

 nnARM

nnARM Architecture

Specification
version 1.11

By ShengYu Shen

From NUDT
2001.6.10

NOTE
This documentation describe the architecture of the nnARM processor
core. Every main release of the nnARM have only one such
documentation. Any change over nnARM v2.XX will not include in this
documentation. Please refer to newer version and the comment in
source code.

Release Log
V1.00 2001.4.11
V1.10 2001.6.1
V1.11 2001.6.10

Free soft core

 nnARM

1.Introduction

 The nnARM project is a development project start at 2001.3.24.The
purpose of this project is to develop a synthesable high performance
embedded processor core that can run ARM instruction set.
 Now, the second main release of this soft core have been
complete. It contain the following component :

1. a behavior description of memory controller
2. behavior description of instruction cache controller and data

cache controller
3. a RTL synthesable instruction prefetch buffer
4. a RTL synthesable instruction fetch component
5. a RTL synthesable decoder for ARM
6. a RTL synthesable full function ALU that can support all kinds

of ALU operation of ARM
7. a RTL synthesable mem stage that can perform load and store

operation
8. a RTL synthesable register file

Note: The Tomasulo structure have been removed because I can

not manage to deal with the complexity of design it. At the same time, I
think I can not found enough logic and interconnect resource on a FPGA
to imply such a complex structure.

This documentation will be organized in the following way: First,
in the second section, I will describe the overall architecture of nnARM
V1.10. And then, I will describe the storage hierarchy of nnARM V1.10.
After that, pipeline will be describe .

Free soft core

 nnARM

2. Overall architecture

2.1 Structure Introduction
 The following figure2.1 will tell you about the external view of this
processor.

processor

I cache D cache Coprocessor

Memory controller

figure 2.1

The processor have separate data cache and instruction cache.

Both have been describe in behavior level. The detail of both cache will
be given in the next chapter

The memory controller is also in behavior level description. It is

external to the chip. So a behavior level description is enough for it.

The coprocessor can accept the request from main processor

through the memory bus. It can distinct the memory request and
coprocessor request. The memory controller also have this capability.
The coprocessor interface have been consider now. Probably I will add it
later.

The pipeline is very similar to that of DLX or mips, It contain only

4 stage : IF ID ALU and MEM , no WB stage for register write back, I have
merge it into MEM stage to simplify the design of pipeline.

The first stage is IF, it fetch one instruction from prefetch buffer

every cycle. It is the so called 1 issue pipeline. 2 issue or 4 issue is
possible, but is will seriously increase the complexity of overall
architecture. And a report from ARM say that a two issue will get a 20%

Free soft core

 nnARM

performance improve only. I think that because ARM instruction set is
more like a CISC than common RISC, its code is very density, one
instruction word can do more work than same size RISC instruction
word. So 1 issue is enough for it.

The second stage is the ID stage. In this stage the decoder will

translate the instruction to multiple microinstruction and send them to
pipeline structure.

After that the microinstructions go to the ALU stage to perform
varies type of computing , include and eor sub rsb add adc sbc rsc tst
teq cmp cmn orr mov bic mvn , at the same time a booth multipler is
chain with the ALU to perform MUL and MLA operation.

After the ALU stage have perform the correspond operation, it will
pass the computed result and the micro operation for MEM stage to
MEM stage. In this stage, the load/store operation will go to access
memory. At the end of this stage, all result for register file will be write
back.

I think I must say some words about the forwarding of pipeline. If
a instruction n use Rn as its destination register, and the following
instruction n+1 will use Rn as its source operand, when n complete its
ALU stage, the result have not been save to Rn, but the n+1 want to use
Rn to compute its result, so a forwarding must be perform to pass n
result to n+1.

The following figure will show you it more clear.

Free soft core

 nnARM

Instruction
cache

Instruction
Prefetch buffer

Fetched instruction
cache block address

Fetched instruction
cache block

IF

Fetched instruction address Fetched instruction

Register
file

PC read and write

ID

Three register read request

Micro
operation
for ALU

Micro
operation
for MEM

Three
immediate
operand

Three register read bus

ALU

instruction

MEM

Micro
operation
for MEM

ALU result
and other
operand used
by MEM

Forwarding
from MEM
to ALU

Forwarding from
ALU output to
ALU input

Write result

PSR
resgisters

Write
PSR
register

D cache

figure 2.2

Free soft core

 nnARM

2.2 Memory Endian
 This processor current only support little endian. That is to say, in
a Word, the least significant byte is at the lowest address, and the
address of a word is the address of its least significant byte. The
memory organization is show below.
 Big endian is not support now, and I do not have the plan to
support it.

11 10 9 8

7 6 5 4

3 2 1 0

Higher address

Lower address

0 162324 31 815 7
word

address

8

4

0

figure 2.3
2.3 Address Bus Width
 Because the nnARM is a brand new design, so it do not have the
backward compatible problem. So only 32 bit address bus width is
support, 26 bit bus mode that used in ARM7 processor will not support
here , and I do not have the plan to support it.

2.4 Processor Mode
 nnARM processor support the six operation modes:

1) User mode: the normal program execution mode
2) FIQ mode:design to support a data transfer or channel process
3) IRQ mode:general purpose interrupt handling
4) Supervisor mode:protected mode for OS
5) Abort mode:memory fetch failure
6) Undefined mode:an undefined instruction executed
Mode change may controlled by software or external interrupt or

exception. Most user program execute in user mode. Other mode are
called privileged mode that use to handle interrupt or exception.

2.5 General Register file

The register file now contain 31 general purpose register. Which
set of register can be access is depend on the mode of the processor.

In any time, there is 16 register that can be access by software.
They are R0 to R15. R15 is program counter, other register can all be
used as general register.

R14 is use to save the next instruction address when a branch

Free soft core

 nnARM

with link instruction is executed.
But in deferent mode, the same register number may not

correspond to same register. The following paragraph will tell you which
register can be access in every mode.

User : R0~R15
FIQ : R0~R7 R8_FIQ~R14_FIQ R15
Supervisor: R0~R12 R13_SVC R14_SVC R15
Abort : R0~R12 R13_ABT R14_ABT R15
IRQ : R0~R12 R13_IRQ R14_IRQ R15
Undifined: R0~R12 R13_UND R14_UND R15

2.6 PSR Register file
 The state of current processor is save in CPSR register, the old
state of varies processor mode is save in SPSR_XXX(XXX correspond to
processor mode). So There is total 6 PSR registers.
 The format of PSR register is show below:
 31: Negative
 30: Zero
 29: Carry
 28: Overflow
 7: IRQ disable
 6: FIQ disable
 4:0 processor mode

 the processor mode in 4:0 is show below:
 10000 : User
 10001: FIQ
 10010: IRQ
 10011: Supervisor
 10111: Abort
 11011: Undefined

2.7 Exception
 I have not support any kinds of exception in current release. I
want to support a full ARM7 instruction set first.
 BUT I DO NOT THINK IT IS DIFFICULT TO SUPPORT EXCEPTION.
 I think exception is another kind instruction, when the decoder
detect that there is a exception, it will stop fetch instruction and
generate an exception instruction into pipeline to perform varies kinds
of operation to change processor mode and go to corresponding
vectors.

Free soft core

 nnARM

3.Storage Hierarchy

 The storage hierarchy of the nnARM include several level. The
first level is the instruction prefetch buffer and the load/store component
in the MEM stage. The next level is the cache, include instruction cache
and data cache. The most low level is the memory controller. The
following figure 3.1 will show you more clear.

Instruction
prefetch buffer

Instruction
cache

Memory Controller

MEM
load/store

Data
cache

figure 3.1

3.1 Memory controller
 This description of the memory controller is not valuable. I must
say that I do not know very much about memory and its memory
controller. So this memory controller will soon be replace by a more well
designed controller. I will not describe its in detail.
 The memory controller have a 32 bit bidirection databus, a 32 bit
address bus input, a read/write flag input, a memory request signal input,
a byte/word access flag input, a sequential/non-sequential access mode
flag input. A wait signal output.
 In a word, it is too simple and not suite for real application. Do not
pay too much attention to it.

3.2 Instruction cache
 This instruction cache have 256 byte(do not laugh at it, I do not
know how to describe a large array of register words that can be random
access and can attend the combinational logic computing). If describe
as several separate register, the .v file will be too large.
 Because in a large cache, the tag field will be very large too, to
compare it with currently input address, I must use combinational logic.
The large tag field must be list in the sensitive list. But the synthesis

Free soft core

 nnARM

tools do not allow I write them as a whole name, it tell me to list all the
field separately.
 Who can tell me how to solve it?
 The instruction cache have 4 section, every section contain 4
lines, every line contain 4 words.
 The Address[5:4] select the section, and then the cache controller
compare the entire Address[31:6] with each tag field of the 4 lines in this
section, if found the desired address then use the Address[3:2] to select
the correspond word in this line.
 If no tag field match the Address[31:6], then make the wait signal
high to stop the requester and go to the memory to got the cache block.

3.3 Instruction prefetch
 The instruction prefetch buffer contain 8 entry, every entry can
contain one 32 bit instruction.
 The entire instruction prefetch buffer have been separate in two
part: the first 4 instructions and the last 4 instructions. When accessing
the first half, the prefetch logic will go to instruction cache to fetch the
other half. It is the same case for the second half.
 If the request address do not fall in the address range of the buffer,
then the prefetch logic will enable the wait signal to stop the requester
and go to cache to fetch the desire cache block.

3.4 Data cache
 The data cache is the same size as instruction cache
 The data cache have 4 section, every section contain 4 lines,
every line contain 4 words.
 The Address[5:4] select the section, and then the cache controller
compare the entire Address[31:6] with each tag field of the 4 lines in this
section, if found the desired address then use the Address[3:2] to select
the correspond word in this line.
 If a cache miss occur, then the controller will determine if there is
a blank line in this section,

if yes, then it will go to memory to fetch the desired cache block
into this line.

If not, then it will see if there is a line that is not dirty,
if yes, then it will go to memory to fetch desired cache block

into this line.
If not, it will select a random line to write back to memory

and then read in the desired cache block into this line.

Free soft core

 nnARM

4 Instruction Fetch Pipeline Stage(IF)

 The IF stage perform the following operation.
1. increase pc to next instruction address at normal condition
2. deal with branch request come from ALU or MEM stage.
3. send out PC to fetch instruction from prefetch buffer

I will describe them at following section

4.1 Increase PC
 IF have 1 register read port from general register file. This port is
always active and the register number to read is always R15.
 At the same time, IF have a register write port, This port is always
active and the register number to write is always R15.
 I use a simple Adder to increase PC value come from the read
port , and send result to write port.

4.2 Branch
 When a branch instruction or an ALU instruction with PC as its
destination reach ALU stage, it will require a change of PC.
 At the same time, if a load instruction with PC as its destination
reach MEM stage, it will also require a change of PC.
 The request come from MEM will be process first, the address
come from MEM will be send to PC. At the same time, a signal will send
to all stage between IF and MEM to clear there pipeline register. Because
if a load to PC instruction occur, all instruction following the load
instruction will not be executed.
 If there is no request from MEM stage, and ALU stage want to
change PC, then all stage between IF and ALU will be clear. And the
address come from ALU will be send to PC.

4.3 Fetch Instruction
 The IF will send out PC value read from the register read port to
prefetch buffer.
 At the positive edge of the clock, if the wait signal from prefetch
buffer is active. Then it means the prefetch buffer can not satisfy the
request now, and the IF must force a blank instruction into pipeline and
continue to wait.
 If the wait signal from prefetch buffer is not active, IF can read in
the instruction. And feed it to decoder.
 The following diagram will show you all together.

Free soft core

 nnARM

PC value from
register file

Address come
from ALU

Request come
from ALU

Address come
from MEM

Request come
from MEM

New PC
Instruction
fetch address

figure 4.1

Free soft core

 nnARM

5 Decoder for ARM Instruction Set(ID)

 ID stage just decode the instruction into micro operation to ALU
and MEM stage.
 The ALU and MEM stage both have three thread(this “thread” is
not same as multiple thread processor). One main thread, one simple
thread and one PSR thread. Following figure will show you more
clear.

Flip-flop Flip-flop

Main thread Main thread

Simple thread Simple thread

PSR thread PSR thread
Figure 5.1

 Main thread perform all computation in ALU, and perform all
load/store in MEM stage, finally perform the first register write operation.
 Simple thread perform simple data selection in ALU stage , and
perform the second register write operation(if exist) in MEM stage.
 The PSR thread perform PSR register file write operation.

 You can found that, only the main thread can stall the pipeline,
because it contain load/store and most complex operation such as
multiple(now the multiple operation consume only 1 cycle, this serious
slow down the clock frequency, I will modify it to consume several cycle
at future).
 When the main thread stall, then all thread of all stage behind it
will be stall at the same time.
 For detail of ALU and MEM stage operation, please refer to the
next two chapter.

 Following are instruction supported:

1. multiple(MLA) and multiple then add(MLA)
2. branch(B) and branch with link(BL)
3. PSR transfer(MRS and MSR)
4. all ALU instruction
5. single data transfer(LDR/STR)

Following are instruction unsupported yet:
1. single data swap(SWP)
2. block data transfer(LDM/STM)
3. all coprocessor instruction
4. software interrupt(SWI)

Free soft core

 nnARM

I will describe how to decode these support instruction into micro

operation, only main thread and simple thread will be include in
following figure, the psr thread will be describe in a separate section:

Instruction

type
ALU main

thread
ALU simple

thread
MEM main

thread
MEM simple

thread
MUL ALUType_Mul ALUType_Null MEMType_Mo

vMain
MEMType_Nul

l
MLA ALUType_Mla ALUType_Null MEMType_Mo

vMain
MEMType_Nul

l
B ALUType_Add ALUType_Null MEMType_Nul

l
MEMType_Nul

l
BL ALUType_Add ALUType_Mv

NextInstructio
nAddress

MEMType_Nul
l

MEMType_Mo
vSimple

MRS ALUType_Null ALUType_Mv
SPSR or

ALUType_Mv
CPSR

MEMType_Nul
l

MEMType_Mo
vSimple

MSR No operation except for PSR thread
ALU

instruction
Correspond

ALU operation
ALUType_Null MEMType_Nul

l(for tst,
teq,cmp,cmn)
MEMType_Mo

vMain(for
other case)

MEMType_Nul
l

LDR ALUType_Add
or

ALUType_Sub
depend on

type of
address
calculate

ALUType_Mvl
when post

index is
required

Varies type of
load

ALUType_Mo
vMain when
write back is

required

STR ALUType_Add
or

ALUType_Sub
depend on

type of
address
calculate

ALUType_Mvl
when post

index is
required

Varies type of
store

ALUType_Mo
vMain when
write back is

required

5.1 Operand preparation
 The decoder have the duty to send out register read request to
register file and send out immediate value. This is the so call operand
preparation feather.
 In the most serious case, an instruction may require 3 operand.
For example, an ALU instruction that involve a shift count from a
register.
 So the decoder have 3 read channel. I call them first ,second and
third read channel. Every channel have following signal:

Free soft core

 nnARM

1. read register enable, go to register file, when this operand
come from register, this signal will be high, else it will be low

2. read register number, go to register file
3. if this operand is a immediate value, go to ALU stage, if this

signal is true, then the forwarding will not be perform on this
channel, else forwarding will use the most fresh value of this
register from pipeline, if there is an instruction want to write to
this register and have got its result but have not write to
register.

4. the read out bus from register file to ALU stage, when this
operand is come from register file, this bus will carry the
corresponding register content, else this bus will carry the
immediate value from decoder.

Following figure will show you more clear

decoder

Register file

Read enable and
register number

ALU

Read bus

There is a special case, it is the PC. The PC never read directly

from register by decoder. It is always go with the corresponding
instruction. That is to say, any instruction go from IF stage to decoder
stage will carry its own PC. The PC in pipeline never affect by
forwarding.

5.2 PSR thread
 Only ALU instructions, MUL,MLA and MRS may change PSR
register file.
 In every ALU instructions, there is a S bit that indicate whether

Free soft core

 nnARM

this instruction may write to CPSR.
If the S bit is set, and the destination register is not PC, then it

must write CPSR, the decoder will generate
ALUPSRType_WriteConditionCode and
MEMPSRType_WriteConditionCode micro operation for PSR thread.

If S bit is set, but destination is PC, then
ALUPSRType_SPSR2CPSR and MEMPSRType_WriteCPSR will be
generate by decoder for PSR thread.

If S bit is not set, no PSR register will be writen.

The S bit have the same feather for MUL and MLA instruction

except that PC can not act as destination of MUL and MLA.

MRS move a general purpose register to CPSR or SPSR.

Corresponding micro operation will be generate.

5.3 Signal “out_ALUMisc”
 This signal perform some special feather.

 out_ALUMisc[31:28]: this field contain condition code of this
instruction, the ALU stage will use this field to decide whether this
instruction satisfy current processor state and can continue to run.

 Out_ALUMisc[0]: when decoding a normal instruction, the third
read channel will be use to carry shift count, from register file or as a
immediate value. But when decoding a store instruction, the shift count
is always a 5 bit width immediate value, at the same time the stored
value occupy the third channel, so I make Out_ALUMisc[0] high and
send out shift count in Out_ALUMisc[5:1].

 Out_ALUMisc[6]: when decoding an branch or an ALU instruction
that want to modify PC, I will make Out_ALUMisc[6] high.

 Out_ALUMisc[7]: when decoding a load to PC, I will make it high

5.4 Bulk insertion
 In a special case, decoder must insert a bulk into pipeline, or the
nnARM will not run correctly.
 When there is a load to Rn, Rn is a general purpose register, and
the following instruction want to use Rn as its source operand. In this
case, if the following instruction dispatch to ALU immediately, then it
will miss most fresh value of Rn from memory. Because when it
dispatch, the load instruction is still in ALU, it have not got its result
from memory.
 After insert a bulk, the decoder must wait until that bulk go to
MEM, this means that the load instruction have finish loading and ready
to forward Rn to the following instruction.

Free soft core

 nnARM

6 ALU stage

 The ALU stage contain three thread: main thread, simple thread
and PRS thread. I will describe they at following sections.

6.1 Main thread
 This thread perform all computation. It have following micro
operation:
ALUType_Add LeftOperand + RightOperand
ALUType_Sub LeftOperand – RightOperand
ALUType_And LeftOperand And RightOperand
ALUType_Eor LeftOperand Eor RightOperand
ALUType_Rsb RightOperand - LeftOperand
ALUType_Adc LeftOperand + RightOperand + Carry
ALUType_Sbc LeftOperand – RightOperand + Carry - 1
ALUType_Rsc RightOperand – LeftOperand + Carry - 1
ALUType_Tst As And, but do not write result
ALUType_Teq As Eor, but do not write result
ALUType_Cmp As Sub, but do not write result
ALUType_Cmn As Add, but do not write result
ALUType_Orr LeftOperand Or RightOperand
ALUType_Mov RightOperand
ALUType_Bic LeftOperand And ~RightOperand
ALUType_Mvn ~RightOperand
ALUType_Mul LeftOperand Mul RightOperand
ALUType_Mla (LeftOperand Mul RightOperand) + ThirdOperand

 All these micro operation will be send to a module named
“ALUComb”. The detail description of ALUComb is at next section.

6.2 ALUComb

Free soft core

 nnARM

figure 6.1
The figure 6.1 describe the structure of this ALUComb module.
This ALUComb can support all ALU operantion in ARM instruction

set.
First, the two input is in_LeftOperation and in_RightOperation. The

in_RightOperation is first shift by the Barrel shifter.
And then, the two switch select who will be the left operation and

who will be the right one. Because the ARM ALU operation can deal with
two types of operation:opeand1 op oprand2 and oprand2 op oprand1.
So selection is needed.

After that, to deal with sub operation, the complementary of
RightTmp is produce.

After that, the two operand can be send to adder. Other types of
operand such as sub,rsb,sbc and adc is similar to this.

Recently I add MLA support in it, now the two switch near adder is
use to select which operand will be added.

The logic operation can be done very easy and will not describe
here.

6.3 Simple thread
 This simple thread is use to perform some simple operation. It has
following micro operation:
ALUType_Mvl use left operand as simple thread output
ALUType_Mvr use right operand as simple thread output
ALUType_MvCPSR use CPSR as simple thread output
ALUType_MvSPSR use SPSR as simple thread output
ALUType_MvNextInstructionAddress
 Use address of next instruction as simple thread output

6.4 PSR thread
 The PSR thread perform the computation and write of PSR file.

At the same time, because all ARM instructions have a conditional
execution field, so all instruction must use forwarding to get most fresh
CPSR status to decide whether it can continue to run before it enter ALU
stage.

6.5 Forwarding
 The following program will tell you how general purpose register
forwarding is perform, assume that Rn is the source operand:

 if(operand come from immediate value)
 read it from corresponding read bus
 else if(current ALU main thread want to write Rn)
 forward result from current ALU main thread
 else if(current ALU simple thread want to write Rn)
 forward result from current ALU simple thread
 else if(current MEM main thread want to write Rn)
 forward result from current MEM main thread

Free soft core

 nnARM

 else if(current MEM simple thread want to write Rn)
 forward result from current MEM simple thread
 else
 read it from corresponding read bus

 Following program will tell you how CPSR register forwarding
perform:
 If(CPSR of current is from immediate value)
 Read in from read bus
 Else if(current ALU want to write CPSR)
 Read it from ALU
 Else if(current MEM want to write SPSR)
 Read it from MEM
 Else
 Read in from read bus

 SPSR forwarding is similar.

6.6 Process the condition field
 The most significant 4 bit of an instruction indicate that under
what condition can this instruction continue to run and write its result.
 I use the CPSR processed by forwarding to determine if this
instruction can continue to run.
 0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or

equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V
clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less
than or equal)
1110 = AL - always
1111 = NV - never

If an instruction can not continue to run, a bulk will be insert to

ALU stage and this instruction will disappear. A conditional branch is
also perform in this way.

6.7 Branch

Free soft core

 nnARM

 For an branch instruction, it will generate a branch request to all
stage between IF and ALU, all stage will be clear by this request signal.
 It also send out the branch destination address, the IF must
restart to fetch at that address.

Free soft core

 nnARM

7 MEM stage

 The MEM stage contain three thread: main thread, simple thread
and PSR thread.
 The main thread perform all load/store operation and write loaded
value to register.

The simple thread perform the second register writing(for example
a write back of base address register in load/store instruction).

The PSR thread perform the write to PSR register file.

7.1 Main thread
 The main thread have following micro operation:

MEMType_MovMain write main ALU thread result to register
MEMType_MovSimple write simple ALU thread result to register

MEMType_LoadMainWord use main ALU thread result as address
to load a word
MEMType_LoadMainByte use main ALU thread result as address
to load a byte
MEMType_LoadSimpleWord use simple ALU thread result as address
to load a word
MEMType_LoadSimpleByte use simple ALU thread result as address
to load a byte

MEMType_StoreMainWord use main thread ALU result as address
to store a word
MEMType_StoreMainByte use main thread ALU result as address
to store a byte
MEMType_StoreSimpleWord use simple thread ALU result as address
to store a word
MEMType_StoreSimpleByte use simple thread AUL result as address
to store a byte

7.2 Simple thread
 The simple thread have following micro operation:

MEMType_MovMain write main ALU thread result to register
MEMType_MovSimple write simple ALU thread result to register

7.3 PSR thread
 The PSR thread have following micro operation:
MEMPSRType_WriteSPSR write most fresh SPSR in pipeline to
SPSR register
MEMPSRType_SPSR2CPSR write most fresh SPSR in pipeline to
CPSR register

Free soft core

 nnARM

MEMPSRType_WriteCPSR write most fresh CPSR in pipeline to
CPSR register
MEMPSRType_WriteConditionCode write condition code only to CPSR
register, because forwarding, this is the same as
MEMPSRType_WriteCPSR

7.4 Change of PC
 When current micro operation is a load to PC, then after the load
is finished, the new PC must send to IF stage, At the same time, a
branch request must send to all stage between IF and MEM to clear
them.

