faulting instruction
� the first ILEN bits of the faulting instruction
� the first SXLEN bits of the faulting instruction

The value loaded into stval on an illegal-instruction exception is right-justified and all unused
upper bits are cleared to zero.

For other traps, stval is set to zero, but a future standard may redefine stval’s setting for other
traps.

stval is a WARL register that must be able to hold all valid virtual addresses and the value 0.
It need not be capable of holding all possible invalid addresses. Prior to writing stval, implemen-
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tations may convert an invalid address into some other invalid address that stval is capable of
holding. If the feature to return the faulting instruction bits is implemented, stval must also be
able to hold all values less than 2N , where N is the smaller of SXLEN and ILEN.

4.1.10 Supervisor Environment Configuration Register (senvcfg)

The senvcfg CSR is an SXLEN-bit read/write register, formatted as shown in Figure 4.13, that
controls certain characteristics of the U-mode execution environment.

SXLEN-1 8 7 6 5 4 3 1 0

WPRI CBZE CBCFE CBIE WPRI FIOM

SXLEN-8 1 1 2 3 1

Figure 4.13: Supervisor environment configuration register (senvcfg).

If bit FIOM (Fence of I/O implies Memory) is set to one in senvcfg, FENCE instructions executed
in U-mode are modified so the requirement to order accesses to device I/O implies also the re-
quirement to order main memory accesses. Table 4.3 details the modified interpretation of FENCE
instruction bits PI, PO, SI, and SO in U-mode when FIOM=1.

Similarly, for U-mode when FIOM=1, if an atomic instruction that accesses a region ordered as
device I/O has its aq and/or rl bit set, then that instruction is ordered as though it accesses both
device I/O and memory.

If satp.MODE is hardwired to Bare, the implementation may hardwire FIOM to zero.

Instruction bit Meaning when set

PI Predecessor device input and memory reads (PR implied)
PO Predecessor device output and memory writes (PW implied)

SI Successor device input and memory reads (SR implied)
SO Successor device output and memory writes (SW implied)

Table 4.3: Modified interpretation of FENCE predecessor and successor sets in U-mode when
FIOM=1.

Bit FIOM exists for a specific circumstance when an I/O device is being emulated for U-mode
and both of the following are true: (a) the emulated device has a memory buffer that should
be I/O space but is actually mapped to main memory via address translation, and (b) multiple
physical harts are involved in accessing this emulated device from U-mode.

A hypervisor running in S-mode without the benefit of the hypervisor extension of Chapter 5
may need to emulate a device for U-mode if paravirtualization cannot be employed. If the same
hypervisor provides a virtual machine (VM) with multiple virtual harts, mapped one-to-one to
real harts, then multiple harts may concurrently access the emulated device, perhaps because:
(a) the guest OS within the VM assigns device interrupt handling to one hart while the device is
also accessed by a different hart outside of an interrupt handler, or (b) control of the device (or
partial control) is being migrated from one hart to another, such as for interrupt load balancing
within the VM. For such cases, guest software within the VM is expected to properly coordinate
access to the (emulated) device across multiple harts using mutex locks and/or interprocessor
interrupts as usual, which in part entails executing I/O fences. But those I/O fences may not be
sufficient if some of the device “I/O” is actually main memory, unknown to the guest. Setting
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FIOM=1 modifies those fences (and all other I/O fences executed in U-mode) to include main
memory, too.

Software can always avoid the need to set FIOM by never using main memory to emulate a
device memory buffer that should be I/O space. However, this choice usually requires trapping all
U-mode accesses to the emulated buffer, which might have a noticeable impact on performance.
The alternative offered by FIOM is sufficiently inexpensive to implement that we consider it
worth supporting even if only rarely enabled.

The definition of the CBZE field will be furnished by the forthcoming Zicboz extension. Its alloca-
tion within senvcfg may change prior to the ratification of that extension.

The definitions of the CBCFE and CBIE fields will be furnished by the forthcoming Zicbom ex-
tension. Their allocations within senvcfg may change prior to the ratification of that extension.

4.1.11 Supervisor Address Translation and Protection (satp) Register

The satp register is an SXLEN-bit read/write register, formatted as shown in Figure 4.14 for
SXLEN=32 and Figure 4.15 for SXLEN=64, which controls supervisor-mode address translation
and protection. This register holds the physical page number (PPN) of the root page table, i.e., its
supervisor physical address divided by 4KiB; an address space identifier (ASID), which facilitates
address-translation fences on a per-address-space basis; and the MODE field, which selects the
current address-translation scheme. Further details on the access to this register are described in
Section 3.1.6.5.

31 30 22 21 0

MODE (WARL) ASID (WARL) PPN (WARL)

1 9 22

Figure 4.14: Supervisor address translation and protection register satp when SXLEN=32.

Storing a PPN in satp, rather than a physical address, supports a physical address space larger
than 4GiB for RV32.

The satp.PPN field might not be capable of holding all physical page numbers. Some platform
standards might place constraints on the values satp.PPN may assume, e.g., by requiring that
all physical page numbers corresponding to main memory be representable.

63 60 59 44 43 0

MODE (WARL) ASID (WARL) PPN (WARL)

4 16 44

Figure 4.15: Supervisor address translation and protection register satp when SXLEN=64, for
MODE values Bare, Sv39, and Sv48.

We store the ASID and the page table base address in the same CSR to allow the pair to be
changed atomically on a context switch. Swapping them non-atomically could pollute the old
virtual address space with new translations, or vice-versa. This approach also slightly reduces
the cost of a context switch.

Table 4.4 shows the encodings of the MODE field when SXLEN=32 and SXLEN=64. When
MODE=Bare, supervisor virtual addresses are equal to supervisor physical addresses, and there
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is no additional memory protection beyond the physical memory protection scheme described in
Section 3.7. To select MODE=Bare, software must write zero to the remaining fields of satp (bits
30–0 when SXLEN=32, or bits 59–0 when SXLEN=64). Attempting to select MODE=Bare with a
nonzero pattern in the remaining fields has an unspecified effect on the value that the remaining
fields assume and an unspecified effect on address translation and protection behavior.

When SXLEN=32, the satp encodings corresponding to MODE=Bare and ASID[8:7]=3 are des-
ignated for custom use, whereas the encodings corresponding to MODE=Bare and ASID[8:7] ̸=3
are reserved for future standard use. When SXLEN=64, all satp encodings corresponding to
MODE=Bare are reserved for future standard use.

Version 1.11 of this standard stated that the remaining fields in satp had no effect when
MODE=Bare. Making these fields reserved facilitates future definition of additional transla-
tion and protection modes, particularly in RV32, for which all patterns of the existing MODE
field have already been allocated.

When SXLEN=32, the only other valid setting for MODE is Sv32, a paged virtual-memory scheme
described in Section 4.3.

When SXLEN=64, two paged virtual-memory schemes are defined: Sv39 and Sv48, described in
Sections 4.4 and 4.5, respectively. Two additional schemes, Sv57 and Sv64, will be defined in a
later version of this specification. The remaining MODE settings are reserved for future use and
may define different interpretations of the other fields in satp.

Implementations are not required to support all MODE settings, and if satp is written with an
unsupported MODE, the entire write has no effect; no fields in satp are modified.

SXLEN=32

Value Name Description

0 Bare No translation or protection.
1 Sv32 Page-based 32-bit virtual addressing (see Section 4.3).

SXLEN=64

Value Name Description

0 Bare No translation or protection.
1–7 — Reserved for standard use
8 Sv39 Page-based 39-bit virtual addressing (see Section 4.4).
9 Sv48 Page-based 48-bit virtual addressing (see Section 4.5).
10 Sv57 Reserved for page-based 57-bit virtual addressing.
11 Sv64 Reserved for page-based 64-bit virtual addressing.

12–13 — Reserved for standard use
14–15 — Designated for custom use

Table 4.4: Encoding of satp MODE field.

The number of ASID bits is unspecified and may be zero. The number of implemented ASID
bits, termed ASIDLEN, may be determined by writing one to every bit position in the ASID field,
then reading back the value in satp to see which bit positions in the ASID field hold a one. The
least-significant bits of ASID are implemented first: that is, if ASIDLEN > 0, ASID[ASIDLEN-1:0]
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is writable. The maximal value of ASIDLEN, termed ASIDMAX, is 9 for Sv32 or 16 for Sv39 and
Sv48.

For many applications, the choice of page size has a substantial performance impact. A large page
size increases TLB reach and loosens the associativity constraints on virtually indexed, physically
tagged caches. At the same time, large pages exacerbate internal fragmentation, wasting physical
memory and possibly cache capacity.

After much deliberation, we have settled on a conventional page size of 4 KiB for both RV32
and RV64. We expect this decision to ease the porting of low-level runtime software and device
drivers. The TLB reach problem is ameliorated by transparent superpage support in modern
operating systems [2]. Additionally, multi-level TLB hierarchies are quite inexpensive relative to
the multi-level cache hierarchies whose address space they map.

Note that writing satp does not imply any ordering constraints between page-table updates and
subsequent address translations. If the new address space’s page tables have been modified, or if an
ASID is reused, it may be necessary to execute an SFENCE.VMA instruction (see Section 4.2.1)
after writing satp.

Not imposing upon implementations to flush address-translation caches upon satp writes reduces
the cost of context switches, provided a sufficiently large ASID space.

4.2 Supervisor Instructions

In addition to the SRET instruction defined in Section 3.3.2, one new supervisor-level instruction
is provided.

4.2.1 Supervisor Memory-Management Fence Instruction

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
SFENCE.VMA asid vaddr PRIV 0 SYSTEM

The supervisor memory-management fence instruction SFENCE.VMA is used to synchronize up-
dates to in-memory memory-management data structures with current execution. Instruction exe-
cution causes implicit reads and writes to these data structures; however, these implicit references
are ordinarily not ordered with respect to explicit loads and stores. Executing an SFENCE.VMA
instruction guarantees that any previous stores already visible to the current RISC-V hart are
ordered before all subsequent implicit references from that hart to the memory-management data
structures. Further details on the behavior of this instruction are described in Section 3.1.6.5 and
Section 3.7.2.

The SFENCE.VMA is used to flush any local hardware caches related to address translation.
It is specified as a fence rather than a TLB flush to provide cleaner semantics with respect to
which instructions are affected by the flush operation and to support a wider variety of dynamic
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caching structures and memory-management schemes. SFENCE.VMA is also used by higher
privilege levels to synchronize page table writes and the address translation hardware.

SFENCE.VMA orders only the local hart’s implicit references to the memory-management data
structures.

Consequently, other harts must be notified separately when the memory-management data struc-
tures have been modified. One approach is to use 1) a local data fence to ensure local writes
are visible globally, then 2) an interprocessor interrupt to the other thread, then 3) a local
SFENCE.VMA in the interrupt handler of the remote thread, and finally 4) signal back to orig-
inating thread that operation is complete. This is, of course, the RISC-V analog to a TLB
shootdown.

For the common case that the translation data structures have only been modified for a single
address mapping (i.e., one page or superpage), rs1 can specify a virtual address within that mapping
to effect a translation fence for that mapping only. Furthermore, for the common case that the
translation data structures have only been modified for a single address-space identifier, rs2 can
specify the address space. The behavior of SFENCE.VMA depends on rs1 and rs2 as follows:

� If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page
tables, for all address spaces.

� If rs1=x0 and rs2̸=x0, the fence orders all reads and writes made to any level of the page
tables, but only for the address space identified by integer register rs2. Accesses to global
mappings (see Section 4.3.1) are not ordered.

� If rs1 ̸=x0 and rs2=x0, the fence orders only reads and writes made to leaf page table entries
corresponding to the virtual address in rs1, for all address spaces.

� If rs1 ̸=x0 and rs2 ̸=x0, the fence orders only reads and writes made to leaf page table entries
corresponding to the virtual address in rs1, for the address space identified by integer register
rs2. Accesses to global mappings are not ordered.

When rs2̸=x0, bits SXLEN-1:ASIDMAX of the value held in rs2 are reserved for future use and
should be zeroed by software and ignored by current implementations. Furthermore, if ASI-
DLEN < ASIDMAX, the implementation shall ignore bits ASIDMAX-1:ASIDLEN of the value
held in rs2.

Simpler implementations can ignore the virtual address in rs1 and the ASID value in rs2 and
always perform a global fence.

Implementations may perform implicit reads of the translation data structures pointed to by the
current satp register arbitrarily early and speculatively. The results of these reads may be held in
an incoherent cache but not shared with other harts. Cache entries may only be established for
the ASID currently loaded into the satp register, or for global entries. The cache may only satisfy
implicit reads for entries that have been established for the ASID currently loaded into satp, or for
global entries. Changes in the satp register do not necessarily flush any such translation caches.
To ensure the implicit reads observe writes to the same memory locations, an SFENCE.VMA
instruction must be executed after the writes to flush the relevant cached translations.
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A consequence of this specification is that an implementation may use any translation for an
address that was valid at any time since the most recent SFENCE.VMA that subsumes that
address. In particular, if a leaf PTE is modified but a subsuming SFENCE.VMA is not executed,
either the old translation or the new translation will be used, but the choice is unpredictable. The
behavior is otherwise well-defined.

In a conventional TLB design, it is possible for multiple entries to match a single address if,
for example, a page is upgraded to a superpage without first clearing the original non-leaf PTE’s
valid bit and executing an SFENCE.VMA with rs1=x0. In this case, a similar remark applies:
it is unpredictable whether the old non-leaf PTE or the new leaf PTE is used, but the behavior
is otherwise well defined.

This specification permits the caching of PTEs whose V (Valid) bit is clear. Operating systems
must be written to cope with this possibility, but implementers are reminded that eagerly caching
invalid PTEs will reduce performance by causing additional page faults.

Implementations must only perform implicit reads of the translation data structures pointed to by
the current contents of the satp register or a subsequent valid (V=1) translation data structure en-
try, and must only raise exceptions for implicit accesses that are generated as a result of instruction
execution, not those that are performed speculatively.

Changes to the sstatus fields SUM and MXR take effect immediately, without the need to execute
an SFENCE.VMA instruction. Changing satp.MODE from Bare to other modes and vice versa
also takes effect immediately, without the need to execute an SFENCE.VMA instruction. Likewise,
changes to satp.ASID take effect immediately.

The following common situations typically require executing an SFENCE.VMA instruction:
� When software recycles an ASID (i.e., reassociates it with a different page table), it should

first change satp to point to the new page table using the recycled ASID, then execute
SFENCE.VMA with rs1=x0 and rs2 set to the recycled ASID. Alternatively, software can
execute the same SFENCE.VMA instruction while a different ASID is loaded into satp,
provided the next time satp is loaded with the recycled ASID, it is simultaneously loaded
with the new page table.

� If the implementation does not provide ASIDs, or software chooses to always use ASID 0,
then after every satp write, software should execute SFENCE.VMA with rs1=x0. In the
common case that no global translations have been modified, rs2 should be set to a register
other than x0 but which contains the value zero, so that global translations are not flushed.

� If software modifies a non-leaf PTE, it should execute SFENCE.VMA with rs1=x0. If any
PTE along the traversal path had its G bit set, rs2 must be x0; otherwise, rs2 should be set
to the ASID for which the translation is being modified.

� If software modifies a leaf PTE, it should execute SFENCE.VMA with rs1 set to a virtual
address within the page. If any PTE along the traversal path had its G bit set, rs2 must
be x0; otherwise, rs2 should be set to the ASID for which the translation is being modified.

� For the special cases of increasing the permissions on a leaf PTE and changing an invalid
PTE to a valid leaf, software may choose to execute the SFENCE.VMA lazily. After
modifying the PTE but before executing SFENCE.VMA, either the new or old permissions
will be used. In the latter case, a page-fault exception might occur, at which point software
should execute SFENCE.VMA in accordance with the previous bullet point.

If a hart employs an address-translation cache, that cache must appear to be private to that hart.
In particular, the meaning of an ASID is local to a hart; software may choose to use the same ASID
to refer to different address spaces on different harts.
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A future extension could redefine ASIDs to be global across the SEE, enabling such options as
shared translation caches and hardware support for broadcast TLB shootdown. However, as OSes
have evolved to significantly reduce the scope of TLB shootdowns using novel ASID-management
techniques, we expect the local-ASID scheme to remain attractive for its simplicity and possibly
better scalability.

4.3 Sv32: Page-Based 32-bit Virtual-Memory Systems

When Sv32 is written to the MODE field in the satp register (see Section 4.1.11), the supervisor
operates in a 32-bit paged virtual-memory system. In this mode, supervisor and user virtual
addresses are translated into supervisor physical addresses by traversing a radix-tree page table.
Sv32 is supported when SXLEN=32 and is designed to include mechanisms sufficient for supporting
modern Unix-based operating systems.

The initial RISC-V paged virtual-memory architectures have been designed as straightforward
implementations to support existing operating systems. We have architected page table layouts
to support a hardware page-table walker. Software TLB refills are a performance bottleneck on
high-performance systems, and are especially troublesome with decoupled specialized coprocessors.
An implementation can choose to implement software TLB refills using a machine-mode trap
handler as an extension to M-mode.

Some ISAs architecturally expose virtually indexed, physically tagged caches, in that accesses
to the same physical address via different virtual addresses might not be coherent unless the
virtual addresses lie within the same cache set. Implicitly, this specification does not permit
such behavior to be architecturally exposed.

For implementations that hardwire satp.MODE to Bare, attempts to execute an SFENCE.VMA
instruction might raise an illegal instruction exception.

4.3.1 Addressing and Memory Protection

Sv32 implementations support a 32-bit virtual address space, divided into 4KiB pages. An Sv32
virtual address is partitioned into a virtual page number (VPN) and page offset, as shown in
Figure 4.16. When Sv32 virtual memory mode is selected in the MODE field of the satp register,
supervisor virtual addresses are translated into supervisor physical addresses via a two-level page
table. The 20-bit VPN is translated into a 22-bit physical page number (PPN), while the 12-
bit page offset is untranslated. The resulting supervisor-level physical addresses are then checked
using any physical memory protection structures (Sections 3.7), before being directly converted to
machine-level physical addresses.

31 22 21 12 11 0

VPN[1] VPN[0] page offset

10 10 12

Figure 4.16: Sv32 virtual address.
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33 22 21 12 11 0

PPN[1] PPN[0] page offset

12 10 12

Figure 4.17: Sv32 physical address.

31 20 19 10 9 8 7 6 5 4 3 2 1 0

PPN[1] PPN[0] RSW D A G U X W R V

12 10 2 1 1 1 1 1 1 1 1

Figure 4.18: Sv32 page table entry.

Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of
the root page table is stored in the satp register.

The PTE format for Sv32 is shown in Figures 4.18. The V bit indicates whether the PTE is valid; if
it is 0, all other bits in the PTE are don’t-cares and may be used freely by software. The permission
bits, R, W, and X, indicate whether the page is readable, writable, and executable, respectively.
When all three are zero, the PTE is a pointer to the next level of the page table; otherwise, it is
a leaf PTE. Writable pages must also be marked readable; the contrary combinations are reserved
for future use. Table 4.5 summarizes the encoding of the permission bits.

X W R Meaning

0 0 0 Pointer to next level of page table.
0 0 1 Read-only page.
0 1 0 Reserved for future use.
0 1 1 Read-write page.
1 0 0 Execute-only page.
1 0 1 Read-execute page.
1 1 0 Reserved for future use.
1 1 1 Read-write-execute page.

Table 4.5: Encoding of PTE R/W/X fields.

Attempting to fetch an instruction from a page that does not have execute permissions raises a
fetch page-fault exception. Attempting to execute a load or load-reserved instruction whose effective
address lies within a page without read permissions raises a load page-fault exception. Attempting
to execute a store, store-conditional, or AMO instruction whose effective address lies within a page
without write permissions raises a store page-fault exception.

AMOs never raise load page-fault exceptions. Since any unreadable page is also unwritable,
attempting to perform an AMO on an unreadable page always raises a store page-fault exception.

The U bit indicates whether the page is accessible to user mode. U-mode software may only access
the page when U=1. If the SUM bit in the sstatus register is set, supervisor mode software may
also access pages with U=1. However, supervisor code normally operates with the SUM bit clear,
in which case, supervisor code will fault on accesses to user-mode pages. Irrespective of SUM, the
supervisor may not execute code on pages with U=1.
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An alternative PTE format would support different permissions for supervisor and user. We
omitted this feature because it would be largely redundant with the SUM mechanism (see Sec-
tion 4.1.1.2) and would require more encoding space in the PTE.

The G bit designates a global mapping. Global mappings are those that exist in all address spaces.
For non-leaf PTEs, the global setting implies that all mappings in the subsequent levels of the page
table are global. Note that failing to mark a global mapping as global merely reduces performance,
whereas marking a non-global mapping as global is a software bug that, after switching to an
address space with a different non-global mapping for that address range, can unpredictably result
in either mapping being used.

Global mappings need not be stored redundantly in address-translation caches for multiple
ASIDs. Additionally, they need not be flushed from local address-translation caches when an
SFENCE.VMA instruction is executed with rs2 ̸=x0.

The RSW field is reserved for use by supervisor software; the implementation shall ignore this field.

Each leaf PTE contains an accessed (A) and dirty (D) bit. The A bit indicates the virtual page has
been read, written, or fetched from since the last time the A bit was cleared. The D bit indicates
the virtual page has been written since the last time the D bit was cleared.

Two schemes to manage the A and D bits are permitted:

� When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, a
page-fault exception is raised.

� When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, the
implementation sets the corresponding bit(s) in the PTE. The PTE update must be atomic
with respect to other accesses to the PTE, and must atomically check that the PTE is valid
and grants sufficient permissions. The PTE update must be exact (i.e., not speculative), and
observed in program order by the local hart. Furthermore, the PTE update must appear
in the global memory order no later than the explicit memory access, or any subsequent
explicit memory access to that virtual page by the local hart. The ordering on loads and
stores provided by FENCE instructions and the acquire/release bits on atomic instructions
also orders the PTE updates associated with those loads and stores as observed by remote
harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform
the explicit memory access before the PTE update is globally visible.

All harts in a system must employ the same PTE-update scheme as each other.

Mandating that the PTE updates to be exact, atomic, and in program order simplifies the spec-
ification, and makes the feature more useful for system software. Simple implementations may
instead generate page-fault exceptions.

The A and D bits are never cleared by the implementation. If the supervisor software does
not rely on accessed and/or dirty bits, e.g. if it does not swap memory pages to secondary storage
or if the pages are being used to map I/O space, it should always set them to 1 in the PTE to
improve performance.
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Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv32 supports 4 MiBmegapages.
A megapage must be virtually and physically aligned to a 4 MiB boundary; a page-fault exception
is raised if the physical address is insufficiently aligned.

For non-leaf PTEs, the D, A, and U bits are reserved for future standard use and must be cleared
by software for forward compatibility.

For implementations with both page-based virtual memory and the “A” standard extension, the
LR/SC reservation set must lie completely within a single base page (i.e., a naturally aligned 4KiB
region).

4.3.2 Virtual Address Translation Process

A virtual address va is translated into a physical address pa as follows:

1. Let a be satp.ppn× PAGESIZE, and let i = LEVELS− 1. (For Sv32, PAGESIZE=212 and
LEVELS=2.)

2. Let pte be the value of the PTE at address a+va.vpn[i]×PTESIZE. (For Sv32, PTESIZE=4.)
If accessing pte violates a PMA or PMP check, raise an access-fault exception corresponding
to the original access type.

3. If pte.v = 0, or if pte.r = 0 and pte.w = 1, stop and raise a page-fault exception corresponding
to the original access type.

4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Otherwise, this PTE is a
pointer to the next level of the page table. Let i = i− 1. If i < 0, stop and raise a page-fault
exception corresponding to the original access type. Otherwise, let a = pte.ppn×PAGESIZE
and go to step 2.

5. A leaf PTE has been found. Determine if the requested memory access is allowed by the
pte.r, pte.w, pte.x, and pte.u bits, given the current privilege mode and the value of the
SUM and MXR fields of the mstatus register. If not, stop and raise a page-fault exception
corresponding to the original access type.

6. If i > 0 and pte.ppn[i− 1 : 0] ̸= 0, this is a misaligned superpage; stop and raise a page-fault
exception corresponding to the original access type.

7. If pte.a = 0, or if the memory access is a store and pte.d = 0, either raise a page-fault
exception corresponding to the original access type, or:

� Set pte.a to 1 and, if the memory access is a store, also set pte.d to 1.

� If this access violates a PMA or PMP check, raise an access-fault exception corresponding
to the original access type.

� This update and the loading of pte in step 2 must be atomic; in particular, no intervening
store to the PTE may be perceived to have occurred in-between.

8. The translation is successful. The translated physical address is given as follows:



80 Volume II: RISC-V Privileged Architectures V20211028-signoff

� pa.pgoff = va.pgoff.

� If i > 0, then this is a superpage translation and pa.ppn[i− 1 : 0] = va.vpn[i− 1 : 0].

� pa.ppn[LEVELS− 1 : i] = pte.ppn[LEVELS− 1 : i].

4.4 Sv39: Page-Based 39-bit Virtual-Memory System

This section describes a simple paged virtual-memory system for SXLEN=64, which supports 39-
bit virtual address spaces. The design of Sv39 follows the overall scheme of Sv32, and this section
details only the differences between the schemes.

We specified multiple virtual memory systems for RV64 to relieve the tension between providing
a large address space and minimizing address-translation cost. For many systems, 512GiB of
virtual-address space is ample, and so Sv39 suffices. Sv48 increases the virtual address space
to 256TiB, but increases the physical memory capacity dedicated to page tables, the latency of
page-table traversals, and the size of hardware structures that store virtual addresses.

4.4.1 Addressing and Memory Protection

Sv39 implementations support a 39-bit virtual address space, divided into 4KiB pages. An Sv39
address is partitioned as shown in Figure 4.19. Instruction fetch addresses and load and store
effective addresses, which are 64 bits, must have bits 63–39 all equal to bit 38, or else a page-fault
exception will occur. The 27-bit VPN is translated into a 44-bit PPN via a three-level page table,
while the 12-bit page offset is untranslated.

When mapping between narrower and wider addresses, RISC-V usually zero-extends a narrower
address to a wider size. The mapping between 64-bit virtual addresses and the 39-bit usable
address space of Sv39 is not based on zero-extension but instead follows an entrenched convention
that allows an OS to use one or a few of the most-significant bits of a full-size (64-bit) virtual
address to quickly distinguish user and supervisor address regions.

38 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] page offset

9 9 9 12

Figure 4.19: Sv39 virtual address.

55 30 29 21 20 12 11 0

PPN[2] PPN[1] PPN[0] page offset

26 9 9 12

Figure 4.20: Sv39 physical address.

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of
the root page table is stored in the satp register’s PPN field.
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63 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

10 26 9 9 2 1 1 1 1 1 1 1 1

Figure 4.21: Sv39 page table entry.

The PTE format for Sv39 is shown in Figure 4.21. Bits 9–0 have the same meaning as for Sv32. Bits
63–54 are reserved for future standard use and must be zeroed by software for forward compatibility.

We reserved several PTE bits for a possible extension that improves support for sparse address
spaces by allowing page-table levels to be skipped, reducing memory usage and TLB refill latency.
These reserved bits may also be used to facilitate research experimentation. The cost is reducing
the physical address space, but 64PiB is presently ample. When it no longer suffices, the reserved
bits that remain unallocated could be used to expand the physical address space.

Any level of PTE may be a leaf PTE, so in addition to 4KiB pages, Sv39 supports 2MiB megapages
and 1GiB gigapages, each of which must be virtually and physically aligned to a boundary equal
to its size. A page-fault exception is raised if the physical address is insufficiently aligned.

The algorithm for virtual-to-physical address translation is the same as in Section 4.3.2, except
LEVELS equals 3 and PTESIZE equals 8.

4.5 Sv48: Page-Based 48-bit Virtual-Memory System

This section describes a simple paged virtual-memory system for SXLEN=64, which supports 48-
bit virtual address spaces. Sv48 is intended for systems for which a 39-bit virtual address space is
insufficient. It closely follows the design of Sv39, simply adding an additional level of page table,
and so this chapter only details the differences between the two schemes.

Implementations that support Sv48 must also support Sv39.

Systems that support Sv48 can also support Sv39 at essentially no cost, and so should do so to
maintain compatibility with supervisor software that assumes Sv39.

4.5.1 Addressing and Memory Protection

Sv48 implementations support a 48-bit virtual address space, divided into 4KiB pages. An Sv48
address is partitioned as shown in Figure 4.22. Instruction fetch addresses and load and store
effective addresses, which are 64 bits, must have bits 63–48 all equal to bit 47, or else a page-fault
exception will occur. The 36-bit VPN is translated into a 44-bit PPN via a four-level page table,
while the 12-bit page offset is untranslated.

The PTE format for Sv48 is shown in Figure 4.24. Bits 9–0 have the same meaning as for Sv32. Any
level of PTE may be a leaf PTE, so in addition to 4KiB pages, Sv48 supports 2MiB megapages,
1GiB gigapages, and 512GiB terapages, each of which must be virtually and physically aligned to
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47 39 38 30 29 21 20 12 11 0

VPN[3] VPN[2] VPN[1] VPN[0] page offset

9 9 9 9 12

Figure 4.22: Sv48 virtual address.

55 39 38 30 29 21 20 12 11 0

PPN[3] PPN[2] PPN[1] PPN[0] page offset

17 9 9 9 12

Figure 4.23: Sv48 physical address.

63 54 53 37 36 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

Reserved PPN[3] PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

10 17 9 9 9 2 1 1 1 1 1 1 1 1

Figure 4.24: Sv48 page table entry.

a boundary equal to its size. A page-fault exception is raised if the physical address is insufficiently
aligned.

The algorithm for virtual-to-physical address translation is the same as in Section 4.3.2, except
LEVELS equals 4 and PTESIZE equals 8.



Chapter 5

Hypervisor Extension, Version
1.0.0-rc

This chapter is in the Frozen state. A substantive change that is not backward-compatible is highly
unlikely, and will occur only as the result of some truly critical issue being identified. For more info
see: http://riscv.org/spec-state.

This chapter describes the RISC-V hypervisor extension, which virtualizes the supervisor-level
architecture to support the efficient hosting of guest operating systems atop a type-1 or type-2
hypervisor. The hypervisor extension changes supervisor mode into hypervisor-extended supervisor
mode (HS-mode, or hypervisor mode for short), where a hypervisor or a hosting-capable operating
system runs. The hypervisor extension also adds another stage of address translation, from guest
physical addresses to supervisor physical addresses, to virtualize the memory and memory-mapped
I/O subsystems for a guest operating system. HS-mode acts the same as S-mode, but with addi-
tional instructions and CSRs that control the new stage of address translation and support hosting
a guest OS in virtual S-mode (VS-mode). Regular S-mode operating systems can execute without
modification either in HS-mode or as VS-mode guests.

In HS-mode, an OS or hypervisor interacts with the machine through the same SBI as an OS
normally does from S-mode. An HS-mode hypervisor is expected to implement the SBI for its
VS-mode guest.

The hypervisor extension depends on an “I” base integer ISA with 32 x registers (RV32I or RV64I),
not RV32E, which has only 16 x registers. CSR mtval must not be hardwired to zero, and
satp.MODE must not be hardwired to Bare.

The hypervisor extension is enabled by setting bit 7 in the misa CSR, which corresponds to the
letter H. RISC-V harts that implement the hypervisor extension are encouraged not to hardwire
misa[7], so that the extension may be disabled.

The baseline privileged architecture is designed to simplify the use of classic virtualization tech-
niques, where a guest OS is run at user-level, as the few privileged instructions can be easily
detected and trapped. The hypervisor extension improves virtualization performance by reducing
the frequency of these traps.

83
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The hypervisor extension has been designed to be efficiently emulable on platforms that do
not implement the extension, by running the hypervisor in S-mode and trapping into M-mode
for hypervisor CSR accesses and to maintain shadow page tables. The majority of CSR accesses
for type-2 hypervisors are valid S-mode accesses so need not be trapped. Hypervisors can support
nested virtualization analogously.

5.1 Privilege Modes

The current virtualization mode, denoted V, indicates whether the hart is currently executing in a
guest. When V=1, the hart is either in virtual S-mode (VS-mode), or in virtual U-mode (VU-mode)
atop a guest OS running in VS-mode. When V=0, the hart is either in M-mode, in HS-mode, or in
U-mode atop an OS running in HS-mode. The virtualization mode also indicates whether two-stage
address translation is active (V=1) or inactive (V=0). Table 5.1 lists the possible privilege modes
of a RISC-V hart with the hypervisor extension.

Virtualization Nominal
Abbreviation Name

Two-Stage
Mode (V) Privilege Translation

0 U U-mode User mode Off
0 S HS-mode Hypervisor-extended supervisor mode Off
0 M M-mode Machine mode Off

1 U VU-mode Virtual user mode On
1 S VS-mode Virtual supervisor mode On

Table 5.1: Privilege modes with the hypervisor extension.

For privilege modes U and VU, the nominal privilege mode is U, and for privilege modes HS and
VS, the nominal privilege mode is S.

HS-mode is more privileged than VS-mode, and VS-mode is more privileged than VU-mode. VS-
mode interrupts are globally disabled when executing in U-mode.

This description does not consider the possibility of U-mode or VU-mode interrupts and will be
revised if an extension for user-level interrupts is adopted.

5.2 Hypervisor and Virtual Supervisor CSRs

An OS or hypervisor running in HS-mode uses the supervisor CSRs to interact with the exception,
interrupt, and address-translation subsystems. Additional CSRs are provided to HS-mode, but
not to VS-mode, to manage two-stage address translation and to control the behavior of a VS-
mode guest: hstatus, hedeleg, hideleg, hvip, hip, hie, hgeip, hgeie, henvcfg, henvcfgh,
hcounteren, htimedelta, htimedeltah, htval, htinst, and hgatp.

Furthermore, several virtual supervisor CSRs (VS CSRs) are replicas of the normal supervisor
CSRs. For example, vsstatus is the VS CSR that duplicates the usual sstatus CSR.



Volume II: RISC-V Privileged Architectures V20211028-signoff 85

When V=1, the VS CSRs substitute for the corresponding supervisor CSRs, taking over all func-
tions of the usual supervisor CSRs except as specified otherwise. Instructions that normally read or
modify a supervisor CSR shall instead access the corresponding VS CSR. When V=1, an attempt
to read or write a VS CSR directly by its own separate CSR address causes a virtual instruction
exception. (Attempts from U-mode cause an illegal instruction exception as usual.) The VS CSRs
can be accessed as themselves only from M-mode or HS-mode.

While V=1, the normal HS-level supervisor CSRs that are replaced by VS CSRs retain their values
but do not affect the behavior of the machine unless specifically documented to do so. Conversely,
when V=0, the VS CSRs do not ordinarily affect the behavior of the machine other than being
readable and writable by CSR instructions.

Some standard supervisor CSRs (senvcfg, scounteren, and scontext, possibly others) have no
matching VS CSR. These supervisor CSRs continue to have their usual function and accessibil-
ity even when V=1, except with VS-mode and VU-mode substituting for HS-mode and U-mode.
Hypervisor software is expected to manually swap the contents of these registers as needed.

Matching VS CSRs exist only for the supervisor CSRs that must be duplicated, which are mainly
those that get automatically written by traps or that impact instruction execution immediately
after trap entry and/or right before SRET, when software alone is unable to swap a CSR at
exactly the right moment. Currently, most supervisor CSRs fall into this category, but future
ones might not.

In this chapter, we use the term HSXLEN to refer to the effective XLEN when executing in HS-
mode, and VSXLEN to refer to the effective XLEN when executing in VS-mode.

5.2.1 Hypervisor Status Register (hstatus)

The hstatus register is an HSXLEN-bit read/write register formatted as shown in Figure 5.1
when HSXLEN=32 and Figure 5.2 when HSXLEN=64. The hstatus register provides facilities
analogous to the mstatus register for tracking and controlling the exception behavior of a VS-mode
guest.

31 23 22 21 20 19 18 17 12 11 10 9 8 7 6 5 4 0

WPRI VTSR VTW VTVM WPRI VGEIN[5:0] WPRI HU SPVP SPV GVA VSBE WPRI

9 1 1 1 2 6 2 1 1 1 1 1 5

Figure 5.1: Hypervisor status register (hstatus) when HSXLEN=32.

HSXLEN-1 34 33 32 31 23 22 21 20

WPRI VSXL[1:0] WPRI VTSR VTW VTVM

HSXLEN-34 2 9 1 1 1

19 18 17 12 11 10 9 8 7 6 5 4 0

WPRI VGEIN[5:0] WPRI HU SPVP SPV GVA VSBE WPRI

2 6 2 1 1 1 1 1 5

Figure 5.2: Hypervisor status register (hstatus) when HSXLEN=64.
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The VSXL field controls the effective XLEN for VS-mode (known as VSXLEN), which may differ
from the XLEN for HS-mode (HSXLEN). When HSXLEN=32, the VSXL field does not exist, and
VSXLEN=32. When HSXLEN=64, VSXL is a WARL field that is encoded the same as the MXL
field of misa, shown in Table 3.1 on page 16. In particular, an implementation may make VSXL
be a read-only field whose value always ensures that VSXLEN=HSXLEN.

If HSXLEN is changed from 32 to a wider width, and if field VSXL is not restricted to a single value,
it gets the value corresponding to the widest supported width not wider than the new HSXLEN.

The hstatus fields VTSR, VTW, and VTVM are defined analogously to the mstatus fields TSR,
TW, and TVM, but affect execution only in VS-mode, and cause virtual instruction exceptions
instead of illegal instruction exceptions. When VTSR=1, an attempt in VS-mode to execute SRET
raises a virtual instruction exception. When VTW=1 (and assuming mstatus.TW=0), an attempt
in VS-mode to execute WFI raises a virtual instruction exception if the WFI does not complete
within an implementation-specific, bounded time limit. When VTVM=1, an attempt in VS-mode
to execute SFENCE.VMA or to access CSR satp raises a virtual instruction exception.

The VGEIN (Virtual Guest External Interrupt Number) field selects a guest external interrupt
source for VS-level external interrupts. VGEIN is a WLRL field that must be able to hold values
between zero and the maximum guest external interrupt number (known as GEILEN), inclusive.
When VGEIN=0, no guest external interrupt source is selected for VS-level external interrupts.
GEILEN may be zero, in which case VGEIN may be hardwired to zero. Guest external interrupts
are explained in Section 5.2.4, and the use of VGEIN is covered further in Section 5.2.3.

Field HU (Hypervisor User mode) controls whether the virtual-machine load/store instructions,
HLV, HLVX, and HSV, can be used also in U-mode. When HU=1, these instructions can be
executed in U-mode the same as in HS-mode. When HU=0, all hypervisor instructions cause an
illegal instruction trap in U-mode.

The HU bit allows a portion of a hypervisor to be run in U-mode for greater protection against
software bugs, while still retaining access to a virtual machine’s memory.

The SPV bit (Supervisor Previous Virtualization mode) is written by the implementation whenever
a trap is taken into HS-mode. Just as the SPP bit in sstatus is set to the (nominal) privilege
mode at the time of the trap, the SPV bit in hstatus is set to the value of the virtualization mode
V at the time of the trap. When an SRET instruction is executed when V=0, V is set to SPV.

When V=1 and a trap is taken into HS-mode, bit SPVP (Supervisor Previous Virtual Privilege)
is set to the nominal privilege mode at the time of the trap, the same as sstatus.SPP. But if
V=0 before a trap, SPVP is left unchanged on trap entry. SPVP controls the effective privilege of
explicit memory accesses made by the virtual-machine load/store instructions, HLV, HLVX, and
HSV.

Without SPVP, if instructions HLV, HLVX, and HSV looked instead to sstatus.SPP for the
effective privilege of their memory accesses, then, even with HU=1, U-mode could not access
virtual machine memory at VS-level, because to enter U-mode using SRET always leaves SPP=0.
Unlike SPP, field SPVP is untouched by transitions back-and-forth between HS-mode and U-
mode.
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Field GVA (Guest Virtual Address) is written by the implementation whenever a trap is taken
into HS-mode. For any trap (breakpoint, address misaligned, access fault, page fault, or guest-
page fault) that writes a guest virtual address to stval, GVA is set to 1. For any other trap into
HS-mode, GVA is set to 0.

For breakpoint and memory access traps, GVA is redundant with field SPV (the two bits are
set the same) except when the explicit memory access of an HLV, HLVX, or HSV instruction
causes a fault. In that case, SPV=0 but GVA=1.

The VSBE bit is a WARL field that controls the endianness of explicit memory accesses made
from VS-mode. If VSBE=0, explicit load and store memory accesses made from VS-mode are little-
endian, and if VSBE=1, they are big-endian. VSBE also controls the endianness of all implicit
accesses to VS-level memory management data structures, such as page tables. An implementation
may make VSBE a read-only field that always specifies the same endianness as HS-mode.

5.2.2 Hypervisor Trap Delegation Registers (hedeleg and hideleg)

Registers hedeleg and hideleg are HSXLEN-bit read/write registers, formatted as shown in Fig-
ures 5.3 and 5.4 respectively. By default, all traps at any privilege level are handled in M-mode,
though M-mode usually uses the medeleg and mideleg CSRs to delegate some traps to HS-mode.
The hedeleg and hideleg CSRs allow these traps to be further delegated to a VS-mode guest;
their layout is the same as medeleg and mideleg.

HSXLEN-1 0

Synchronous Exceptions (WARL)

HSXLEN

Figure 5.3: Hypervisor exception delegation register (hedeleg).

HSXLEN-1 0

Interrupts (WARL)

HSXLEN

Figure 5.4: Hypervisor interrupt delegation register (hideleg).

A synchronous trap that has been delegated to HS-mode (using medeleg) is further delegated to
VS-mode if V=1 before the trap and the corresponding hedeleg bit is set. Each bit of hedeleg
shall be either writable or hardwired to zero. Many bits of hedeleg are required specifically to be
writable or zero, as enumerated in Table 5.2. Bit 0, corresponding to instruction address misaligned
exceptions, must be writable if IALIGN=32.

Requiring that certain bits of hedeleg be writable reduces some of the burden on a hypervisor
to handle variations of implementation.

An interrupt that has been delegated to HS-mode (using mideleg) is further delegated to VS-
mode if the corresponding hideleg bit is set. Among bits 15:0 of hideleg, only bits 10, 6, and
2 (corresponding to the standard VS-level interrupts) shall be writable, and the others shall be
hardwired to zero.
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Bit Attribute Corresponding Exception

0 (See text) Instruction address misaligned
1 Writable Instruction access fault
2 Writable Illegal instruction
3 Writable Breakpoint
4 Writable Load address misaligned
5 Writable Load access fault
6 Writable Store/AMO address misaligned
7 Writable Store/AMO access fault
8 Writable Environment call from U-mode or VU-mode
9 Read-only 0 Environment call from HS-mode
10 Read-only 0 Environment call from VS-mode
11 Read-only 0 Environment call from M-mode
12 Writable Instruction page fault
13 Writable Load page fault
15 Writable Store/AMO page fault
20 Read-only 0 Instruction guest-page fault
21 Read-only 0 Load guest-page fault
22 Read-only 0 Virtual instruction
23 Read-only 0 Store/AMO guest-page fault

Table 5.2: Bits of hedeleg that must be writable or must be hardwired to zero.

When a virtual supervisor external interrupt (code 10) is delegated to VS-mode, it is automatically
translated by the machine into a supervisor external interrupt (code 9) for VS-mode, including the
value written to vscause on an interrupt trap. Likewise, a virtual supervisor timer interrupt (6)
is translated into a supervisor timer interrupt (5) for VS-mode, and a virtual supervisor software
interrupt (2) is translated into a supervisor software interrupt (1) for VS-mode. Similar translations
may or may not be done for platform or custom interrupt causes (codes 16 and above).

5.2.3 Hypervisor Interrupt Registers (hvip, hip, and hie)

Register hvip is an HSXLEN-bit read/write register that a hypervisor can write to indicate virtual
interrupts intended for VS-mode. Bits of hvip that are not writable are hardwired to zeros.

HSXLEN-1 0

Virtual Interrupts (WARL)

HSXLEN

Figure 5.5: Hypervisor virtual-interrupt-pending register (hvip).

The standard portion (bits 15:0) of hvip is formatted as shown in Figure 5.6. Bits VSEIP, VSTIP,
and VSSIP of hvip are writable. Setting VSEIP=1 in hvip asserts a VS-level external interrupt;
setting VSTIP asserts a VS-level timer interrupt; and setting VSSIP asserts a VS-level software
interrupt.



Volume II: RISC-V Privileged Architectures V20211028-signoff 89

15 11 10 9 7 6 5 3 2 1 0

0 VSEIP 0 VSTIP 0 VSSIP 0

5 1 3 1 3 1 2

Figure 5.6: Standard portion (bits 15:0) of hvip.

Registers hip and hie are HSXLEN-bit read/write registers that supplement HS-level’s sip and
sie respectively. The hip register indicates pending VS-level and hypervisor-specific interrupts,
while hie contains enable bits for the same interrupts.

HSXLEN-1 0

Interrupts (WARL)

HSXLEN

Figure 5.7: Hypervisor interrupt-pending register (hip).

HSXLEN-1 0

Interrupts (WARL)

HSXLEN

Figure 5.8: Hypervisor interrupt-enable register (hie).

For each writable bit in sie, the corresponding bit shall be hardwired to zero in both hip and hie.
Hence, the nonzero bits in sie and hie are always mutually exclusive, and likewise for sip and
hip.

The active bits of hip and hie cannot be placed in HS-level’s sip and sie because doing so
would make it impossible for software to emulate the hypervisor extension on platforms that do
not implement it in hardware.

An interrupt i will trap to HS-mode whenever all of the following are true: (a) either the current
operating mode is HS-mode and the SIE bit in the sstatus register is set, or the current operating
mode has less privilege than HS-mode; (b) bit i is set in both sip and sie, or in both hip and
hie; and (c) bit i is not set in hideleg.

If bit i of sie is hardwired to zero, the same bit in register hip may be writable or may be read-only.
When bit i in hip is writable, a pending interrupt i can be cleared by writing 0 to this bit. If
interrupt i can become pending in hip but bit i in hip is read-only, then either the interrupt can
be cleared by clearing bit i of hvip, or the implementation must provide some other mechanism
for clearing the pending interrupt (which may involve a call to the execution environment).

A bit in hie shall be writable if the corresponding interrupt can ever become pending in hip. Bits
of hie that are not writable shall be hardwired to zero.

The standard portions (bits 15:0) of registers hip and hie are formatted as shown in Figures 5.9
and 5.10 respectively.

Bits hip.SGEIP and hie.SGEIE are the interrupt-pending and interrupt-enable bits for guest
external interrupts at supervisor level (HS-level). SGEIP is read-only in hip, and is 1 if and only
if the bitwise logical-AND of CSRs hgeip and hgeie is nonzero in any bit. (See Section 5.2.4.)
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15 13 12 11 10 9 7 6 5 3 2 1 0

0 SGEIP 0 VSEIP 0 VSTIP 0 VSSIP 0

3 1 1 1 3 1 3 1 2

Figure 5.9: Standard portion (bits 15:0) of hip.

15 13 12 11 10 9 7 6 5 3 2 1 0

0 SGEIE 0 VSEIE 0 VSTIE 0 VSSIE 0

3 1 1 1 3 1 3 1 2

Figure 5.10: Standard portion (bits 15:0) of hie.

Bits hip.VSEIP and hie.VSEIE are the interrupt-pending and interrupt-enable bits for VS-level
external interrupts. VSEIP is read-only in hip, and is the logical-OR of these interrupt sources:

� bit VSEIP of hvip;
� the bit of hgeip selected by hstatus.VGEIN; and
� any other platform-specific external interrupt signal directed to VS-level.

Bits hip.VSTIP and hie.VSTIE are the interrupt-pending and interrupt-enable bits for VS-level
timer interrupts. VSTIP is read-only in hip, and is the logical-OR of hvip.VSTIP and any other
platform-specific timer interrupt signal directed to VS-level.

Bits hip.VSSIP and hie.VSSIE are the interrupt-pending and interrupt-enable bits for VS-level
software interrupts. VSSIP in hip is an alias (writable) of the same bit in hvip.

Multiple simultaneous interrupts destined for HS-mode are handled in the following decreasing
priority order: SEI, SSI, STI, SGEI, VSEI, VSSI, VSTI.

5.2.4 Hypervisor Guest External Interrupt Registers (hgeip and hgeie)

The hgeip register is an HSXLEN-bit read-only register, formatted as shown in Figure 5.11, that
indicates pending guest external interrupts for this hart. The hgeie register is an HSXLEN-bit
read/write register, formatted as shown in Figure 5.12, that contains enable bits for the guest
external interrupts at this hart. Guest external interrupt number i corresponds with bit i in both
hgeip and hgeie.

HSXLEN-1 1 0

Guest External Interrupts 0

HSXLEN-1 1

Figure 5.11: Hypervisor guest external interrupt-pending register (hgeip).

HSXLEN-1 1 0

Guest External Interrupts (WARL) 0

HSXLEN-1 1

Figure 5.12: Hypervisor guest external interrupt-enable register (hgeie).
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Guest external interrupts represent interrupts directed to individual virtual machines at VS-level.
If a RISC-V platform supports placing a physical device under the direct control of a guest OS with
minimal hypervisor intervention (known as pass-through or direct assignment between a virtual ma-
chine and the physical device), then, in such circumstance, interrupts from the device are intended
for a specific virtual machine. Each bit of hgeip summarizes all pending interrupts directed to one
virtual hart, as collected and reported by an interrupt controller. To distinguish specific pending
interrupts from multiple devices, software must query the interrupt controller.

Support for guest external interrupts requires an interrupt controller that can collect virtual-
machine-directed interrupts separately from other interrupts.

The number of bits implemented in hgeip and hgeie for guest external interrupts is unspecified
and may be zero. This number is known as GEILEN. The least-significant bits are implemented
first, apart from bit 0. Hence, if GEILEN is nonzero, bits GEILEN:1 shall be writable in hgeie,
and all other bit positions shall be hardwired to zeros in both hgeip and hgeie.

The set of guest external interrupts received and handled at one physical hart may differ from
those received at other harts. Guest external interrupt number i at one physical hart is typically
expected not to be the same as guest external interrupt i at any other hart. For any one physical
hart, the maximum number of virtual harts that may directly receive guest external interrupts is
limited by GEILEN. The maximum this number can be for any implementation is 31 for RV32
and 63 for RV64, per physical hart.

A hypervisor is always free to emulate devices for any number of virtual harts without being
limited by GEILEN. Only direct pass-through (direct assignment) of interrupts is affected by the
GEILEN limit, and the limit is on the number of virtual harts receiving such interrupts, not the
number of distinct interrupts received. The number of distinct interrupts a single virtual hart
may receive is determined by the interrupt controller.

Register hgeie selects the subset of guest external interrupts that cause a supervisor-level (HS-level)
guest external interrupt. The enable bits in hgeie do not affect the VS-level external interrupt
signal selected from hgeip by hstatus.VGEIN.

5.2.5 Hypervisor Environment Configuration Registers (henvcfg and henvcfgh)

The henvcfg CSR is an HSXLEN-bit read/write register, formatted for HSXLEN=64 as shown in
Figure 5.13, that controls certain characteristics of the execution environment when virtualization
mode V=1.

63 62 8 7 6 5 4 3 1 0

VSTCE WPRI CBZE CBCFE CBIE WPRI FIOM

1 55 1 1 2 3 1

Figure 5.13: Hypervisor environment configuration register (henvcfg) for HSXLEN=64.

If bit FIOM (Fence of I/O implies Memory) is set to one in henvcfg, FENCE instructions executed
when V=1 are modified so the requirement to order accesses to device I/O implies also the re-
quirement to order main memory accesses. Table 5.3 details the modified interpretation of FENCE
instruction bits PI, PO, SI, and SO when FIOM=1 and V=1.
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Similarly, when FIOM=1 and V=1, if an atomic instruction that accesses a region ordered as device
I/O has its aq and/or rl bit set, then that instruction is ordered as though it accesses both device
I/O and memory.

Instruction bit Meaning when set

PI Predecessor device input and memory reads (PR implied)
PO Predecessor device output and memory writes (PW implied)

SI Successor device input and memory reads (SR implied)
SO Successor device output and memory writes (SW implied)

Table 5.3: Modified interpretation of FENCE predecessor and successor sets when FIOM=1 and
virtualization mode V=1.

The definition of the VSTCE field will be furnished by the forthcoming Sstc extension. Its allocation
within henvcfg may change prior to the ratification of that extension.

The definition of the CBZE field will be furnished by the forthcoming Zicboz extension. Its alloca-
tion within henvcfg may change prior to the ratification of that extension.

The definitions of the CBCFE and CBIE fields will be furnished by the forthcoming Zicbom ex-
tension. Their allocations within henvcfg may change prior to the ratification of that extension.

When HSXLEN=32, henvcfg contains the same fields as bits 31:0 of henvcfg when HSXLEN=64.
Additionally, when HSXLEN=32, henvcfgh is a 32-bit read/write register that contains the same
fields as bits 63:32 of henvcfg when HSXLEN=64. Register henvcfgh does not exist when
HSXLEN=64.

5.2.6 Hypervisor Counter-Enable Register (hcounteren)

The counter-enable register hcounteren is a 32-bit register that controls the availability of the
hardware performance monitoring counters to the guest virtual machine.

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 5.14: Hypervisor counter-enable register (hcounteren).

When the CY, TM, IR, or HPMn bit in the hcounteren register is clear, attempts to read the
cycle, time, instret, or hpmcountern register while V=1 will cause a virtual instruction exception
if the same bit in mcounteren is 1. When one of these bits is set, access to the corresponding register
is permitted when V=1, unless prevented for some other reason. In VU-mode, a counter is not
readable unless the applicable bits are set in both hcounteren and scounteren.

hcounteren must be implemented. However, any of the bits may contain a hardwired value of zero,
indicating reads to the corresponding counter will cause an exception when V=1. Hence, they are
effectively WARL fields.
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5.2.7 Hypervisor Time Delta Registers (htimedelta, htimedeltah)

The htimedelta CSR is a read/write register that contains the delta between the value of the time
CSR and the value returned in VS-mode or VU-mode. That is, reading the time CSR in VS or
VU mode returns the sum of the contents of htimedelta and the actual value of time.

Because overflow is ignored when summing htimedelta and time, large values of htimedelta
may be used to represent negative time offsets.

63 0

htimedelta

64

Figure 5.15: Hypervisor time delta register, HSXLEN=64.

For HSXLEN=32 only, htimedelta holds the lower 32 bits of the delta, and htimedeltah holds
the upper 32 bits of the delta.

31 0

htimedelta

htimedeltah

32

Figure 5.16: Hypervisor time delta registers, HSXLEN=32.

5.2.8 Hypervisor Trap Value Register (htval)

The htval register is an HSXLEN-bit read/write register formatted as shown in Figure 5.17. When
a trap is taken into HS-mode, htval is written with additional exception-specific information,
alongside stval, to assist software in handling the trap.

HSXLEN-1 0

htval

HSXLEN

Figure 5.17: Hypervisor trap value register (htval).

When a guest-page-fault trap is taken into HS-mode, htval is written with either zero or the guest
physical address that faulted, shifted right by 2 bits. For other traps, htval is set to zero, but a
future standard or extension may redefine htval’s setting for other traps.

A guest-page fault may arise due to an implicit memory access during first-stage (VS-stage) address
translation, in which case a guest physical address written to htval is that of the implicit memory
access that faulted—for example, the address of a VS-level page table entry that could not be read.
(The guest physical address corresponding to the original virtual address is unknown when VS-stage
translation fails to complete.) Additional information is provided in CSR htinst to disambiguate
such situations.

Otherwise, for misaligned loads and stores that cause guest-page faults, a nonzero guest physical
address in htval corresponds to the faulting portion of the access as indicated by the virtual address
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in stval. For instruction guest-page faults on systems with variable-length instructions, a nonzero
htval corresponds to the faulting portion of the instruction as indicated by the virtual address in
stval.

A guest physical address written to htval is shifted right by 2 bits to accommodate addresses
wider than the current XLEN. For RV32, the hypervisor extension permits guest physical ad-
dresses as wide as 34 bits, and htval reports bits 33:2 of the address. This shift-by-2 encoding
of guest physical addresses matches the encoding of physical addresses in PMP address registers
(Section 3.7) and in page table entries (Sections 4.3, 4.4, and 4.5).

If the least-significant two bits of a faulting guest physical address are needed, these bits
are ordinarily the same as the least-significant two bits of the faulting virtual address in stval.
For faults due to implicit memory accesses for VS-stage address translation, the least-significant
two bits are instead zeros. These cases can be distinguished using the value provided in register
htinst.

htval is a WARL register that must be able to hold zero and may be capable of holding only an
arbitrary subset of other 2-bit-shifted guest physical addresses, if any.

Unless it has reason to assume otherwise (such as a platform standard), software that writes a
value to htval should read back from htval to confirm the stored value.

5.2.9 Hypervisor Trap Instruction Register (htinst)

The htinst register is an HSXLEN-bit read/write register formatted as shown in Figure 5.18.
When a trap is taken into HS-mode, htinst is written with a value that, if nonzero, provides
information about the instruction that trapped, to assist software in handling the trap. The values
that may be written to htinst on a trap are documented in Section 5.6.3.

HSXLEN-1 0

htinst

HSXLEN

Figure 5.18: Hypervisor trap instruction register (htinst).

htinst is a WARL register that need only be able to hold the values that the implementation
may automatically write to it on a trap.

5.2.10 Hypervisor Guest Address Translation and Protection Register (hgatp)

The hgatp register is an HSXLEN-bit read/write register, formatted as shown in Figure 5.19 for
HSXLEN=32 and Figure 5.20 for HSXLEN=64, which controls G-stage address translation and
protection, the second stage of two-stage translation for guest virtual addresses (see Section 5.5).
Similar to CSR satp, this register holds the physical page number (PPN) of the guest-physical root
page table; a virtual machine identifier (VMID), which facilitates address-translation fences on a
per-virtual-machine basis; and the MODE field, which selects the address-translation scheme for
guest physical addresses. When mstatus.TVM=1, attempts to read or write hgatp while executing
in HS-mode will raise an illegal instruction exception.
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31 30 29 28 22 21 0

MODE 0 (WARL) VMID (WARL) PPN (WARL)

1 2 7 22

Figure 5.19: Hypervisor guest address translation and protection register hgatp when HSXLEN=32.

63 60 59 58 57 44 43 0

MODE (WARL) 0 (WARL) VMID (WARL) PPN (WARL)

4 2 14 44

Figure 5.20: Hypervisor guest address translation and protection register hgatp when HSXLEN=64,
for MODE values Bare, Sv39x4, and Sv48x4.

Table 5.4 shows the encodings of the MODE field when HSXLEN=32 and HSXLEN=64. When
MODE=Bare, guest physical addresses are equal to supervisor physical addresses, and there is
no further memory protection for a guest virtual machine beyond the physical memory protection
scheme described in Section 3.7. In this case, the remaining fields in hgatp must be set to zeros.

When HSXLEN=32, the only other valid setting for MODE is Sv32x4, which is a modification of
the usual Sv32 paged virtual-memory scheme, extended to support 34-bit guest physical addresses.
When HSXLEN=64, modes Sv39x4 and Sv48x4 are defined as modifications of the Sv39 and
Sv48 paged virtual-memory schemes. All of these paged virtual-memory schemes are described in
Section 5.5.1. An additional scheme for HSXLEN=64, Sv57x4, may be defined in a later version of
this specification.

The remaining MODE settings when HSXLEN=64 are reserved for future use and may define
different interpretations of the other fields in hgatp.

HSXLEN=32

Value Name Description

0 Bare No translation or protection.
1 Sv32x4 Page-based 34-bit virtual addressing (2-bit extension of Sv32).

HSXLEN=64

Value Name Description

0 Bare No translation or protection.
1–7 — Reserved
8 Sv39x4 Page-based 41-bit virtual addressing (2-bit extension of Sv39).
9 Sv48x4 Page-based 50-bit virtual addressing (2-bit extension of Sv48).
10 Sv57x4 Reserved for page-based 59-bit virtual addressing.

11–15 — Reserved

Table 5.4: Encoding of hgatp MODE field.

Implementations are not required to support all defined MODE settings when HSXLEN=64.

A write to hgatp with an unsupported MODE value is not ignored as it is for satp. Instead, the
fields of hgatp are WARL in the normal way, when so indicated.
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As explained in Section 5.5.1, for the paged virtual-memory schemes (Sv32x4, Sv39x4, and Sv48x4),
the root page table is 16 KiB and must be aligned to a 16-KiB boundary. In these modes, the lowest
two bits of the physical page number (PPN) in hgatp always read as zeros. An implementation
that supports only the defined paged virtual-memory schemes and/or Bare may hardwire PPN[1:0]
to zero.

The number of VMID bits is unspecified and may be zero. The number of implemented VMID
bits, termed VMIDLEN, may be determined by writing one to every bit position in the VMID field,
then reading back the value in hgatp to see which bit positions in the VMID field hold a one. The
least-significant bits of VMID are implemented first: that is, if VMIDLEN > 0, VMID[VMIDLEN-
1:0] is writable. The maximal value of VMIDLEN, termed VMIDMAX, is 7 for Sv32x4 or 14 for
Sv39x4 and Sv48x4.

Note that writing hgatp does not imply any ordering constraints between page-table updates and
subsequent G-stage address translations. If the new virtual machine’s guest physical page tables
have been modified, it may be necessary to execute an HFENCE.GVMA instruction (see Sec-
tion 5.3.2) before or after writing hgatp.

5.2.11 Virtual Supervisor Status Register (vsstatus)

The vsstatus register is a VSXLEN-bit read/write register that is VS-mode’s version of super-
visor register sstatus, formatted as shown in Figure 5.21 when VSXLEN=32 and Figure 5.22
when VSXLEN=64. When V=1, vsstatus substitutes for the usual sstatus, so instructions that
normally read or modify sstatus actually access vsstatus instead.

31 30 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 2 1 0

SD WPRI MXR SUM WPRI XS[1:0] FS[1:0] WPRI SPP WPRI UBE SPIE WPRI SIE WPRI

1 11 1 1 1 2 2 4 1 1 1 1 3 1 1

Figure 5.21: Virtual supervisor status register (vsstatus) when VSXLEN=32.

VSXLEN-1 VSXLEN-2 34 33 32 31 20 19 18 17

SD WPRI UXL[1:0] WPRI MXR SUM WPRI

1 VSXLEN-35 2 12 1 1 1

16 15 14 13 12 9 8 7 6 5 4 2 1 0

XS[1:0] FS[1:0] WPRI SPP WPRI UBE SPIE WPRI SIE WPRI

2 2 4 1 1 1 1 3 1 1

Figure 5.22: Virtual supervisor status register (vsstatus) when VSXLEN=64.

The UXL field controls the effective XLEN for VU-mode, which may differ from the XLEN for VS-
mode (VSXLEN). When VSXLEN=32, the UXL field does not exist, and VU-mode XLEN=32.
When VSXLEN=64, UXL is a WARL field that is encoded the same as the MXL field of misa,
shown in Table 3.1 on page 16. In particular, an implementation may make UXL be a read-only
copy of field VSXL of hstatus, forcing VU-mode XLEN=VSXLEN.
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If VSXLEN is changed from 32 to a wider width, and if field UXL is not restricted to a single value,
it gets the value corresponding to the widest supported width not wider than the new VSXLEN.

When V=1, both vsstatus.FS and the HS-level sstatus.FS are in effect. Attempts to execute a
floating-point instruction when either field is 0 (Off) raise an illegal-instruction exception. Modi-
fying the floating-point state when V=1 causes both fields to be set to 3 (Dirty).

For a hypervisor to benefit from the extension context status, it must have its own copy in
the HS-level sstatus, maintained independently of a guest OS running in VS-mode. While
a version of the extension context status obviously must exist in vsstatus for VS-mode, a
hypervisor cannot rely on this version being maintained correctly, given that VS-level software
can change vsstatus.FS arbitrarily. If the HS-level sstatus.FS were not independently active
and maintained by the hardware in parallel with vsstatus.FS while V=1, hypervisors would
always be forced to conservatively swap all floating-point state when context-switching between
virtual machines.

Read-only fields SD and XS summarize the extension context status as it is visible to VS-mode
only. For example, the value of the HS-level sstatus.FS does not affect vsstatus.SD.

An implementation may make field UBE be a read-only copy of hstatus.VSBE.

When V=0, vsstatus does not directly affect the behavior of the machine, unless a virtual-machine
load/store (HLV, HLVX, or HSV) or the MPRV feature in the mstatus register is used to execute
a load or store as though V=1.

5.2.12 Virtual Supervisor Interrupt Registers (vsip and vsie)

The vsip and vsie registers are VSXLEN-bit read/write registers that are VS-mode’s versions of
supervisor CSRs sip and sie, formatted as shown in Figures 5.23 and 5.24 respectively. When
V=1, vsip and vsie substitute for the usual sip and sie, so instructions that normally read
or modify sip/sie actually access vsip/vsie instead. However, interrupts directed to HS-level
continue to be indicated in the HS-level sip register, not in vsip, when V=1.

VSXLEN-1 0

Interrupts (WARL)

VSXLEN

Figure 5.23: Virtual supervisor interrupt-pending register (vsip).

VSXLEN-1 0

Interrupts (WARL)

VSXLEN

Figure 5.24: Virtual supervisor interrupt-enable register (vsie).

The standard portions (bits 15:0) of registers vsip and vsie are formatted as shown in Figures
5.25 and 5.26 respectively.

When bit 10 of hideleg is zero, vsip.SEIP and vsie.SEIE are read-only zeros. Else, vsip.SEIP
and vsie.SEIE are aliases of hip.VSEIP and hie.VSEIE.
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15 10 9 8 6 5 4 2 1 0

0 SEIP 0 STIP 0 SSIP 0

6 1 3 1 3 1 1

Figure 5.25: Standard portion (bits 15:0) of vsip.

15 10 9 8 6 5 4 2 1 0

0 SEIE 0 STIE 0 SSIE 0

6 1 3 1 3 1 1

Figure 5.26: Standard portion (bits 15:0) of vsie.

When bit 6 of hideleg is zero, vsip.STIP and vsie.STIE are read-only zeros. Else, vsip.STIP
and vsie.STIE are aliases of hip.VSTIP and hie.VSTIE.

When bit 2 of hideleg is zero, vsip.SSIP and vsie.SSIE are read-only zeros. Else, vsip.SSIP and
vsie.SSIE are aliases of hip.VSSIP and hie.VSSIE.

5.2.13 Virtual Supervisor Trap Vector Base Address Register (vstvec)

The vstvec register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register stvec, formatted as shown in Figure 5.27. When V=1, vstvec substitutes for the usual
stvec, so instructions that normally read or modify stvec actually access vstvec instead. When
V=0, vstvec does not directly affect the behavior of the machine.

VSXLEN-1 2 1 0

BASE[VSXLEN-1:2] (WARL) MODE (WARL)

VSXLEN-2 2

Figure 5.27: Virtual supervisor trap vector base address register (vstvec).

5.2.14 Virtual Supervisor Scratch Register (vsscratch)

The vsscratch register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register sscratch, formatted as shown in Figure 5.28. When V=1, vsscratch substitutes for the
usual sscratch, so instructions that normally read or modify sscratch actually access vsscratch
instead. The contents of vsscratch never directly affect the behavior of the machine.

VSXLEN-1 0

vsscratch

VSXLEN

Figure 5.28: Virtual supervisor scratch register (vsscratch).
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5.2.15 Virtual Supervisor Exception Program Counter (vsepc)

The vsepc register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register sepc, formatted as shown in Figure 5.29. When V=1, vsepc substitutes for the usual
sepc, so instructions that normally read or modify sepc actually access vsepc instead. When
V=0, vsepc does not directly affect the behavior of the machine.

vsepc is a WARL register that must be able to hold the same set of values that sepc can hold.

VSXLEN-1 0

vsepc

VSXLEN

Figure 5.29: Virtual supervisor exception program counter (vsepc).

5.2.16 Virtual Supervisor Cause Register (vscause)

The vscause register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register scause, formatted as shown in Figure 5.30. When V=1, vscause substitutes for the usual
scause, so instructions that normally read or modify scause actually access vscause instead.
When V=0, vscause does not directly affect the behavior of the machine.

vscause is a WLRL register that must be able to hold the same set of values that scause can
hold.

VSXLEN-1 VSXLEN-2 0

Interrupt Exception Code (WLRL)

1 VSXLEN-1

Figure 5.30: Virtual supervisor cause register (vscause).

5.2.17 Virtual Supervisor Trap Value Register (vstval)

The vstval register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register stval, formatted as shown in Figure 5.31. When V=1, vstval substitutes for the usual
stval, so instructions that normally read or modify stval actually access vstval instead. When
V=0, vstval does not directly affect the behavior of the machine.

vstval is a WARL register that must be able to hold the same set of values that stval can hold.

VSXLEN-1 0

vstval

VSXLEN

Figure 5.31: Virtual supervisor trap value register (vstval).
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5.2.18 Virtual Supervisor Address Translation and Protection Register (vsatp)

The vsatp register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register satp, formatted as shown in Figure 5.32 for VSXLEN=32 and Figure 5.33 for VSXLEN=64.
When V=1, vsatp substitutes for the usual satp, so instructions that normally read or modify
satp actually access vsatp instead. vsatp controls VS-stage address translation, the first stage of
two-stage translation for guest virtual addresses (see Section 5.5).

31 30 22 21 0

MODE (WARL) ASID (WARL) PPN (WARL)

1 9 22

Figure 5.32: Virtual supervisor address translation and protection register vsatp when
VSXLEN=32.

63 60 59 44 43 0

MODE (WARL) ASID (WARL) PPN (WARL)

4 16 44

Figure 5.33: Virtual supervisor address translation and protection register vsatp when
VSXLEN=64, for MODE values Bare, Sv39, and Sv48.

When V=0, a write to vsatp with an unsupported MODE value is not ignored as it is for satp.
Instead, the fields of vsatp are WARL in the normal way.

When V=0, vsatp does not directly affect the behavior of the machine, unless a virtual-machine
load/store (HLV, HLVX, or HSV) or the MPRV feature in the mstatus register is used to execute
a load or store as though V=1.

5.3 Hypervisor Instructions

The hypervisor extension adds virtual-machine load and store instructions and two privileged fence
instructions.

5.3.1 Hypervisor Virtual-Machine Load and Store Instructions

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
HLV.width [U] addr PRIVM dest SYSTEM

HLVX.HU/WU HLVX addr PRIVM dest SYSTEM
HSV.width src addr PRIVM 0 SYSTEM

The hypervisor virtual-machine load and store instructions are valid only in M-mode or HS-mode,
or in U-mode when hstatus.HU=1. Each instruction performs an explicit memory access as though
V=1; i.e., with the address translation and protection, and the endianness, that apply to memory
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accesses in either VS-mode or VU-mode. Field SPVP of hstatus controls the privilege level of the
access. The explicit memory access is done as though in VU-mode when SPVP=0, and as though
in VS-mode when SPVP=1. As usual when V=1, two-stage address translation is applied, and the
HS-level sstatus.SUM is ignored. HS-level sstatus.MXR makes execute-only pages readable for
both stages of address translation (VS-stage and G-stage), whereas vsstatus.MXR affects only
the first translation stage (VS-stage).

For every RV32I or RV64I load instruction, LB, LBU, LH, LHU, LW, LWU, and LD, there is
a corresponding virtual-machine load instruction: HLV.B, HLV.BU, HLV.H, HLV.HU, HLV.W,
HLV.WU, and HLV.D. For every RV32I or RV64I store instruction, SB, SH, SW, and SD, there is a
corresponding virtual-machine store instruction: HSV.B, HSV.H, HSV.W, and HSV.D. Instructions
HLV.WU, HLV.D, and HSV.D are not valid for RV32, of course.

Instructions HLVX.HU and HLVX.WU are the same as HLV.HU and HLV.WU, except that execute
permission takes the place of read permission during address translation. That is, the memory being
read must be executable in both stages of address translation, but read permission is not required.
For the supervisor physical address that results from address translation, the supervisor physical
memory attributes must grant both execute and read permissions. (The supervisor physical memory
attributes are the machine’s physical memory attributes as modified by physical memory protection,
Section 3.7, for supervisor level.)

HLVX cannot override machine-level physical memory protection (PMP), so attempting to read
memory that PMP designates as execute-only still results in an access-fault exception.

HLVX.WU is valid for RV32, even though LWU and HLV.WU are not. (For RV32, HLVX.WU can
be considered a variant of HLV.W, as sign extension is irrelevant for 32-bit values.)

Attempts to execute a virtual-machine load/store instruction (HLV, HLVX, or HSV) when V=1
cause a virtual instruction trap. Attempts to execute one of these same instructions from U-mode
when hstatus.HU=0 cause an illegal instruction trap.

5.3.2 Hypervisor Memory-Management Fence Instructions

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
HFENCE.VVMA asid vaddr PRIV 0 SYSTEM
HFENCE.GVMA vmid gaddr PRIV 0 SYSTEM

The hypervisor memory-management fence instructions, HFENCE.VVMA and HFENCE.GVMA,
perform a function similar to SFENCE.VMA (Section 4.2.1), except applying to the VS-level
memory-management data structures controlled by CSR vsatp (HFENCE.VVMA) or the guest-
physical memory-management data structures controlled by CSR hgatp (HFENCE.GVMA). In-
struction SFENCE.VMA applies only to the memory-management data structures controlled by
the current satp (either the HS-level satp when V=0 or vsatp when V=1).

HFENCE.VVMA is valid only in M-mode or HS-mode. Its effect is much the same as temporarily
entering VS-mode and executing SFENCE.VMA. Executing an HFENCE.VVMA guarantees that
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any previous stores already visible to the current hart are ordered before all subsequent implicit
reads by that hart of the VS-level memory-management data structures, when those implicit reads
are for instructions that

� are subsequent to the HFENCE.VVMA, and
� execute when hgatp.VMID has the same setting as it did when HFENCE.VVMA executed.

Implicit reads need not be ordered when hgatp.VMID is different than at the time HFENCE.VVMA
executed. If operand rs1̸=x0, it specifies a single guest virtual address, and if operand rs2̸=x0, it
specifies a single guest address-space identifier (ASID).

An HFENCE.VVMA instruction applies only to a single virtual machine, identified by the setting
of hgatp.VMID when HFENCE.VVMA executes.

When rs2 ̸=x0, bits XLEN-1:ASIDMAX of the value held in rs2 are reserved for future use and
should be zeroed by software and ignored by current implementations. Furthermore, if ASI-
DLEN < ASIDMAX, the implementation shall ignore bits ASIDMAX-1:ASIDLEN of the value
held in rs2.

Simpler implementations of HFENCE.VVMA can ignore the guest virtual address in rs1 and
the guest ASID value in rs2, as well as hgatp.VMID, and always perform a global fence for the
VS-level memory management of all virtual machines, or even a global fence for all memory-
management data structures.

Neither mstatus.TVM nor hstatus.VTVM causes HFENCE.VVMA to trap.

HFENCE.GVMA is valid only in HS-mode when mstatus.TVM=0, or in M-mode (irrespec-
tive of mstatus.TVM). Executing an HFENCE.GVMA instruction guarantees that any previous
stores already visible to the current hart are ordered before all subsequent implicit reads by that
hart of guest-physical memory-management data structures done for instructions that follow the
HFENCE.GVMA. If operand rs1̸=x0, it specifies a single guest physical address, shifted right by
2 bits, and if operand rs2̸=x0, it specifies a single virtual machine identifier (VMID).

Like for a guest physical address written to htval on a trap, a guest physical address specified
in rs1 is shifted right by 2 bits to accommodate addresses wider than the current XLEN.

When rs2̸=x0, bits XLEN-1:VMIDMAX of the value held in rs2 are reserved for future use and
should be zeroed by software and ignored by current implementations. Furthermore, if VMI-
DLEN < VMIDMAX, the implementation shall ignore bits VMIDMAX-1:VMIDLEN of the value
held in rs2.

Simpler implementations of HFENCE.GVMA can ignore the guest physical address in rs1 and
the VMID value in rs2 and always perform a global fence for the guest-physical memory manage-
ment of all virtual machines, or even a global fence for all memory-management data structures.

If hgatp.MODE is changed for a given VMID, an HFENCE.GVMA with rs1=x0 (and rs2 set to
either x0 or the VMID) must be executed to order subsequent guest translations with the MODE
change—even if the old MODE or new MODE is Bare.
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Attempts to execute HFENCE.VVMA or HFENCE.GVMA when V=1 cause a virtual instruction
trap, while attempts to do the same in U-mode cause an illegal instruction trap. Attempting to
execute HFENCE.GVMA in HS-mode when mstatus.TVM=1 also causes an illegal instruction
trap.

5.4 Machine-Level CSRs

The hypervisor extension augments or modifies machine CSRs mstatus, mstatush, mideleg, mip,
and mie, and adds CSRs mtval2 and mtinst.

5.4.1 Machine Status Registers (mstatus and mstatush)

The hypervisor extension adds two fields, MPV and GVA, to the machine-level mstatus or mstatush
CSR, and modifies the behavior of several existing mstatus fields. Figure 5.34 shows the modi-
fied mstatus register when the hypervisor extension is implemented and MXLEN=64. When
MXLEN=32, the hypervisor extension adds MPV and GVA not to mstatus but to mstatush.
Figure 5.35 shows the mstatush register when the hypervisor extension is implemented and
MXLEN=32.

MXLEN-1 MXLEN-2 40 39 38 37 36 35 34 33 32

SD WPRI MPV GVA MBE SBE SXL[1:0] UXL[1:0]

1 MXLEN-41 1 1 1 1 2 2

31 23 22 21 20 19 18 17 16 15 14 13

WPRI TSR TW TVM MXR SUM MPRV XS[1:0] FS[1:0]

9 1 1 1 1 1 1 2 2

12 11 10 9 8 7 6 5 4 3 2 1 0

MPP[1:0] WPRI SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI

2 2 1 1 1 1 1 1 1 1 1

Figure 5.34: Machine status register (mstatus) for RV64 when the hypervisor extension is imple-
mented.

31 8 7 6 5 4 3 0

WPRI MPV GVA MBE SBE WPRI

24 1 1 1 1 4

Figure 5.35: Additional machine status register (mstatush) for RV32 when the hypervisor extension
is implemented. The format of mstatus is unchanged for RV32.

The MPV bit (Machine Previous Virtualization Mode) is written by the implementation whenever
a trap is taken into M-mode. Just as the MPP field is set to the (nominal) privilege mode at the
time of the trap, the MPV bit is set to the value of the virtualization mode V at the time of the
trap. When an MRET instruction is executed, the virtualization mode V is set to MPV, unless
MPP=3, in which case V remains 0.
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Field GVA (Guest Virtual Address) is written by the implementation whenever a trap is taken into
M-mode. For any trap (breakpoint, address misaligned, access fault, page fault, or guest-page fault)
that writes a guest virtual address to mtval, GVA is set to 1. For any other trap into M-mode,
GVA is set to 0.

The TSR and TVM fields of mstatus affect execution only in HS-mode, not in VS-mode. The TW
field affects execution in all modes except M-mode.

Setting TVM=1 prevents HS-mode from accessing hgatp or executing HFENCE.GVMA, but has
no effect on accesses to vsatp or instruction HFENCE.VVMA.

The hypervisor extension changes the behavior of the the Modify Privilege field, MPRV, of mstatus.
When MPRV=0, translation and protection behave as normal. When MPRV=1, explicit memory
accesses are translated and protected, and endianness is applied, as though the current virtualiza-
tion mode were set to MPV and the current nominal privilege mode were set to MPP. Table 5.5
enumerates the cases.

MPRV MPV MPP Effect

0 – – Normal access; current privilege mode applies.

1 0 0 U-level access with HS-level translation and protection only.

1 0 1 HS-level access with HS-level translation and protection only.

1 – 3 M-level access with no translation.

1 1 0 VU-level access with two-stage translation and protection. The HS-
level MXR bit makes any executable page readable. vsstatus.MXR
makes readable those pages marked executable at the VS translation
stage, but only if readable at the guest-physical translation stage.

1 1 1 VS-level access with two-stage translation and protection. The HS-
level MXR bit makes any executable page readable. vsstatus.MXR
makes readable those pages marked executable at the VS translation
stage, but only if readable at the guest-physical translation stage.
vsstatus.SUM applies instead of the HS-level SUM bit.

Table 5.5: Effect of MPRV on the translation and protection of explicit memory accesses.

MPRV does not affect the virtual-machine load/store instructions, HLV, HLVX, and HSV. The
explicit loads and stores of these instructions always act as though V=1 and the nominal privilege
mode were hstatus.SPVP, overriding MPRV.

The mstatus register is a superset of the HS-level sstatus register but is not a superset of vsstatus.

5.4.2 Machine Interrupt Delegation Register (mideleg)

When the hypervisor extension is implemented, bits 10, 6, and 2 of mideleg (corresponding to
the standard VS-level interrupts) are each hardwired to one. Furthermore, if any guest external
interrupts are implemented (GEILEN is nonzero), bit 12 of mideleg (corresponding to supervisor-
level guest external interrupts) is also hardwired to one. VS-level interrupts and guest external
interrupts are always delegated past M-mode to HS-mode.
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5.4.3 Machine Interrupt Registers (mip and mie)

The hypervisor extension gives registers mip and mie additional active bits for the hypervisor-added
interrupts. Figures 5.36 and 5.37 show the standard portions (bits 15:0) of registers mip and mie

when the hypervisor extension is implemented.

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SGEIP MEIP VSEIP SEIP 0 MTIP VSTIP STIP 0 MSIP VSSIP SSIP 0

3 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.36: Standard portion (bits 15:0) of mip.

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SGEIE MEIE VSEIE SEIE 0 MTIE VSTIE STIE 0 MSIE VSSIE SSIE 0

3 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.37: Standard portion (bits 15:0) of mie.

Bits SGEIP, VSEIP, VSTIP, and VSSIP in mip are aliases for the same bits in hypervisor CSR
hip, while SGEIE, VSEIE, VSTIE, and VSSIE in mie are aliases for the same bits in hie.

5.4.4 Machine Second Trap Value Register (mtval2)

The mtval2 register is an MXLEN-bit read/write register formatted as shown in Figure 5.38. When
a trap is taken into M-mode, mtval2 is written with additional exception-specific information,
alongside mtval, to assist software in handling the trap.

MXLEN-1 0

mtval2

MXLEN

Figure 5.38: Machine second trap value register (mtval2).

When a guest-page-fault trap is taken into M-mode, mtval2 is written with either zero or the guest
physical address that faulted, shifted right by 2 bits. For other traps, mtval2 is set to zero, but a
future standard or extension may redefine mtval2’s setting for other traps.

If a guest-page fault is due to an implicit memory access during first-stage (VS-stage) address
translation, a guest physical address written to mtval2 is that of the implicit memory access that
faulted. Additional information is provided in CSR mtinst to disambiguate such situations.

Otherwise, for misaligned loads and stores that cause guest-page faults, a nonzero guest physical
address in mtval2 corresponds to the faulting portion of the access as indicated by the virtual
address in mtval. For instruction guest-page faults on systems with variable-length instructions, a
nonzero mtval2 corresponds to the faulting portion of the instruction as indicated by the virtual
address in mtval.

mtval2 is a WARL register that must be able to hold zero and may be capable of holding only an
arbitrary subset of other 2-bit-shifted guest physical addresses, if any.
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5.4.5 Machine Trap Instruction Register (mtinst)

The mtinst register is an MXLEN-bit read/write register formatted as shown in Figure 5.39. When
a trap is taken into M-mode, mtinst is written with a value that, if nonzero, provides information
about the instruction that trapped, to assist software in handling the trap. The values that may
be written to mtinst on a trap are documented in Section 5.6.3.

MXLEN-1 0

mtinst

MXLEN

Figure 5.39: Machine trap instruction register (mtinst).

mtinst is a WARL register that need only be able to hold the values that the implementation
may automatically write to it on a trap.

5.5 Two-Stage Address Translation

Whenever the current virtualization mode V is 1, two-stage address translation and protection
is in effect. For any virtual memory access, the original virtual address is converted in the first
stage by VS-level address translation, as controlled by the vsatp register, into a guest physical
address. The guest physical address is then converted in the second stage by guest physical address
translation, as controlled by the hgatp register, into a supervisor physical address. The two stages
are known also as VS-stage and G-stage translation. Although there is no option to disable two-
stage address translation when V=1, either stage of translation can be effectively disabled by zeroing
the corresponding vsatp or hgatp register.

The vsstatus field MXR, which makes execute-only pages readable, only overrides VS-stage page
protection. Setting MXR at VS-level does not override guest-physical page protections. Setting
MXR at HS-level, however, overrides both VS-stage and G-stage execute-only permissions.

When V=1, memory accesses that would normally bypass address translation are subject to G-
stage address translation alone. This includes memory accesses made in support of VS-stage address
translation, such as reads and writes of VS-level page tables.

Machine-level physical memory protection applies to supervisor physical addresses and is in effect
regardless of virtualization mode.

5.5.1 Guest Physical Address Translation

The mapping of guest physical addresses to supervisor physical addresses is controlled by CSR
hgatp (Section 5.2.10).

When the address translation scheme selected by the MODE field of hgatp is Bare, guest physical
addresses are equal to supervisor physical addresses without modification, and no memory protec-
tion applies in the trivial translation of guest physical addresses to supervisor physical addresses.
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When hgatp.MODE specifies a translation scheme of Sv32x4, Sv39x4, or Sv48x4, G-stage address
translation is a variation on the usual page-based virtual address translation scheme of Sv32, Sv39,
or Sv48, respectively. In each case, the size of the incoming address is widened by 2 bits (to 34, 41,
or 50 bits). To accommodate the 2 extra bits, the root page table (only) is expanded by a factor
of four to be 16 KiB instead of the usual 4 KiB. Matching its larger size, the root page table also
must be aligned to a 16 KiB boundary instead of the usual 4 KiB page boundary. Except as noted,
all other aspects of Sv32, Sv39, or Sv48 are adopted unchanged for G-stage translation. Non-root
page tables and all page table entries (PTEs) have the same formats as documented in Sections
4.3, 4.4, and 4.5.

For Sv32x4, an incoming guest physical address is partitioned into a virtual page number (VPN)
and page offset as shown in Figure 5.40. This partitioning is identical to that for an Sv32 virtual
address as depicted in Figure 4.16 (page 76), except with 2 more bits at the high end in VPN[1].
(Note that the fields of a partitioned guest physical address also correspond one-for-one with the
structure that Sv32 assigns to a physical address, depicted in Figure 4.17.)

33 22 21 12 11 0

VPN[1] VPN[0] page offset

12 10 12

Figure 5.40: Sv32x4 virtual address (guest physical address).

For Sv39x4, an incoming guest physical address is partitioned as shown in Figure 5.41. This
partitioning is identical to that for an Sv39 virtual address as depicted in Figure 4.19 (page 80),
except with 2 more bits at the high end in VPN[2]. Address bits 63:41 must all be zeros, or else a
guest-page-fault exception occurs.

40 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] page offset

11 9 9 12

Figure 5.41: Sv39x4 virtual address (guest physical address).

For Sv48x4, an incoming guest physical address is partitioned as shown in Figure 5.42. This
partitioning is identical to that for an Sv48 virtual address as depicted in Figure 4.22 (page 82),
except with 2 more bits at the high end in VPN[3]. Address bits 63:50 must all be zeros, or else a
guest-page-fault exception occurs.

49 39 38 30 29 21 20 12 11 0

VPN[3] VPN[2] VPN[1] VPN[0] page offset

11 9 9 9 12

Figure 5.42: Sv48x4 virtual address (guest physical address).

The page-based G-stage address translation scheme for RV32, Sv32x4, is defined to support
a 34-bit guest physical address so that an RV32 hypervisor need not be limited in its ability to
virtualize real 32-bit RISC-V machines, even those with 33-bit or 34-bit physical addresses. This
may include the possibility of a machine virtualizing itself, if it happens to use 33-bit or 34-bit
physical addresses. Multiplying the size and alignment of the root page table by a factor of four
is the cheapest way to extend Sv32 to cover a 34-bit address. The possible wastage of 12 KiB for
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an unnecessarily large root page table is expected to be of negligible consequence for most (maybe
all) real uses.

A consistent ability to virtualize machines having as much as four times the physical address
space as virtual address space is believed to be of some utility also for RV64. For a machine
implementing 39-bit virtual addresses (Sv39), for example, this allows the hypervisor extension to
support up to a 41-bit guest physical address space without either necessitating hardware support
for 48-bit virtual addresses (Sv48) or falling back to emulating the larger address space using
shadow page tables.

The conversion of an Sv32x4, Sv39x4, or Sv48x4 guest physical address is accomplished with the
same algorithm used for Sv32, Sv39, or Sv48, as presented in Section 4.3.2, except that:

� in step 1, a = hgatp.PPN× PAGESIZE;
� the current privilege mode is always taken to be U-mode; and
� guest-page-fault exceptions are raised instead of regular page-fault exceptions.

For G-stage address translation, all memory accesses (including those made to access data structures
for VS-stage address translation) are considered to be user-level accesses, as though executed in
U-mode. Access type permissions—readable, writable, or executable—are checked during G-stage
translation the same as for VS-stage translation. For a memory access made to support VS-stage
address translation (such as to read/write a VS-level page table), permissions are checked as though
for a load or store, not for the original access type. However, any exception is always reported for
the original access type (instruction, load, or store/AMO).

The G bit in all G-stage PTEs is reserved for future standard use, should be cleared by software
for forward compatibility, and must be ignored by hardware.

G-stage address translation uses the identical format for PTEs as regular address translation,
even including the U bit, due to the possibility of sharing some (or all) page tables between G-
stage translation and regular HS-level address translation. Regardless of whether this usage will
ever become common, we chose not to preclude it.

5.5.2 Guest-Page Faults

Guest-page-fault traps may be delegated from M-mode to HS-mode under the control of CSR
medeleg, but cannot be delegated to other privilege modes. On a guest-page fault, CSR mtval or
stval is written with the faulting guest virtual address as usual, and mtval2 or htval is written
either with zero or with the faulting guest physical address, shifted right by 2 bits. CSR mtinst

or htinst may also be written with information about the faulting instruction or other reason for
the access, as explained in Section 5.6.3.

When an instruction fetch or a misaligned memory access straddles a page boundary, two different
address translations are involved. When a guest-page fault occurs in such a circumstance, the
faulting virtual address written to mtval/stval is the same as would be required for a regular
page fault. Thus, the faulting virtual address may be a page-boundary address that is higher than
the instruction’s original virtual address, if the byte at that page boundary is among the accessed
bytes.
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When a guest-page fault is not due to an implicit memory access for VS-stage address translation,
a nonzero guest physical address written to mtval2/htval shall correspond to the exact virtual
address written to mtval/stval.

5.5.3 Memory-Management Fences

The behavior of the SFENCE.VMA instruction is affected by the current virtualization mode V.
When V=0, the virtual-address argument is an HS-level virtual address, and the ASID argument
is an HS-level ASID. The instruction orders stores only to HS-level address-translation structures
with subsequent HS-level address translations.

When V=1, the virtual-address argument to SFENCE.VMA is a guest virtual address within the
current virtual machine, and the ASID argument is a VS-level ASID within the current virtual
machine. The current virtual machine is identified by the VMID field of CSR hgatp, and the
effective ASID can be considered to be the combination of this VMID with the VS-level ASID. The
SFENCE.VMA instruction orders stores only to the VS-level address-translation structures with
subsequent VS-stage address translations for the same virtual machine, i.e., only when hgatp.VMID
is the same as when the SFENCE.VMA executed.

Hypervisor instructions HFENCE.VVMA and HFENCE.GVMA provide additional memory-
management fences to complement SFENCE.VMA. These instructions are described in Sec-
tion 5.3.2.

Section 3.7.2 discusses the intersection between physical memory protection (PMP) and page-based
address translation. It is noted there that, when PMP settings are modified in a manner that affects
either the physical memory that holds page tables or the physical memory to which page tables
point, M-mode software must synchronize the PMP settings with the virtual memory system. For
HS-level address translation, this is accomplished by executing in M-mode an SFENCE.VMA in-
struction with rs1=x0 and rs2=x0, after the PMP CSRs are written. If G-stage address translation
is in use and is not Bare, synchronization with its data structures is also needed. When PMP set-
tings are modified in a manner that affects either the physical memory that holds guest-physical
page tables or the physical memory to which guest-physical page tables point, an HFENCE.GVMA
instruction with rs1=x0 and rs2=x0 must be executed in M-mode after the PMP CSRs are written.
An HFENCE.VVMA instruction is not required.

5.6 Traps

5.6.1 Trap Cause Codes

The hypervisor extension augments the trap cause encoding. Table 5.6 lists the possible M-mode
and HS-mode trap cause codes when the hypervisor extension is implemented. Codes are added for
VS-level interrupts (interrupts 2, 6, 10), for supervisor-level guest external interrupts (interrupt 12),
for virtual instruction exceptions (exception 22), and for guest-page faults (exceptions 20, 21, 23).
Furthermore, environment calls from VS-mode are assigned cause 10, whereas those from HS-mode
or S-mode use cause 9 as usual.
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Interrupt Exception Code Description

1 0 Reserved
1 1 Supervisor software interrupt
1 2 Virtual supervisor software interrupt
1 3 Machine software interrupt

1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Virtual supervisor timer interrupt
1 7 Machine timer interrupt

1 8 Reserved
1 9 Supervisor external interrupt
1 10 Virtual supervisor external interrupt
1 11 Machine external interrupt

1 12 Supervisor guest external interrupt
1 13–15 Reserved
1 ≥16 Designated for platform or custom use

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode or VU-mode
0 9 Environment call from HS-mode
0 10 Environment call from VS-mode
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–19 Reserved
0 20 Instruction guest-page fault
0 21 Load guest-page fault
0 22 Virtual instruction
0 23 Store/AMO guest-page fault
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 ≥64 Reserved

Table 5.6: Machine and supervisor cause register (mcause and scause) values when the hypervisor
extension is implemented.
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HS-mode and VS-mode ECALLs use different cause values so they can be delegated separately.

When V=1, a virtual instruction exception (code 22) is normally raised instead of an illegal instruc-
tion exception if the attempted instruction is HS-qualified but is prevented from executing when
V=1 due to insufficient privilege or because the instruction is expressly disabled by a supervisor
or hypervisor CSR such as scounteren or hcounteren. An instruction is HS-qualified if it would
be valid to execute in HS-mode (for some values of the instruction’s register operands), assuming
fields TSR and TVM of CSR mstatus are both zero.

Special rules apply for CSR instructions that access 32-bit high-half CSRs such as cycleh and
htimedeltah. When V=1 and XLEN>32, an attempt to access a high-half supervisor-level CSR,
high-half hypervisor CSR, high-half VS CSR, or high-half unprivileged CSR always raises an illegal
instruction exception. And in VS-mode, if the XLEN for VU-mode is greater than 32, an attempt
to access a high-half user-level CSR (distinct from an unprivileged CSR) always raises an illegal
instruction exception. On the other hand, when V=1 and XLEN=32, an invalid attempt to access a
high-half S-level, hypervisor, VS, or unprivileged CSR raises a virtual instruction exception instead
of an illegal instruction exception if the same CSR instruction for the partner low-half CSR (e.g.
cycle or htimedelta) is HS-qualified. Likewise, in VS-mode, if the XLEN for VU-mode is 32, an
invalid attempt to access a high-half user-level CSR raises a virtual instruction exception instead
of an illegal instruction exception if the same CSR instruction for the partner low-half CSR is
HS-qualified.

The RISC-V Privileged Architecture currently defines no user-level CSRs, but they might be
added by a future version of this standard or by an extension.

Specifically, a virtual instruction exception is raised for the following cases:

� in VS-mode, attempts to access a non-high-half counter CSR when the corresponding bit in
hcounteren is 0 and the same bit in mcounteren is 1;

� in VS-mode, if XLEN=32, attempts to access a high-half counter CSR when the corresponding
bit in hcounteren is 0 and the same bit in mcounteren is 1;

� in VU-mode, attempts to access a non-high-half counter CSR when the corresponding bit in
either hcounteren or scounteren is 0 and the same bit in mcounteren is 1;

� in VU-mode, if XLEN=32, attempts to access a high-half counter CSR when the correspond-
ing bit in either hcounteren or scounteren is 0 and the same bit in mcounteren is 1;

� in VS-mode or VU-mode, attempts to execute a hypervisor instruction (HLV, HLVX, HSV,
or HFENCE);

� in VS-mode or VU-mode, attempts to access an implemented non-high-half hypervisor CSR
or VS CSR when the same access (read/write) would be allowed in HS-mode, assuming
mstatus.TVM=0;

� in VS-mode or VU-mode, if XLEN=32, attempts to access an implemented high-half hyper-
visor CSR or high-half VS CSR when the same access (read/write) to the CSR’s low-half
partner would be allowed in HS-mode, assuming mstatus.TVM=0;
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� in VU-mode, attempts to execute WFI when mstatus.TW=0, or to execute a supervisor
instruction (SRET or SFENCE);

� in VU-mode, attempts to access an implemented non-high-half supervisor CSR when the
same access (read/write) would be allowed in HS-mode, assuming mstatus.TVM=0;

� in VU-mode, if XLEN=32, attempts to access an implemented high-half supervisor CSR
when the same access to the CSR’s low-half partner would be allowed in HS-mode, assuming
mstatus.TVM=0;

� in VS-mode, attempts to execute WFI when hstatus.VTW=1 and mstatus.TW=0, unless
the instruction completes within an implementation-specific, bounded time;

� in VS-mode, attempts to execute SRET when hstatus.VTSR=1; and

� in VS-mode, attempts to execute an SFENCE instruction or to access satp, when
hstatus.VTVM=1.

Other extensions to the RISC-V Privileged Architecture may add to the set of circumstances that
cause a virtual instruction exception when V=1.

On a virtual instruction trap, mtval or stval is written the same as for an illegal instruction trap.

It is not unusual that hypervisors must emulate the instructions that raise virtual instruction
exceptions, to support nested hypervisors or for other reasons. Machine level is expected ordi-
narily to delegate virtual instruction traps directly to HS-level, whereas illegal instruction traps
are likely to be processed first in M-mode before being conditionally delegated (by software) to
HS-level. Consequently, virtual instruction traps are expected typically to be handled faster than
illegal instruction traps.

When not emulating the trapping instruction, a hypervisor should convert a virtual instruc-
tion trap into an illegal instruction exception for the guest virtual machine.

Because TSR and TVM in mstatus are intended to impact only S-mode (HS-mode), they are
ignored for determining exceptions in VS-mode.

If an instruction may raise multiple synchronous exceptions, the decreasing priority order of Ta-
ble 5.7 indicates which exception is taken and reported in mcause or scause.
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Priority Exc. Code Description

Highest 3 Instruction address breakpoint

During instruction address translation:
12, 20, 1 First encountered page fault, guest-page fault, or access fault

With physical address for instruction:
1 Instruction access fault

2 Illegal instruction
22 Virtual instruction
0 Instruction address misaligned

8, 9, 10, 11 Environment call
3 Environment break
3 Load/store/AMO address breakpoint

Optionally:
4, 6 Load/store/AMO address misaligned

During address translation for an explicit memory access:
13, 15, 21, 23, 5, 7 First encountered page fault, guest-page fault, or access fault

With physical address for an explicit memory access:
5, 7 Load/store/AMO access fault

If not higher priority:
Lowest 4, 6 Load/store/AMO address misaligned

Table 5.7: Synchronous exception priority when the hypervisor extension is implemented.

5.6.2 Trap Entry

When a trap occurs in HS-mode or U-mode, it goes to M-mode, unless delegated by medeleg or
mideleg, in which case it goes to HS-mode. When a trap occurs in VS-mode or VU-mode, it goes
to M-mode, unless delegated by medeleg or mideleg, in which case it goes to HS-mode, unless
further delegated by hedeleg or hideleg, in which case it goes to VS-mode.

When a trap is taken into M-mode, virtualization mode V gets set to 0, and fields MPV and MPP
in mstatus (or mstatush) are set according to Table 5.8. A trap into M-mode also writes fields
GVA, MPIE, and MIE in mstatus/mstatush and writes CSRs mepc, mcause, mtval, mtval2, and
mtinst.

Previous Mode MPV MPP

U-mode 0 0
HS-mode 0 1
M-mode 0 3

VU-mode 1 0
VS-mode 1 1

Table 5.8: Value of mstatus/mstatush fields MPV and MPP after a trap into M-mode. Upon trap
return, MPV is ignored when MPP=3.
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When a trap is taken into HS-mode, virtualization mode V is set to 0, and hstatus.SPV and
sstatus.SPP are set according to Table 5.9. If V was 1 before the trap, field SPVP in hstatus is
set the same as sstatus.SPP; otherwise, SPVP is left unchanged. A trap into HS-mode also writes
field GVA in hstatus, fields SPIE and SIE in sstatus, and CSRs sepc, scause, stval, htval,
and htinst.

Previous Mode SPV SPP

U-mode 0 0
HS-mode 0 1

VU-mode 1 0
VS-mode 1 1

Table 5.9: Value of hstatus field SPV and sstatus field SPP after a trap into HS-mode.

When a trap is taken into VS-mode, vsstatus.SPP is set according to Table 5.10. Register hstatus
and the HS-level sstatus are not modified, and the virtualization mode V remains 1. A trap into
VS-mode also writes fields SPIE and SIE in vsstatus and writes CSRs vsepc, vscause, and
vstval.

Previous Mode SPP

VU-mode 0
VS-mode 1

Table 5.10: Value of vsstatus field SPP after a trap into VS-mode.

5.6.3 Transformed Instruction or Pseudoinstruction for mtinst or htinst

On any trap into M-mode or HS-mode, one of these values is written automatically into the appro-
priate trap instruction CSR, mtinst or htinst:

� zero;
� a transformation of the trapping instruction;
� a custom value (allowed only if the trapping instruction is nonstandard); or
� a special pseudoinstruction.

Except when a pseudoinstruction value is required (described later), the value written to mtinst

or htinst may always be zero, indicating that the hardware is providing no information in the
register for this particular trap.

The value written to the trap instruction CSR serves two purposes. The first is to improve the
speed of instruction emulation in a trap handler, partly by allowing the handler to skip loading
the trapping instruction from memory, and partly by obviating some of the work of decoding and
executing the instruction. The second purpose is to supply, via pseudoinstructions, additional
information about guest-page-fault exceptions caused by implicit memory accesses done for VS-
stage address translation.

A transformation of the trapping instruction is written instead of simply a copy of the original
instruction in order to minimize the burden for hardware yet still provide to a trap handler the
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information needed to emulate the instruction. An implementation may at any time reduce its
effort by substituting zero in place of the transformed instruction.

On an interrupt, the value written to the trap instruction register is always zero. On a synchronous
exception, if a nonzero value is written, one of the following shall be true about the value:

� Bit 0 is 1, and replacing bit 1 with 1 makes the value into a valid encoding of a standard
instruction.

In this case, the instruction that trapped is the same kind as indicated by the register value,
and the register value is the transformation of the trapping instruction, as defined later. For
example, if bits 1:0 are binary 11 and the register value is the encoding of a standard LW
(load word) instruction, then the trapping instruction is LW, and the register value is the
transformation of the trapping LW instruction.

� Bit 0 is 1, and replacing bit 1 with 1 makes the value into an instruction encoding that is
explicitly designated for a custom instruction (not an unused reserved encoding).

This is a custom value. The instruction that trapped is a nonstandard instruction. The
interpretation of a custom value is not otherwise specified by this standard.

� The value is one of the special pseudoinstructions defined later, all of which have bits 1:0
equal to 00.

These three cases exclude a large number of other possible values, such as all those having bits 1:0
equal to binary 10. A future standard or extension may define additional cases, thus allowing values
that are currently excluded. Software may safely treat an unrecognized value in a trap instruction
register the same as zero.

To be forward-compatible with future revisions of this standard, software that interprets a nonzero
value from mtinst or htinst must fully verify that the value conforms to one of the cases listed
above. For instance, for RV64, discovering that bits 6:0 of mtinst are 0000011 and bits 14:12
are 010 is not sufficient to establish that the first case applies and the trapping instruction is a
standard LW instruction; rather, software must also confirm that bits 63:32 of mtinst are all
zeros. A future standard might define new values for 64-bit mtinst that are nonzero in bits 63:32
yet may coincidentally have in bits 31:0 the same bit patterns as standard RV64 instructions.

Unlike for standard instructions, there is no requirement that the instruction encoding of a
custom value be of the same “kind” as the instruction that trapped (or even have any correlation
with the trapping instruction).

Table 5.11 shows the values that may be automatically written to the trap instruction register for
each standard exception cause. For exceptions that prevent the fetching of an instruction, only
zero or a pseudoinstruction value may be written. A custom value may be automatically written
only if the instruction that traps is nonstandard. A future standard or extension may permit other
values to be written, chosen from the set of allowed values established earlier.

As enumerated in the table, a synchronous exception may write to the trap instruction register
a standard transformation of the trapping instruction only for exceptions that arise from explicit
memory accesses (from loads, stores, and AMO instructions). Accordingly, standard transforma-
tions are currently defined only for these memory-access instructions. If a synchronous trap occurs
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Transformed Pseudo-
Standard Custom instruction

Exception Zero Instruction Value Value

Instruction address misaligned Yes No Yes No

Instruction access fault Yes No No No
Illegal instruction Yes No No No
Breakpoint Yes No Yes No
Virtual instruction Yes No Yes No

Load address misaligned Yes Yes Yes No
Load access fault Yes Yes Yes No
Store/AMO address misaligned Yes Yes Yes No
Store/AMO access fault Yes Yes Yes No

Environment call Yes No Yes No

Instruction page fault Yes No No No
Load page fault Yes Yes Yes No
Store/AMO page fault Yes Yes Yes No

Instruction guest-page fault Yes No No Yes
Load guest-page fault Yes Yes Yes Yes
Store/AMO guest-page fault Yes Yes Yes Yes

Table 5.11: Values that may be automatically written to the trap instruction register (mtinst or
htinst) on an exception trap.

for a standard instruction for which no transformation has been defined, the trap instruction reg-
ister shall be written with zero (or, under certain circumstances, with a special pseudoinstruction
value).

For a standard load instruction that is not a compressed instruction and is one of LB, LBU, LH,
LHU, LW, LWU, LD, FLW, FLD, or FLQ, the transformed instruction has the format shown in
Figure 5.43.

31 25 24 20 19 15 14 12 11 7 6 0

0 0 Addr. Offset funct3 rd opcode

7 5 5 3 5 7

Figure 5.43: Transformed noncompressed load instruction (LB, LBU, LH, LHU, LW, LWU, LD,
FLW, FLD, or FLQ). Fields funct3, rd, and opcode are the same as the trapping load instruction.

For a standard store instruction that is not a compressed instruction and is one of SB, SH, SW,
SD, FSW, FSD, or FSQ, the transformed instruction has the format shown in Figure 5.44.

For a standard atomic instruction (load-reserved, store-conditional, or AMO instruction), the trans-
formed instruction has the format shown in Figure 5.45.

For a standard virtual-machine load/store instruction (HLV, HLVX, or HSV), the transformed
instruction has the format shown in Figure 5.46.
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31 25 24 20 19 15 14 12 11 7 6 0

0 rs2 Addr. Offset funct3 0 opcode

7 5 5 3 5 7

Figure 5.44: Transformed noncompressed store instruction (SB, SH, SW, SD, FSW, FSD, or FSQ).
Fields rs2, funct3, and opcode are the same as the trapping store instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq rl rs2 Addr. Offset funct3 rd opcode

5 1 1 5 5 3 5 7

Figure 5.45: Transformed atomic instruction (load-reserved, store-conditional, or AMO instruc-
tion). All fields are the same as the trapping instruction except bits 19:15, Addr. Offset.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 Addr. Offset funct3 rd opcode

7 5 5 3 5 7

Figure 5.46: Transformed virtual-machine load/store instruction (HLV, HLVX, HSV). All fields are
the same as the trapping instruction except bits 19:15, Addr. Offset.

In all the transformed instructions above, the Addr. Offset field that replaces the instruction’s rs1
field in bits 19:15 is the positive difference between the faulting virtual address (written to mtval or
stval) and the original virtual address. This difference can be nonzero only for a misaligned mem-
ory access. Note also that, for basic loads and stores, the transformations replace the instruction’s
immediate offset fields with zero.

For a standard compressed instruction (16-bit size), the transformed instruction is found as follows:

1. Expand the compressed instruction to its 32-bit equivalent.

2. Transform the 32-bit equivalent instruction.

3. Replace bit 1 with a 0.

Bits 1:0 of a transformed standard instruction will be binary 01 if the trapping instruction is
compressed and 11 if not.

In decoding the contents of mtinst or htinst, once software has determined that the register
contains the encoding of a standard basic load (LB, LBU, LH, LHU, LW, LWU, LD, FLW, FLD,
or FLQ) or basic store (SB, SH, SW, SD, FSW, FSD, or FSQ), it is not necessary to confirm
also that the immediate offset fields (31:25, and 24:20 or 11:7) are zeros. The knowledge that
the register’s value is the encoding of a basic load/store is sufficient to prove that the trapping
instruction is of the same kind.

A future version of this standard may add information to the fields that are currently zeros.
However, for backwards compatiblity, any such information will be for performance purposes
only and can safely be ignored.
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For guest-page faults, the trap instruction register is written with a special pseudoinstruction value
if: (a) the fault is caused by an implicit memory access for VS-stage address translation, and (b) a
nonzero value (the faulting guest physical address) is written to mtval2 or htval. If both conditions
are met, the value written to mtinst or htinst must be taken from Table 5.12; zero is not allowed.

Value Meaning

0x00002000 32-bit read for VS-stage address translation (RV32)
0x00002020 32-bit write for VS-stage address translation (RV32)

0x00003000 64-bit read for VS-stage address translation (RV64)
0x00003020 64-bit write for VS-stage address translation (RV64)

Table 5.12: Special pseudoinstruction values for guest-page faults. The RV32 values are used when
VSXLEN=32, and the RV64 values when VSXLEN=64.

The defined pseudoinstruction values are designed to correspond closely with the encodings of basic
loads and stores, as illustrated by Table 5.13.

Encoding Instruction

0x00002003 lw x0,0(x0)

0x00002023 sw x0,0(x0)

0x00003003 ld x0,0(x0)

0x00003023 sd x0,0(x0)

Table 5.13: Standard instructions corresponding to the special pseudoinstructions of Table 5.12.

A write pseudoinstruction (0x00002020 or 0x00003020) is used for the case that the machine is
attempting automatically to update bits A and/or D in VS-level page tables. All other implicit
memory accesses for VS-stage address translation will be reads. If a machine never automatically
updates bits A or D in VS-level page tables (leaving this to software), the write case will never
arise. The fact that such a page table update must actually be atomic, not just a simple write, is
ignored for the pseudoinstruction.

If the conditions that necessitate a pseudoinstruction value can ever occur for M-mode, then
mtinst cannot be hardwired entirely to zero; and likewise for HS-mode and htinst. However,
in that case, the trap instruction registers may minimally support only values 0 and 0x00002000

or 0x00003000, and possibly 0x00002020 or 0x00003020, requiring as few as one or two flip-
flops in hardware, per register.

There is no harm here in ignoring the atomicity requirement for page table updates, because
a hypervisor is not expected in these circumstances to emulate an implicit memory access that
fails. Rather, the hypervisor is given enough information about the faulting access to be able to
make the memory accessible (e.g. by restoring a missing page of virtual memory) before resuming
execution by retrying the faulting instruction.
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5.6.4 Trap Return

The MRET instruction is used to return from a trap taken into M-mode. MRET first determines
what the new privilege mode will be according to the values of MPP and MPV in mstatus or
mstatush, as encoded in Table 5.8. MRET then in mstatus/mstatush sets MPV=0, MPP=0,
MIE=MPIE, and MPIE=1. Lastly, MRET sets the privilege mode as previously determined, and
sets pc=mepc.

The SRET instruction is used to return from a trap taken into HS-mode or VS-mode. Its behavior
depends on the current virtualization mode.

When executed in M-mode or HS-mode (i.e., V=0), SRET first determines what the new privilege
mode will be according to the values in hstatus.SPV and sstatus.SPP, as encoded in Table 5.9.
SRET then sets hstatus.SPV=0, and in sstatus sets SPP=0, SIE=SPIE, and SPIE=1. Lastly,
SRET sets the privilege mode as previously determined, and sets pc=sepc.

When executed in VS-mode (i.e., V=1), SRET sets the privilege mode according to Table 5.10, in
vsstatus sets SPP=0, SIE=SPIE, and SPIE=1, and lastly sets pc=vsepc.
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Chapter 6

RISC-V Privileged Instruction Set
Listings

This chapter presents instruction-set listings for all instructions defined in the RISC-V Privileged
Architecture.

The instruction-set listings for unprivileged instructions, including the ECALL and EBREAK in-
structions, are provided in Volume I of this manual.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

Trap-Return Instructions
0001000 00010 00000 000 00000 1110011 SRET
0011000 00010 00000 000 00000 1110011 MRET

Interrupt-Management Instructions
0001000 00101 00000 000 00000 1110011 WFI

Supervisor Memory-Management Instructions
0001001 rs2 rs1 000 00000 1110011 SFENCE.VMA

Hypervisor Memory-Management Instructions
0010001 rs2 rs1 000 00000 1110011 HFENCE.VVMA
0110001 rs2 rs1 000 00000 1110011 HFENCE.GVMA

Hypervisor Virtual-Machine Load and Store Instructions
0110000 00000 rs1 100 rd 1110011 HLV.B
0110000 00001 rs1 100 rd 1110011 HLV.BU
0110010 00000 rs1 100 rd 1110011 HLV.H
0110010 00001 rs1 100 rd 1110011 HLV.HU
0110010 00011 rs1 100 rd 1110011 HLVX.HU
0110100 00000 rs1 100 rd 1110011 HLV.W
0110100 00011 rs1 100 rd 1110011 HLVX.WU
0110001 rs2 rs1 100 00000 1110011 HSV.B
0110011 rs2 rs1 100 00000 1110011 HSV.H
0110101 rs2 rs1 100 00000 1110011 HSV.W

Hypervisor Virtual-Machine Load and Store Instructions, RV64 only
0110100 00001 rs1 100 rd 1110011 HLV.WU
0110110 00000 rs1 100 rd 1110011 HLV.D
0110111 rs2 rs1 100 00000 1110011 HSV.D

Table 6.1: RISC-V Privileged Instructions
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History

7.1 Research Funding at UC Berkeley

Development of the RISC-V architecture and implementations has been partially funded by the
following sponsors.

� Par Lab: Research supported by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional
support came from Par Lab affiliates Nokia, NVIDIA, Oracle, and Samsung.

� Project Isis: DoE Award DE-SC0003624.

� ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. DARPA POEM
program Award HR0011-11-C-0100. The Center for Future Architectures Research (C-FAR),
a STARnet center funded by the Semiconductor Research Corporation. Additional sup-
port from ASPIRE industrial sponsor, Intel, and ASPIRE affiliates, Google, Huawei, Nokia,
NVIDIA, Oracle, and Samsung.

The content of this paper does not necessarily reflect the position or the policy of the US government
and no official endorsement should be inferred.
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