
 

 

 

 

 

 

Neural Net (NN) 
Perceptron Pattern 

Recognition 
Specification 

 
 
 

Author: Jens Gutschmidt 
opencores@vivare-services.com 

 
 

Rev. [1.2] 
July 28, 2022 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 ii  

 

 

 

 

 

 

 

 

 

 

 

 

 
This page has been intentionally left blank. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 iii  

Revision History 
Rev
. 

Date Author Description  

0.1 07/10/22 [JDG] First Draft 
 

1.0 07/20/22 [JDG] Last modifications and completed Appendix B – 
Sample Project section 

1.1 07/22/22 [JDG] Appendix B – Sample Project 
The value for Threshold is wrong in the test bench 
v04 (0x25 – changed to 0x20). In result of that, 
show results of training (p.44-48) are also wrong. 
“Table 13 – Targets” wrong. 
Values, tables and pictures corrected. 

1.2 07/28/22 [JDG] Remove bindings to “opencores.org” 
 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 iv  

Contents 
1 INTRODUCTION ................................................................................................................................. 1 

Technical Overview ............................................................................................................................. 1 
Memories .......................................................................................................................................................... 2 
Addressing Scheme ........................................................................................................................................... 2 
Data Types ........................................................................................................................................................ 3 

Perceptron Neural Net ......................................................................................................................... 5 
Training ............................................................................................................................................................. 5 
Testing .............................................................................................................................................................. 5 
Datasets ............................................................................................................................................................. 5 

2 ARCHITECTURE ................................................................................................................................. 6 
Block Diagram ...................................................................................................................................... 7 
Formulas ............................................................................................................................................... 8 

3 OPERATION ....................................................................................................................................... 9 
Configuration before Synthesis – VHDL Package File ....................................................................10 
Wire Level - Reset the core ................................................................................................................11 
Wire Level - Wishbone standard, synchronous read/write .............................................................12 
Wire Level - Controller Interrupt .....................................................................................................15 
Program Level - Initialization ............................................................................................................17 

Memory Window Size .................................................................................................................................... 17 
Bias value ........................................................................................................................................................ 18 
Start the memory window initialization .......................................................................................................... 19 

Program Level – Interrupt enable/disable ........................................................................................20 
Program Level - Training ...................................................................................................................20 

Threshold value ............................................................................................................................................... 22 
Maximum Epochs value .................................................................................................................................. 22 
Write a s:t pattern definition pair to memory window..................................................................................... 22 
Start the training process ................................................................................................................................. 24 

Program Level - Testing .....................................................................................................................25 
Offset value ..................................................................................................................................................... 26 
Write s values of test pattern to s memory ...................................................................................................... 27 
Start the testing process ................................................................................................................................... 28 
Read out t values from t memory .................................................................................................................... 29 
Observe and analyze results ............................................................................................................................ 29 

4 REGISTERS .......................................................................................................................................30 
List of Registers ...................................................................................................................................30 
Status register – Description ..............................................................................................................36 

5 CLOCKS ...........................................................................................................................................38 
6 IO PORTS .........................................................................................................................................39 
APPENDIX A ..............................................................................................................................................40 

Wishbone Datasheet ............................................................................................................................40 
APPENDIX B ..............................................................................................................................................42 

Sample Application .............................................................................................................................42 
Problem to solve ..................................................................................................................................42 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 v  

Definition and translating of symbols ...............................................................................................43 
Definition and translating of targets .................................................................................................43 
Setup of memory and initializations ..................................................................................................43 
Training ...............................................................................................................................................44 
Testing all 64 pattern pairs and analyzing the results .....................................................................44 
Content of w matrix ............................................................................................................................48 
Content of bias matrix ........................................................................................................................48 

7 REFERENCES ....................................................................................................................................49 

 

Figures 
Figure 1: Introduction – Memory pointer while writing s memory .................................... 3 

Figure 2: Architecture ......................................................................................................... 7 

Figure 3: Operation - Active HIGH Reset with dangerous time slot ................................ 12 

Figure 4: Operation - Wishbone standard, synchronous READ (delayed and normal).... 13 

Figure 5: Operation - Wishbone standard, synchronous WRITE (delayed and normal) .. 14 

Figure 6: Operation - Reading from status register clear pending interrupt output 
ctrl_int_o ................................................................................................................... 16 

Figure 7: Operation - Initialize memory window size ...................................................... 18 

Figure 8: Operation - Initialize bias value ........................................................................ 18 

Figure 9: Operation - INIT START - Start the memory window initialization ................ 19 

Figure 10: Operation - Interrupt enable or disable ............................................................ 20 

Figure 11: Operation - The training procedure ................................................................. 21 

Figure 12: Operation - Initialize threshold value .............................................................. 22 

Figure 13: Operation - Initialize maxepochs value ........................................................... 22 

Figure 14: Operation - Writing a pattern pair s:t to s and t memory window ................... 23 

Figure 15: Operation - TRAIN START - Start the training process................................. 24 

Figure 16: Operation - The testing procedure ................................................................... 25 

Figure 17: Operation - Initialize offset value .................................................................... 26 

Figure 18: Operation - Writing a test pattern to s memory window ................................. 27 

Figure 19: Operation - TEST START - Start the testing process ..................................... 28 

Figure 20: Operation - Reading target values from t memory window ............................ 29 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 vi  

Figure 21: Sample Application – Results of t of 64 tested pattern ................................... 47 

 

Equations 
Equation 1: Compute response of output unit..................................................................... 8 

Equation 2: Translate y_in to y (1, 0, -1) ............................................................................ 8 

Equation 3: Compute w matrix ........................................................................................... 8 

Equation 4: Compute bias matrix ....................................................................................... 8 

 

Tables 
Table 1: Introduction - Memory Contents .......................................................................... 2 

Table 2: Introduction - Representation of s ........................................................................ 4 

Table 3: Introduction - Representation of t as INPUT ........................................................ 4 

Table 4: Introduction - Representation of t as OUTPUT .................................................... 4 

Table 5: Operation - Wishbone address map with associated wait states (read and write)
................................................................................................................................... 15 

Table 6: Registers - List of registers ................................................................................. 36 

Table 7: Registers - Description of Status registers, 0x00 ................................................ 37 

Table 8: Clocks - List of clocks ........................................................................................ 38 

Table 9: IO Ports - List of IO ports ................................................................................... 39 

Table 10: Wishbone Datasheet – Datasheet ...................................................................... 40 

Table 11: Wishbone Datasheet - List of signals ............................................................... 41 

Table 12: Sample Application - List of translated symbols .............................................. 43 

Table 13: Sample Application - List of translated targets ................................................ 43 

Table 14: Sample Application - Results t of 64 test pattern ............................................. 46 

 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 1 of 49 

1 Introduction 
 

• Full synthesizable VHDL core for 
 FPGA with on-chip memory 

 • Perceptron type Neural Net for pattern 
 recognition 

• Wishbone compatible (V.B4)  • Bipolar s:t input data – t signed output 
• User specific pre-configurable on-chip 
 memory configuration 

 • Read from and write to any memory 
 space (s, t, w matrix, bias and y) 

• On-the-fly memory windowing within 
 pre-configured memory space 

 • Built-in training module with user 
 configurable Max Epochs Counter 

• No multiplications or DSP blocks - 
 Only Add and Sub functions are used 

 • Threshold and Bias register for fine 
 tuning of training 

• Auto-adjusting memory Wait State 
 generator for Reading and Writing 

 • Signed data types on the Wishbone 
 data bus without masking 

• Enable/Disable Hardware Interrupt    
 

 

Technical Overview 

This IP core for FPGA allows the user to add a function for pattern recognition to an 
electronic design with or without cpu support. 

A Wishbone interface is included to control the core and read from/write to the register 
bank or on-chip memory space (s, t, w, bias or y). 

Functions can be start by writing a dummy value to the appropriate function address. 
Most functions are completed within few cycles and can be observed by polling the status 
register. Function training is the only one which offers the option to generate a hardware 
interrupt after the training process has been finished. Training can be a time consuming 
process and is undeterminable.  

The design was optimized balanced (60:40 – speed:area) on HDL level to fulfill most of 
daily work requirements. All paths between inputs and outputs of finite state machines 
are registered. Inputs of adders/subtractions are registered also. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 2 of 49 

After reset a built-in wait state generator test the available w-matrix memory to determine 
and adjust the best timing for reading and writing on the chosen target FPGA. The range 
is 0WS-7WS. Because of internal pipelining all memories lesser or equal to 2WSRD are 
handled as 3WSRD memories. Read latency include the preparation time of the address 
counter for x/y addresses. Write latency only measures the time for which data out is the 
same as written before without changing the address. 

Because the IP core lacks any use of multiplications or DSP function blocks, any FPGA 
vendor and family can be used as long enough on-chip memory is available. 

Signed data is used to connect the Wishbone data bus to the on-chip memory space which 
have a user specific data bus width. This helps to interpret the data in/out without having 
bus-width specific data masks to find out or isolate the sign-bit in software or hardware. 

Memories 

There are five memories (i/j -> x/y): 

Name Description 
s Hold the input components s (i direction) 
t Hold the input/output target t (neuron) (j direction) 
w Hold the weight matrix (i/j direction) 
bias Hold the bias matrix for each target t (neuron) (j direction) 
y Hold the temporary y values while training (j direction) 

Table 1: Introduction - Memory Contents 

The w-memory is two dimensional. All other memories are one dimensional. 

All memories s, t, bias and y are organized in directions to form the w-matrix in the w-
memory. This is the base for all calculations which are matrix related computations. 

Before synthesizing the core, the user must write valid values of the maximum of the 
memory area x/y into a specific VHDL package file, holding all constants, definitions and 
declarations for the core. 

After that, the memory area to use is programmable by the user on-the-fly while running 
the core. 

Addressing Scheme 

The memories are addressed row by row and column by column automatically by two 
address counters for x/y directions. 

Both counters are able to increment or decrement their start values and are controlled by 
the current running function module. 

They are organized internally as “For-Next-Loops”, named i- and j-counter and stop at 
their programmed end values automatically. These values must be programmed by the 
user before functions like rd_wr_memory, training or testing can be started. 

i works as index for x-direction and j works as index for y-direction. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 3 of 49 

Every access to any type of memory (s, t, w, bias and y) must read/write from/to all 
addresses. Because the user only write the start and stop point to the start-/stop-register of 
i-/j-counter, it is not possible to address the memories randomly or directly. 

For example, if the memory organization is 6x3, s is 6 i positions deep, t=3j, w=6i x 
3j=18, bias=3j and y=3j and the user attempt to write to the s-memory, all six values must 
be written in correct order without any interruption. Pauses are allowed. 

The tables below show the internal flow of data after the function “rd_wr_mem – write s” 
was started followed by the six necessary data words. Only the s-memory is affected by 
this operation, so other memories are shown with dotted border lines. Internally the 
address counter generate the next address automatically every time one data word was 
written (assumed start_i=0, stop_i=5). Read the appropriate status bit after each written 
data word lets the controlling process of “rd_wr_mem” know about the continuing or end 
of the function. 

The address i-counter jump back to his start value automatically after reaches the stop 
value. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 1: Introduction – Memory pointer while writing s memory 
 

 

Data Types 

All memories have the same size of data in/out. Although all data types are “signed” the 
range of s is only -1…1. 

As result of that, the minimum data bus width of all memories is 

2 
 

Special care must be taken to fit the whole necessary number representation in all other 
memories for all computation scenarios. 

t 
j=0 j=1 j=2 

bias 
j=0 j=1 j=2 

y 
j=0 j=1 j=2 

w 
00 01 02 
10 11 12 
20 21 22 
30 31 32 
40 41 42 
50 51 52 

s  
i=0 
i=1 
i=2 
i=3 
i=4 
i=5 

Function “rd_wr_mem”  start to write s 
1st value at i = 0 
2nd value at i = 1 
3rd value at i = 2 
4th value at i = 3 
5th value at i = 4 
6th value at i = 5 

…function completed (status word) 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 4 of 49 

s-memory 

The input data s (components) is of data type “signed”, have the same data bus width as 
all other core related on-chip memories but is bipolar. There are three possible valid 
combinations of data values: 

Orientation Representation 
si < 0 Representation of -1 
si = 0 Representation of 0 (uncertain, noise) 
si > 0 Representation of 1 

Table 2: Introduction - Representation of s 

The user is able to write other values into s but such values are always interpreted as -1, 0 
or 1. 

 

t-memory 

The data t (targets) is of data type “signed” and is stored into the t-memory by the user 
for training or by testing module while testing the perceptron neural net against specific 
input pattern (components) s. 

In contrast to the s value input, t is internally fully qualified as “signed” value and can be 
act as input or output. 

As input, t represents the status of activation of all neural nodes while components s are 
present in s-memory for training (ONLY -1 and 1 as input values are recommended at 
this time). 

Orientation Representation 
tj = -1 Neuron should be NOT activated 
tj = 0 Leave w-matrix unchanged -> no learning 
tj = 1 Neuron should be activated 

Table 3: Introduction - Representation of t as INPUT 

As output, t represents the status of activation of all neural nodes while components s are 
present in s-memory for testing. 

Orientation Representation 
tj < threshold Neuron is NOT activated 
tj >= threshold Neuron is activated 

Table 4: Introduction - Representation of t as OUTPUT 

 

w-memory 

The data w (weights) is of data type “signed” and is stored into the w-memory by the 
training process or by the user for working with pre-defined data sets. 

It is used by testing or training module. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 5 of 49 

Perceptron Neural Net 

The Perceptron Neural Net offers a very wide range of general purpose applications while 
bipolar input data (-1, 0, 1) for s:t (training) and s (testing) is the base for all further 
computations. 

Writing the both dimensions of x/y of the memory space window to the specific registers 
initialize the core within the synthesized memory area. This method of dynamic memory 
allocation offers a maximum flexibility to the user to re-define the necessary memory 
matrix on-the-fly without having to re-synthesize the core after such change every time. 

Training 

Writing the components and the required answer s:t into the s-/t-memories prepare the 
training process. 

Additional programmable parameters like bias and threshold values helps to obtain 
certain test results in specific different environments. As result of that, the kind of input 
data s can be noisy or exact. 

Bias contains a bias value for each target neuron t individually. Threshold contains the 
net wide threshold value which must be reached to indicate an activation of any neuron t. 
The training module process through the s:t values, generate the internal y matrix and 
calculate the w matrix while observing the threshold and bias for each target neuron t. 
This process iterates until the input components s activate all necessary target neurons t 
as required. If the maxepochs register was loaded with a value greater than zero, the 
training will end at this value. 

Testing 

Writing a complete set of components s into the s-memory prepares the test process for 
one pattern. It is not possible to change only parts of previously written pattern. Each 
time the complete set of components s must be written into s-memory. 

After the test process have been finished, the t-memory contains the signed values for all 
targets t. All t-values must be than compared against the stored threshold value 
externally. 

Datasets 

A complete trained dataset can be read out from the bias-, w-memory and the threshold 
register respectively, to store it externally and to write it back at any time later to work 
with pre-trained data models. 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 6 of 49 

2 Architecture 
 

 

The design was divided into several modules and is “Wishbone Compatible”, v.B4. Each 
module contain a dedicated function like 

- Wishbone interface (p0300_m00021_s_v03_wishbone_fsm) 
- Calculation of y matrix (p0300_m00022_s_v02_cal_y_fsm) 
- Calculation of w and bias matrix (p0300_m00023_s_v02_cal_w_fsm) 
- Training (p0300_m00027_s_v01_train_fsm) 
- Testing – determine the response of perceptron (p0300_m00024_s_v02_test_fsm) 
- Read from and Write to memory (p0300_m00026_s_v02_rd_wr_fsm) 

Some more modules are for internal use. 

To fulfill the performance requirements of this IP core, all modules were designed as 
Finite State Machines (FSM) of type “Moore” (mainly). 

On the next page the block diagram is shown. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 7 of 49 

Block Diagram 

 
Figure 2: Architecture 

 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 8 of 49 

Formulas 

While training (p0300_m00027_s_v01_train_fsm) following formulas are used to build 
up and update the weight matrix w and bias by the given components s, targets t and 
threshold 𝜃𝜃. The ranges for the row counter i and the column counter j are given by their 
pre-loaded start and stop values. 

For each column index j, all row indexes i of s and w are processed to determine if w and 
bias must be updated to accomplish the desired threshold value for the requested output tj 
activation. 

𝑦𝑦_𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠𝑗𝑗 + � 𝑠𝑠𝑖𝑖𝑤𝑤𝑖𝑖𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

Equation 1: Compute response of output unit 

 

𝑦𝑦𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖 𝑦𝑦_𝑖𝑖𝑖𝑖 > 𝜃𝜃
0, 𝑖𝑖𝑖𝑖 − 𝜃𝜃 ≤  𝑦𝑦_𝑖𝑖𝑖𝑖 ≤ 𝜃𝜃

−1, 𝑖𝑖𝑖𝑖 𝑦𝑦_𝑖𝑖𝑖𝑖 < 𝜃𝜃
 

Equation 2: Translate y_in to y (1, 0, -1) 

 

If yj differs from tj, then the w and bias matrix must be updated. Otherwise both left be 
unchanged. 

𝑤𝑤𝑖𝑖𝑗𝑗 = �
𝑤𝑤𝑖𝑖𝑗𝑗 + 𝑡𝑡𝑗𝑗𝑠𝑠𝑖𝑖, 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 ≠ 𝑡𝑡𝑗𝑗

𝑤𝑤𝑖𝑖𝑗𝑗, 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 = 𝑡𝑡𝑗𝑗
 

Equation 3: Compute w matrix 

 

𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠𝑗𝑗 = �
𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠𝑗𝑗 + 𝑡𝑡𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 ≠ 𝑡𝑡𝑗𝑗

𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 = 𝑡𝑡𝑗𝑗
 

Equation 4: Compute bias matrix 

 

The training have been finished if all columns were proceeded. Otherwise step to the next 
column and compute y_in, yi, wij and biasj for all rows i. 
A readable register epochs contain the number of epochs which were necessary to 
accomplish the required response from all target neurons t while the input pattern 
(components) s was trained. 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 9 of 49 

3 Operation 
 

WARNING: 
DO NOT CHANGE ANY REGISTER’S CONTENT OR TRY TO START ANY 
MODULE OR TRY TO READ FROM/WRITE TO MEMORY WHILE THE CORE 
IS NOT READY. IT MIGHT INVALIDATE RESULTS OF RUNNING PROCESSES 
AND/OR CORRUPT ADDRESS COUNTER’S STATES. 

HINT: 

Following the subsections named “Program Level” the user is able to reproduce all the 
preparations of the sample application described in “Appendix B”, page 42. 

 

The core is controlled by reading from or writing to Wishbone’s memory mapped 
addresses. 

RESET for Wishbone (RST_I -> wb_rst_i) is defined as active high but is inverted 
internally to reset all connected registers and finite state machines (FSMs). 

Memory reads/writes handled through one-address-style memory mapped channels with 
auto-increment/-decrement address counters. These counters controlled by start and stop 
values written by user to dedicated registers before any start of module operations. 

Use only the auto-increment function of these counters (START < STOP). The auto-
decrement feature is reserved for future releases. 

Each register have its own memory mapped address for reading and/or writing. Some 
registers are only for reading from. 

Reading from registers is possible at any time and at any state of the core. 

Other operations are on user’s responsibility and need preparation to registers, observing 
the core’s state and synchronize data flows. 

The Wishbone interface were developed and integrated for a smooth operation. As result 
of that, wb_ack_o becomes active after internal operations are finished for some functions 
like 

- Initialize Memory Window content 
- Testing of given components s 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 10 of 49 

and 

- Read/Write Memory Window content 

So, these functions generate a delay of few clock cycles before the Wishbone interface is 
released by wb_ack_o. 

The following subsections describe the necessary sequences for user’s operation and 
important timing relations. 

Configuration before Synthesis – VHDL Package File 

Widths for address and data busses are configurable within the VHDL package file 
“memory_vhd_vxx_pkg.vhd”. The “vxx” herein tells about the version number of the 
package file. 

The following entries are the user settable values: 
  -- /////////////////\\\\\\\\\\\\\\\\\\\ 
  -- ************************************ 
  -- ***         User Settings        *** 
  -- ************************************ 
 
   -- Wishbone Bus 
   CONSTANT WB_DATA_WIDTH  : integer := 32; -- Wishbone Data Bus width 
   CONSTANT WB_ADDR_WIDTH  : integer := 5; -- Wishbone Address Bus width 
 
   CONSTANT VENDOR : string :=   "generic"; -- (generic, altera, xilinx) 
                                --  NOT IMPLEMENTED YET: altera, xilinx 
 
  -- Bus width (DATA_T) of all memories (all are equal) 
  -- Chose a value high enough to hold all possible values cumulated in 
  -- y_inj_reg,  
  -- Memory t, 
  -- Memory bias, 
  -- Memory w 
   CONSTANT DATA_WIDTH                   : integer := 8; 
 
  -- Address width of s input vector memory (maximum number of 
components/inputs = 2**MEM_S_ADDR_WIDTH) 
   CONSTANT MEM_S_ADDR_WIDTH             : integer := 3;  -- = 8 
 
  -- Address width of t output vector memory (maximum number of 
neurons/outputs = 2**MEM_T_ADDR_WIDTH) 
   CONSTANT MEM_T_ADDR_WIDTH             : integer := 2;  -- = 4 
  -- /////////////////\\\\\\\\\\\\\\\\\\\ 
  -- /////////////////\\\\\\\\\\\\\\\\\\\ 
   

The both values for the Wishbone interface “WB_DATA_WIDTH” and “WB_ADDR_WIDTH” are 
dependent to the module p0300_m00021_s_v03_wishbone_fsm. Any changes to these 
both values must also be done within p0300_m00021_s_v03_wishbone_fsm and the other 
hierarchical levels lying above p0300_m00021_s_v03_wishbone_fsm. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 11 of 49 

“DATA_WIDTH”, “MEM_S_ADDR_WIDTH” and “MEM_T_ADDR_WIDTH” are free configurable by 
the user and declare memory window related settings of the on chip memory areas. The 
given defaults are sufficient for the most general purpose perceptron related tasks. 

There are 8x4 possible positions within the w matrix, eight entries for components s and 
four for targets t. If a larger memory window is required the user is allowed to increase 
these values as needed. 

Within these memory area borders the user is able to shrink the memory window by 
setting the values of start i, stop i, start j and stop j as required for the given task 
dynamically after synthesis. 

Look at section “Program Level - Initialization”, page 17 for more detailed information. 

Wire Level - Reset the core 

RESET for Wishbone is defined as active high but is inverted internally for all reset 
related elements of the whole core. All registers resets synchronously internally at active 
low (wb_rst_i <= ‘1’, external reset phase). 

Because wb_rst_i is active high, care must be taken to generate a valid RESET signal to 
wb_rst_i while power is starting up. 

Normally, if power comes up, the reset line is at low level and hold at this level by 
external reset logic since the required power levels reached their minimum values. After 
that, the reset level switched to high to start the device correctly. 

Additionally the clocks may be stopped by a reset controller while the cold reset phase is 
active. 

But with active high reset level, at cold start phase of the FPGA power levels may reach 
their required values while wb_rst_i is still hold at low. This may lead in malfunctions for 
a short time on Wishbone and core functions before the reset line switches high for 
signaling RESET regularly. 

Most FPGA devices route reset signals through dedicated pins and offer specialized reset 
blocks to synchronize resets with associated clocks. Use such blocks within your FPGA 
design to simplify reset related paths and minimize power-up problems. 

Figure 2 show the possible danger behind active high reset signals (DANGER at time slot 
6 & 7). 

 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 12 of 49 

 
Figure 3: Operation - Active HIGH Reset with dangerous time slot 

 

- Since time slots 1 to 3 the power comes up and both signals wb_rst_i and rst_n 
(the inverted internal reset) are low. 

- At the end of 3 the power is up and rst_n is able to reflect the inverted wb_rst_i 
correctly. Even there is no active reset, the core is still not running because of the 
missing clock. 

- DANGER: The clock starts at 6 without a valid reset signal. The core is running 
normally for one clock cycle (6 & 7) before the regular reset goes high (8 & 9). 

- The core reset in 8 & 9 while regular reset is active. 
- At 10 the core operates normally as indented. 

Wire Level - Wishbone standard, synchronous read/write 

All reads from and writes to the Wishbone interface are of type standard (pipelined not 
supported) and are synchronous. 

Most register addresses delay wb_ack_o and wb_dat_o for one clock cycle (1WS – 
normal) while reading or writing. As result of that, at least 

3 clock cycles 

are need for a complete read/write sequence. 

Other addresses generate more wait states to synchronize internal states to the Wishbone 
interface. 

 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 13 of 49 

Fig. 3 shows the timing for slave-xWS, master-1WS/slave-normal and for master-
0WS/slave-normal read sequences. 

 

 
Figure 4: Operation - Wishbone standard, synchronous READ (delayed and 
normal) 

 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 14 of 49 

Fig. 4 shows the timing for slave-xWS, master-1WS/slave-normal and for master-
0WS/slave-normal write sequences. 

 

 
Figure 5: Operation - Wishbone standard, synchronous WRITE (delayed and 
normal) 

 

The following table shows the number of wait states generated by each address. 

 

Name Address # WS 
RD / WR 

STATUS 0x00 / 00d 1 / 1 
THRESHOLD 0x01 / 01d 1 / 1 
BIAS 0x02 / 02d 1 / 1 
OFFSET 0x03 / 03d 1 / 1 
MAXEPOCHS 0x04 / 04d 1 / 1 
- 0x05 / 05d 1 / 1 
- 0x06 / 06d 1 / 1 
START i 0x07 / 07d 1 / 1 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 15 of 49 

Name Address # WS 
RD / WR 

STOP i 0x08 / 08d 1 / 1 
START j 0x09 / 09d 1 / 1 
STOP j 0x0A / 10d 1 / 1 
EPOCHS 0x0B / 11d 1 / 1 
WR LATENCY 0x0C / 12d 1 / 1 
RD LATENCY 0x0D / 13d 1 / 1 
LATENCY 0x0E / 14d 1 / 1 
INIT START 0x0F / 15d 1 / 3 
TEST START 0x10 / 16d 1 / 3 
SMEM RD/WR 0x11 / 17d 3 + LATENCY / 

3 + LATENCY 
TMEM RD/WR 0x12 / 18d 3 + LATENCY / 

3 + LATENCY 
WMEM RD/WR 0x13 / 19d 3 + LATENCY / 

3 + LATENCY 
YMEM RD/WR 0x14 / 20d 3 + LATENCY / 

3 + LATENCY 
BIASMEM 
RD/WR 

0x15 / 21d 3 + LATENCY / 
3 + LATENCY 

TRAIN START 0x16 / 22d 1 / 1 
MAX i 0x17 / 23d 1 / 1 
MAX j 0x18 / 24d 1 / 1 
MEMDBUSW 0x19 / 25d 1 / 1 
- 0x1A / 26d – 

0x1F / 31d 
1 / 1 

  Table 5: Operation - Wishbone address map with associated wait states (read and write) 

Although some addresses are reserved and read/write combinations are not valid, 
wb_ack_o is always generated to acknowledge every Wishbone’s transfer/phase and bus 
activity within the core’s address space correctly. 

Wire Level - Controller Interrupt 

If one of the processes testing or training have been finished, the corresponding interrupt 
flags Pending Interrupt Testing (bit D6=1) or Pending Interrupt Training (bit D7=1) 
within the status register will be set. If the Enable Interrupts bit within the status register 
is set (write bit D3 = 1 to status register to set D3) output ctrl_int_o goes also high. 

The Enable Interrupts bit is not cleared automatically if an interrupt is pending because 
no more than one process can be started at the same time. Nested interrupts are currently 
not supported. So, disabling the interrupt generation itself is not necessary. The interrupt 
handler must be single-threaded. 

Reading the interrupt flags D6 and D7 from status register allow the user to determine the 
source of the pending interrupt. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 16 of 49 

Accessing the status register for reading clear the flags 

- Pending Interrupt Testing (D6=1 -> 0) 
- Pending Interrupt Training (D7=1 -> 0) 

As result of that, ctrl_int_o goes low if interrupts are enabled and one interrupt is pending 
because it’s a function of 

     ctrl_int_o <= ctrl_stat_a_reg(3) AND (ctrl_stat_ a_reg(6) OR ctrl_stat_ a_reg(7) ) 

 

Fig. 5 shows the timing relationship to ctrl_int_o if one interrupt is pending and Enable 
Interrupts bit D3=1. 

 

 
Figure 6: Operation - Reading from status 
register clear pending interrupt output 
ctrl_int_o 

ctrl_int_o is 0 after the read sequence of the status register has been ended (cycle 4). 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 17 of 49 

Program Level - Initialization 

After reset of the core, the memory window is initialized to the minimum window size of 
2x2 automatically. This means that one address line fed to the row and one address line 
fed to the column memory space. 

The user must firstly set all parameters correctly to train or test the neural net or work 
with pre-trained data sets. 

1. Set the memory window size 
2. Set the bias value for bias memory initialization 
3. Start the memory window initialization 

Now the memory window is prepared for 

- Training 
- Testing 
- Reading from and writing to memory window 

All values named within the following subsections based on the sample application which 
is detailed described in “Appendix B”, page 42. 

Memory Window Size 

Following Fig. 6 will prepare the memory window size. 

The order of register writes is not important. 

Remember to define the stop values as <necessary rows -1> and <necessary columns -1>. 
The window size in this example is 6x3 (5x2 internally). As noted before, the smallest 
windows size of 2x2 is coded as 0, 1, 0, 1 (START i, STOP i, START j and STOP j). 
Using values like START = STOP the address counters won’t be start. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 18 of 49 

 
Figure 7: Operation - Initialize memory window size 

Bias value 

Following Fig. 7 will prepare the bias value to write to the bias matrix while INIT 
process. 

For normal operation the bias value should be set to 1. This allow the training process to 
adjust the w matrix to accomplish the required threshold values. 

 
Figure 8: Operation - Initialize bias value 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 19 of 49 

Start the memory window initialization 

HINT: 

Before start a process like init start check that the core is ready to start a process (D0=’1’ 
- STAT_RDY of the status register). 

 

Following Fig. 8 will start and complete the init start process. 

Bit 0 (STAT_RDY) of the status register reflects the ready state of the core and will be 
cleared after the start of the init start process. After bit 0 is ‘1’ again the init start process 
have been finished and the core is ready for another process to start. 

 
Figure 9: Operation - INIT START - Start the memory 
window initialization 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 20 of 49 

Program Level – Interrupt enable/disable 

Following Fig. 9 will enable or disable the generation of interrupt ctrl_int_o. 

           
Figure 10: Operation - Interrupt enable or disable 

Program Level - Training 

Before the process training is able to train the perceptron neural net some more 
preparations are needed. 

It is assumed that following processes have been finished successfully before stepping 
further: 

Program Level – Initialization 

1. Memory Window Size 
2. Bias value 
3. Start the memory window initialization 

and 

Program Level – Interrupt enable/disable 

Interrupts should be disabled. 

 

The training procedure is shown in Fig. 10. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 21 of 49 

 
Figure 11: Operation - The training procedure 

 

The blocks within the above figure are described more in detail in the following 
subsections. 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 22 of 49 

Threshold value 

Next, the threshold value should be defined. Using the settings of the sample application 
will produce clear results and recognitions when testing the perceptron neural net against 
known pattern in later steps. 

So, use 32d for the threshold. 

 
Figure 12: Operation - Initialize threshold value 

Maximum Epochs value 

Last, define how many epochs are allowed while training is progressing. 

Set the maxepochs register to 0d to allow maximum precision. 

 
Figure 13: Operation - Initialize maxepochs value 

Write a s:t pattern definition pair to memory window 

HINT: 

Before start a process like smem rd/wr check that the core is ready to start a process 
(D0=’1’ - STAT_RDY of the status register). 

 

It is assumed, that the row and column address counters are in initialization state. If any 
Read or Write Memory process (xmem rd/wr) were started in the past, it must be 
completed (status register at 0x00 bit D5=’1’, READ/WRITE COMPLETED). 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 23 of 49 

Because xmem rd/wr processes block the Wishbone bus until they have been finished, the 
user doesn’t need to care about the run times. 

The user is allowed to write s or t first to the memory window. 

For every pattern pair s:t to train do the following: 

1. Writing s values to s memory window 
2. Writing t values to t memory window 
3. Start the training process 

The order to write the s and t values to memory is either LITTLE or BIG ENDIAN. For 
example, a value of 001010b can either translated to 

−1 −1 +1 −1 +1 −1 

or 

−1 +1 −1 +1 −1 −1. 

 

   
Figure 14: Operation - Writing a pattern pair s:t to s and t memory window 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 24 of 49 

Start the training process 

HINT: 

Before start a process like train start check that the core is ready to start a process 
(D0=’1’ - STAT_RDY of the status register). 

 

After the training pattern pair s:t has been written, the train start process can be start. 

If this is the first training pattern pair to train it may be useful to reset the epochs counter 
to 0. To do this, write bit D0=’1’ to the address of train start 0x16/22d. Remaining pair 
trainings should be started with D0=’0’ (cumulate epochs to the counter epochs 
0x0B/11d). 

If the training of all pattern pairs s:t is complete, the user can read out the epochs register 
at 0x0B/11d to observe the number of epochs were needed to train the perceptron neural 
net. 

Now, the neural net is ready for testing. 

 
Figure 15: Operation - TRAIN START - Start the 
training process 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 25 of 49 

Program Level - Testing 

HINT: 

Before start a process like test start check that the core is ready to start a process (D0=’1’ 
- STAT_RDY of the status register). 

 

If the bias and w memory contains valid data the perceptron neural net is ready for testing 
pattern s and observe the generated answers t from the test start process. 

Simply write the pattern s to test onto the s memory, start the test process and read out the 
t memory. 

To move the whole range of results t numerically up or down, a specific value to the 
offset register 0x03/03d can be set before test start process is started. 

 
Figure 16: Operation - The testing procedure 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 26 of 49 

Offset value 

Following Fig. 16 to write an offset value to the offset register at 0x03/03d. 

 
Figure 17: Operation - Initialize offset value 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 27 of 49 

Write s values of test pattern to s memory 

HINT: 

Before start a process like smem rd/wr check that the core is ready to start a process 
(D0=’1’ - STAT_RDY of the status register). 

The order to write the s values to memory is either LITTLE or BIG ENDIAN. For 
example, a s value of 001010b can either translated to 

−1 −1 +1 −1 +1 −1 

or 

−1 +1 −1 +1 −1 −1. 

 
Figure 18: Operation - Writing a test pattern to s memory 
window 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 28 of 49 

Start the testing process 

HINT: 

Before start a process like test start check that the core is ready to start a process (D0=’1’ 
- STAT_RDY of the status register). 

 
Figure 19: Operation - TEST START - Start the testing 
process 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 29 of 49 

Read out t values from t memory 

HINT: 

Before start a process like tmem rd/wr check that the core is ready to start a process 
(D0=’1’ - STAT_RDY of the status register). 

 

 
Figure 20: Operation - Reading target values from t 
memory window 

Observe and analyze results 

Working on own perceptron tasks and finding optimal values for threshold, bias, offset 
and a valid classification for noisy training pattern can be a time consuming process. 

Studying the sample application described in “Appendix B”, page 42 can help to 
understand the different problems and the different solutions to accomplish a goal or 
trend. 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 30 of 49 

4 Registers 
 

List of Registers 

Name Address Width Acc
ess 

Description 

STATUS 0x00 / 00d 32 R/W Status register 
Default: 0x01 – after reset phase 
is done, core is ready for 
receiving commands. 
Read: all status bits and reset bits 
RD_WR_COMPLETE, 
INT_TEST and INT_TRAIN. 
Write: D3=0 to disable interrupts 
– clear INT_EN bit, D3=1 to 
enable interrupts – set INT_EN 
bit. 
For further details look at “Status 
register – Description”. 

THRESHOLD 0x01 / 01d 32 R/W Threshold register 
Default: 0 
Holds the value that must be 
accomplished while training for 
output nodes t. 

BIAS 0x02 / 02d 32 R/W Bias register 
Default: 0 
Value to write into bias memory 
while initialization (Reset the 
core or INIT START). 

OFFSET 0x03 / 03d 32 R/W Offset register 
Default: 0 
Value to adjust the results of the 
output nodes t while testing. 

MAXEPOCHS 0x04 / 04d 32 R/W Maximum Epochs register 
Default: 0 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 31 of 49 

Name Address Width Acc
ess 

Description 

Its protect the core for endless 
loops or running for too long if 
the activation level for output 
nodes t cannot accomplish while 
training. 
Each time the weights are 
updated, the internal Epochs 
Counter is incremented by 1. 
If = 0, the training process ends 
at the point at which the 
activation level of an output node 
t reached “THRESHOLD” 
regardless of how many epochs 
will be needed. 
If > 0, the training process ends 
at the point at which the Epochs 
Counter (32 Bits wide) have 
been reached the value stored in 
“MAXEPOCHS” while training. 

- 0x05 / 05d - - Reserved – DO NOT USE 
- 0x06 / 06d - - Reserved – DO NOT USE 
START i 0x07 / 07d 32 R/W Start i register 

Default: 0 
Holds the start value for the row 
address counter i. The counter is 
able to increment or decrement. 
In most cases set it to 0. 

STOP i 0x08 / 08d 32 R/W Stop i register 
Default: 1 
Set it to a value <necessary rows 
-1>. The default value of 1 
allows two rows 0-1. 
MUST differ from STOP i value. 

START j 0x09 / 09d 32 R/W Start j register 
Default: 0 
Holds the start value for the 
column address counter j. The 
counter is able to increment or 
decrement. In most cases set it to 
0. 

STOP j 0x0A / 10d 32 R/W Stop j register 
Default: 1 
Set it to a value <necessary 
columns -1>. The default value 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 32 of 49 

Name Address Width Acc
ess 

Description 

of 1 allows two columns 0-1 
MUST differ from STOP j value. 

EPOCHS 0x0B / 11d 32 R Epochs register 
Default: 0 
Count the events of weights 
matrix and bias matrix updates 
while training. 

WR LATENCY 0x0C / 12d 32 R Write Latency 
Holds the coded value for write 
latency for all memories 
determined by the *_latency_fsm 
module while core’s reset phase. 
It represents the number of 
cycles to need to write a value 
successfully to memory before 
any address change is allowed. 
Format: 
   …0000 => 0WS 
   …0001 => 1WS 
   …0011 => 2WS 
   …0111 => 3WS 
   … 

RD LATENCY 0x0D / 13d 32 R Read Latency 
Holds the coded value for read 
latency for all memories 
determined by the *_latency_fsm 
module while core’s reset phase. 
It represents the number of 
cycles to need to read a value 
successfully from memory after 
any address change takes effect. 
Format: 
   …0000 => 0WS 
   …0001 => 1WS 
   …0011 => 2WS 
   …0111 => 3WS 
   … 

LATENCY 0x0E / 14d 32 R Latency 
Holds the unsigned binary value 
for read latency for all memories 
determined by the *_latency_fsm 
module while core’s reset phase. 
It represents the number of 
cycles to need to read a value 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 33 of 49 

Name Address Width Acc
ess 

Description 

successfully from memory after 
any address change takes effect. 
Format: 
   0x0 => 0WS 
   0x1 => 1WS 
   0x2 => 2WS 
   … 

INIT START 0x0F / 15d 32 W Start Initialization of memory’s 
window 
Starts automatically after Reset. 
Write any value to this address to 
start the initialization of the 
previously defined memory 
window by start/stop values. The 
s, t, w and y memories will be 
initialized with zeros. The bias 
memory will be initialized with 
the value stored in register BIAS 
0x02/02d. 
Depend on stored values in 
START i, STOP i, START j and 
STOP j. 

TEST START 0x10 / 16d 32 W Start Test process 
Write any value to this address to 
start the test of the loaded 
components s. The results of 
output nodes t will be stored in t 
memory after the test have been 
finished (see Status register).  
Depend on stored values in 
START i, STOP i, START j and 
STOP j. 

SMEM RD/WR 0x11 / 17d 32 R/W Read or Write s memory 
(signed, bipolar -1, 0, 1, 
extended to WB dbus width) 
Read: Complete content of s 
memory window while read-out 
is complete (see Status register). 
Write: Complete content of s 
memory windows while write-in 
is complete (see Status register).  
Depend on stored values in 
START i, STOP i, START j and 
STOP j. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 34 of 49 

Name Address Width Acc
ess 

Description 

Does not set RDY flag to NOT 
RDY=’0’. 

TMEM RD/WR 0x12 / 18d 32 R/W Read or Write t memory 
(signed, extended to WB dbus 
width) 
Read: Complete content of t 
memory window while read-out 
is complete (see Status register). 
Write: Complete content of t 
memory window while write-in 
is complete (see Status register).  
Depend on stored values in 
START i, STOP i, START j and 
STOP j.  
Does not set RDY flag to NOT 
RDY=’0’. 

WMEM RD/WR 0x13 / 19d 32 R/W Read or Write w memory 
(signed, extended to WB dbus 
width) 
Read: Complete content of w 
memory window while read-out 
is complete (see Status register). 
Write: Complete content of w 
memory windows while write-in 
is complete (see Status register). 
Depend on stored values in 
START i, STOP i, START j and 
STOP j.  
Does not set RDY flag to NOT 
RDY=’0’. 

YMEM RD/WR 0x14 / 20d 32 R/W Read or Write y memory 
(signed, bipolar -1, 0, 1, 
extended to WB dbus width) 
Read: Complete content of y 
memory window while read-out 
is complete (see Status register). 
Write: Complete content of y 
memory window while write-in 
is complete (see Status register).  
Depend on stored values in 
START i, STOP i, START j and 
STOP j.  
Does not set RDY flag to NOT 
RDY=’0’. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 35 of 49 

Name Address Width Acc
ess 

Description 

BIASMEM 
RD/WR 

0x15 / 21d 32 R/W Read or Write bias memory 
(unsigned) 
Read: Complete content of bias 
memory window while read-out 
is complete (see Status register). 
Write: Complete content of bias 
memory window while write-in 
is complete (see Status register). 
Depend on stored values in 
START i, STOP i, START j and 
STOP j.  
Does not set RDY flag to NOT 
RDY=’0’. 

TRAIN START 0x16 / 22d 32 W Start Training process 
Write 0 to cumulate epochs from 
previous runs and start the 
training. 
Write 1 to clear the Epochs 
Counter and start the training. 
Depend on stored values in 
START i, STOP i, START j and 
STOP j. 

MAX i 0x17 / 23d 32 R Maximum i 
Read the maximum of available 
memory rows-1. rows is the 
value of 
MEM_S_ADDR_WIDTH 
defined by user in the file 
“memory_vhd_v03_pkd.vhd”. 
It can be used to determine the 
available memory area and to 
define STOP i and STOP j. 

MAX j 0x18 / 24d 32 R Maximum j 
Read the maximum of available 
memory columns-1. columns is 
the value of 
MEM_T_ADDR_WIDTH 
defined by user in the file 
“memory_vhd_v03_pkd.vhd”. 
It can be used to determine the 
available memory area and to 
define STOP i and STOP j. 

MEMDBUSW 0x19 / 25d 32 R Memory Data Bus Width 
Read the memory data bus width. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 36 of 49 

Name Address Width Acc
ess 

Description 

It contain the value of 
DATA_WIDTH defined by user 
in the file 
“memory_vhd_v03_pkd.vhd”. 

- 0x1A / 26d – 
0x1F / 31d 

- - Reserved – DO NOT USE 

Table 6: Registers - List of registers 

Status register – Description 

 

Bit # Access Description 
0 R RDY 

0 => Core is NOT ready to receive or process commands. 
1 => Core is ready to receive commands after following modules 
all become ready first: 

- p0300_m00022_s_v02_cal_y_fsm 
- p0300_m00023_s_v02_cal_w_fsm 
- p0300_m00025_s_v02_init_fsm 
- p0300_m00024_s_v02_test_fsm 
- p0300_m00026_s_v02_rd_wr_fsm 
- p0300_m00027_s_v01_train_fsm 
- p0300_m00028_s_v02_latency_fsm 

After reset the module *_latency_fsm measures w memory’s 
latency. Then module *_init_fsm initialize the default memory 
window of 2 * 2 address space. 

1 R LATENCY MEASSUREMENT RUN 
0 => Latency measurement have been finished. 
1 => Latency measurement is currently running. 
Module *_latency_fsm measures w memory’s latency to adjust the 
read and the write latency times for all memory blocks. 

2 R TRAIN RDY 
0 => Module *_train_fsm is NOT ready – currently processing 
 data for training. 
1 => Module *_train_fsm is ready to process data for training. 
Check this bit before alter any memory’s content. 

3 R/W ENABLE INTERRUPTS 
0 => Interrupts are disabled. 
1 => Interrupts are enabled. 
To enable interrupts, write D3=1 to status register’s address. 
To disable interrupts, write D3=0 to status register’s address. 
All other bits are handled as “don’t care” while writing - masking 
of other bits is not necessary. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 37 of 49 

Bit # Access Description 
4 R MEMORY ERROR 

0 => NO memory error occurred while latency measurement. 
1 => Memory error occurred while latency measurement – core is 
 not operational. 
If this bit is 1, status bit RDY becomes 0 to indicate that the core is 
not operational. In conjunction with status bit 1 LATENCY 
MEASSUREMENT RUN it helps to analyze the state of the core. 

5 R READ WRITE COMPLETE 
0 => Memory windows start condition OR read from or write to 
 a memory window is NOT complete  – Address locations 
 are remaining for read/write OR start condition of memory 
 window reached after reset OR this bit was 1 before. 
1 => Read from or write to a memory window is complete 
 – Memory window is ready for a new read/write sequence. 
This bit is cleared automatically after reading the status register. 
To determine the exact state of a memory’s read/write sequence 
observe and store any start and completion of memory read/write 
actions. If unsure, run “INIT START” to initialize the memory’s 
window and reset the address counters. 

6 R PENDING INTERRUPT TESTING 
0 => NO interrupt of process TESTING is pending. 
1 => Interrupt of process TESTING is pending. 
This bit is cleared automatically after reading the status register. 
If 1, a previously started TESTING process have been finished and 
data is available to read from memory’s window. 

7 R PENDING INTERRUPT TRAINING 
0 => NO interrupt of process TRAINING is pending. 
1 => Interrupt of process TRAINING is pending. 
This bit is cleared automatically after reading the status register. 
If 1, a previously started TRAINING process have been finished 
and data is available to read from memory’s window. 

Reset Value: 0x01 after reset phase (latency measurement and memory initialization) 
is done. 

 Reg_Address: 0x00 
Table 7: Registers - Description of Status registers, 0x00 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 38 of 49 

5 Clocks 
 

 

Name Source Rates (MHz) Remarks Description 
Max Min Resolution 

wb_clk_i PLL - - - Rate dependent on 
target imple-
mentation. 

System clock. 

Table 8: Clocks - List of clocks 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 39 of 49 

6 IO Ports 
 

All inputs and outputs are HIGH ACTIVE. 

Widths of address and data busses are configurable in VHDL package file. 

Port Width Direction Description 
wb_clk_i 1 Input Block’s WISHBONE Clock Input 
wb_rst_i 1 Input Block’s WISHBONE Reset Input 

Internally inverted to rst_n for synchronous active 
low 

wb_adr_i 5 Input Block’s WISHBONE Address Inputs 
wb_dat_i 32 Input Block’s WISHBONE Data Inputs 
wb_stb_i 1 Input Block’s WISHBONE Strobe Input 
wb_we_i 1 Input Block’s WISHBONE Write Enable Input 
wb_dat_o 32 Output Block’s WISHBONE Data Outputs 
wb_ack_o 1 Output Block’s WISHBONE Acknowledge Output 
ctrl_int_o 1 Output Block’s CONTROLLER Interrupt Output 

Table 9: IO Ports - List of IO ports 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 40 of 49 

Appendix A  
Wishbone Datasheet 

 

General Description Wishbone Register Bank and Perceptron Core 
Interconnect 

Wishbone Version B4 
Type of Interface Slave 
Supported cycles Slave, Read/Write, Standard, Synchronous 

Slave, Block, Standard, Synchronous 
Slave, RMW, Standard, Synchronous 
(pipelined cycles are not supported) 

ERR_I handling currently not supported 
ERR_O handling currently not supported 
RTY_I handling currently not supported 
RTY_O handling currently not supported 
Tags currently no tags supported 
Data Port Size Default: 32 

Port size configurable with constant declaration in VHDL 
package file 

Data Port granularity currently no sub port granularity supported 
Data Port Operand size Dependent on addressed register and function (values of 

constants in VHDL package file before synthesis was 
made) 

Data transfer ordering Little Endian (port size=granularity) 
Data transfer sequencing Undefined 
Clock Constraints Frequency dependent on implementation 

Table 10: Wishbone Datasheet – Datasheet 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 41 of 49 

Table 11: Wishbone Datasheet - List of signals 

 

Signal Name Wishbone Equivalent 
wb_clk_i CLK_I 
wb_rst_i RST_I 
wb_stb_i STB_I 
wb_we_i WE_I 
wb_adr_i ADR_I(0..n) 
wb_dat_i DAT_I(0..n) 
wb_cyc_i CYC_I 
wb_ack_o ACK_O 
wb_dat_o DAT_O(0..n) 
ctrl_int_o - 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 42 of 49 

Appendix B  
Sample Application 

This is a sample application to show up how to set up and use the perceptron neural 
network to solve given problems. 

It is advised to read and understand all sections and subsections of this specification 
before trying to work on this sample application. “WHYs”, “DOs”, “DONTs” and 
backgrounds are not described any more in this section. 

Problem to solve 

The following problem is to solve: 

- Three given symbols UP, DOWN and STOP must be recognized at rate 100% 
- Symbol size is 3x2 
- There is no noise on input pattern 
- Three targets (neurons). One for every valid symbol UP, DOWN and STOP 

(100% recognition rate means: only one target t is activated at the time) 
- All other possible symbols (26 = 64, 64 – 3 = 61) must not activate any of the UP, 

DOWN or STOP targets 

The order to write the s and t values to memory is either LITTLE or BIG ENDIAN. For 
example, a value of 001010b can either be translated to 

−1 −1 +1 −1 +1 −1 

or 

−1 +1 −1 +1 −1 −1. 

  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 43 of 49 

Definition and translating of symbols 

Each symbol is defined and translated as follows: 

Symbol 
Name 

Symbol 
picture 

Binary 
represent
ation 
(D5 – D0) 

Bipolar Components s 
#0 - 5 

UP 
 

 
 

0 1 0 1 0 1 
(21d) 

+1 −1 +1 −1 +1 −1 

DOWN 
 

 
 

1 0 1 0 1 0 
(42d) 

−1 +1 −1 +1 −1 +1 

STOP 
 

 
 

1 1 1 0 1 1 
(59d) 

+1 +1 −1 +1 +1 +1 

all others   Translated binary representations 
Table 12: Sample Application - List of translated symbols 

Definition and translating of targets 

Each target is defined and translated as follows: 

Target 
Name 

Target 
picture 

Binary 
represent
ation 
(D2 – D0) 

Bipolar Targets t 
#0 - 2 

UP 
 

 
 

0 0 1 +1 −1 −1 

DOWN 
 

 
 

0 1 0 −1 +1 −1 

STOP 
 

 
 

1 0 0 −1 −1 +1 

all others 
 

 
 

0 0 0 −1 −1 −1 

Table 13: Sample Application - List of translated targets 

Setup of memory and initializations 

The memory window size is given by (symbol size) x (# targets t). 
Window Size = (3x2 = 6) x 3 = 6x3 (size i  x  size j) 

 

Setup values: 

Disable interrupts 
THRESHOLD = 32d 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 44 of 49 

BIAS =  1d 
OFFSET =  0d 
MAXEPOCHS = 0d 
START i =  0d 
STOP i =  5d (6 - 1) 
START j =  0d 
STOP j =  2d (3 - 1) 

Now, start init start. 

Training 

Because the given three symbols UP, DOWN and STOP must be recognized 100% and 
without any noise all possible 64 pattern must be trained. 

The remaining 61 pattern pairs s:t must be trained as “no activation of any target t” (t = 
−1 −1 −1). 

To simplify the process loop, the s pattern are generated from the binary representation of 
the outer loop index i. 

If the loop index i is equal to one of the three symbol values 21d, 42d or 59d, the required 
target value is written to t memory instead of write “−1 −1 −1” globally for all other not 
target activating s pattern. 

After the training of all 64 pattern pairs s:t is completed, the epochs register contain the 
value 0x13/19d. 

This mean: 

- 6x3 epochs were regularly needed to train the three symbols at 21d, 42d and 59d. 
- 1 additional epochs were needed for symbol “1 1 0 1 0 1” (53d, t = −1 −1 −1) to 

separate its similarity to symbol UP “0 1 0 1 0 1” (21d, t = +1 −1 −1) 
- All other symbols does not require training. 

At the end only four symbols were trained: 

1. UP,   010101, 21d 
2. DOWN,  101010, 42d 
3. >unknown<, 110101, 53d very similar to UP 
4. STOP,  111011, 59d 

Testing all 64 pattern pairs and analyzing the results 

It is suggested that the user is able to write some helper programs or scripts to analyze 
and interpret the results of training and testing processes rightly. 

This sample application was written on VHDL test bench level to be not depend to 
programming languages or some operating system’s restrictions. As result of that, the test 
bench write the contents of s, t and bias memory out to separate files while simulation 
runs. 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 45 of 49 

Converting the resulted values from binary and hexadecimal types to signed decimal type 
is also a task to be done. 

Additionally, the content of these generates files imported to a Windows Excel sheet for 
interpreting and analyzing the results more precisely. 

The next table shows the numerical results t (UP, DOWN, STOP) of all 64 test pattern s. 
GREEN marked fields represents activated targets t and are positioned exactly as 
expected. The three results of activated targets are greater or equal to the given threshold 
value of 32d. 

Number UP DOWN STOP 
0 2 0 -24 
1 12 -12 -12 
2 -8 12 -12 
3 2 0 0 
4 12 -12 -36 
5 22 -24 -24 
6 2 0 -24 
7 12 -12 -12 
8 -8 12 -12 
9 2 0 0 
10 -18 24 0 
11 -8 12 12 
12 2 0 -24 
13 12 -12 -12 
14 -8 12 -12 
15 2 0 0 
16 12 -12 -12 
17 22 -24 0 
18 2 0 0 
19 12 -12 12 
20 22 -24 -24 

21 (UP) 32 -36 -12 
22 12 -12 -12 
23 22 -24 0 
24 2 0 0 
25 12 -12 12 
26 -8 12 12 
27 2 0 24 
28 12 -12 -12 
29 22 -24 0 
30 2 0 0 
31 12 -12 12 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 46 of 49 

Number UP DOWN STOP 
32 -12 12 -12 
33 -2 0 0 
34 -22 24 0 
35 -12 12 12 
36 -2 0 -24 
37 8 -12 -12 
38 -12 12 -12 
39 -2 0 0 
40 -22 24 0 
41 -12 12 12 

42 (DOWN) -32 36 12 
43 -22 24 24 
44 -12 12 -12 
45 -2 0 0 
46 -22 24 0 
47 -12 12 12 
48 -2 0 0 
49 8 -12 12 
50 -12 12 12 
51 -2 0 24 
52 8 -12 -12 
53 18 -24 0 
54 -2 0 0 
55 8 -12 12 
56 -12 12 12 
57 -2 0 24 
58 -22 24 24 

59 (STOP) -12 12 36 
60 -2 0 0 
61 8 -12 12 
62 -12 12 12 
63 -2 0 24 

Table 14: Sample Application - Results t of 64 test pattern 

This is a good example to set offset to a value above 0 to get better coverage results for 
pattern testing. 
  



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 47 of 49 

Following picture shows the results of all 64 tested pattern. The threshold is marked as 
RED dotted line and the three activated targets t are marked as RED circles. 

 

 
Figure 21: Sample Application – Results of t of 64 tested pattern 

  

1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
UP 2 1 - 2 1 2 2 1 - 2 - - 2 1 - 2 1 2 2 1 2 3 1 2 2 1 - 2 1 2 2 1 - - - - - 8 - - - - - - - - - - - 8 - - 8 1 - 8 - - - - - 8 - -
DOWN 0 - 1 0 - - 0 - 1 0 2 1 0 - 1 0 - - 0 - - - - - 0 - 1 0 - - 0 - 1 0 2 1 0 - 1 0 2 1 3 2 1 0 2 1 0 - 1 0 - - 0 - 1 0 2 1 0 - 1 0
STOP - - - 0 - - - - - 0 0 1 - - - 0 - 0 0 1 - - - 0 0 1 1 2 - 0 0 1 - 0 0 1 - - - 0 0 1 1 2 - 0 0 1 0 1 1 2 - 0 0 1 1 2 2 3 0 1 1 2

-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Test 64 pattern to test recognition of UP, DOWN and STOP

UP DOWN STOP



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 48 of 49 

Content of w matrix 

The content of w matrix at threshold = 32d is (i = 0…5 top to down, j = 0…2 left to right) 

𝑤𝑤𝑖𝑖𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎡

5 −6 6
−5 6 6
5 −6 −6
−5 6 6
5 −6 6
−7 6 6

    

⎦
⎥
⎥
⎥
⎥
⎤

 

Content of bias matrix 

The content of bias matrix at threshold = 32d is (j = 0…2 left to right) 

𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠𝑗𝑗 = [7 7 6] 

 



 

 NN Perceptron Specifications 7/28/2022 

 
 
 Rev 1.2 49 of 49 

7 References 

FAUSETT, L.V. (year unknown), “Fundamentals of Neural Networks”, Sec. 2.3, 
Perceptron, p.p. 59-80 


	1 Introduction
	Technical Overview
	Memories
	Addressing Scheme
	Data Types

	Perceptron Neural Net
	Training
	Testing
	Datasets


	2 Architecture
	Block Diagram
	Formulas

	3 Operation
	Configuration before Synthesis – VHDL Package File
	Wire Level - Reset the core
	Wire Level - Wishbone standard, synchronous read/write
	Wire Level - Controller Interrupt
	Program Level - Initialization
	Memory Window Size
	Bias value
	Start the memory window initialization

	Program Level – Interrupt enable/disable
	Program Level - Training
	Threshold value
	Maximum Epochs value
	Write a s:t pattern definition pair to memory window
	Start the training process

	Program Level - Testing
	Offset value
	Write s values of test pattern to s memory
	Start the testing process
	Read out t values from t memory
	Observe and analyze results


	4 Registers
	List of Registers
	Status register – Description

	5 Clocks
	6 IO Ports
	Appendix A
	Wishbone Datasheet

	Appendix B
	Sample Application
	Problem to solve
	Definition and translating of symbols
	Definition and translating of targets
	Setup of memory and initializations
	Training
	Testing all 64 pattern pairs and analyzing the results
	Content of w matrix
	Content of bias matrix

	7 References

