
Gisselquist
Technology, LLC

OPENARTY

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

October 28, 2016

Gisselquist Technology, LLC Specification 2016/10/28

Copyright (C) 2016, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

www.opencores.com Rev. 0.0 ii

Gisselquist Technology, LLC Specification 2016/10/28

Revision History
Rev. Date Author Description

0.0 6/20/2016 Gisselquist First Draft
0.0 10/21/2016 Gisselquist More Comments Added

www.opencores.com Rev. 0.0 iii

Gisselquist Technology, LLC Specification 2016/10/28

Contents

Page

1 Introduction . 1

2 Architecture . 2
2.0.1 Bus Structure . 2
2.0.2 DDR3 SDRAM . 3
2.0.3 Flash . 3
2.0.4 Block RAM . 3
2.0.5 Ethernet . 3
2.0.6 SD Card . 4
2.0.7 GPS Tracking . 4
2.0.8 Configuration port . 4
2.0.9 OLED . 5
2.0.10 Real Time Clock . 5
2.0.11 LEDs . 5
2.0.12 Buttons . 5
2.0.13 Switches . 5
2.0.14 Startup counter . 5
2.0.15 GPS UART . 6
2.0.16 Auxilliary UART . 6
2.0.17 GPIO . 6
2.0.18 Linker Script . 7

3 Software . 8
3.1 Directory Structure . 8
3.2 Zip CPU Tool Chain . 8
3.3 Bench Test Software . 8
3.4 Host Software . 8
3.5 Zip CPU Programs . 8
3.6 ZipOS . 8

3.6.1 System Calls . 8
3.6.2 Scheduler . 9

4 Operation . 10

5 Registers . 11
5.1 Peripheral I/O Control . 13

5.1.1 Interrupt Controller . 13
5.1.2 Last Bus Error Address . 15
5.1.3 General Purpose I/O . 15
5.1.4 UART Data Register . 15

5.2 Debugging Scopes . 15
5.3 Internal Configuration Access Port . 15
5.4 Real–Time Clock . 15
5.5 On-Chip Block RAM . 15
5.6 Flash Memory . 15

6 Wishbone Datasheet . 17

www.opencores.com Rev. 0.0 iv

Gisselquist Technology, LLC Specification 2016/10/28

7 Clocks . 18

8 I/O Ports . 20

www.opencores.com Rev. 0.0 v

Gisselquist Technology, LLC Specification 2016/10/28

Figures

Figure Page

www.opencores.com Rev. 0.0 vi

Gisselquist Technology, LLC Specification 2016/10/28

Tables

Table Page

5.1. Address Regions . 11
5.2. ZipSystem Addresses . 12
5.3. I/O Peripheral Registers . 13
5.4. Primary System Interrupts . 14
5.5. Auxilliary System Interrupts . 14
5.6. Bus Interrupts . 15
5.7. Flash control registers . 16

7.1. OpenArty clocks . 19

8.1. List of IO ports . 21

www.opencores.com Rev. 0.0 vii

Gisselquist Technology, LLC Specification 2016/10/28

Preface

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.0 viii

Gisselquist Technology, LLC Specification 2016/10/28

1.

Introduction

The goals of this project include:

1. Use entirely open interfaces

This means not using the Memory Interface Generator (MIG), the Xilinx CoreGen IP, etc.
Further, I wish to use all of Arty’s on–board hardware: Flash, DDR3-SDRAM, Ethernet, and
everything else at their full and fastest speed(s). For example, the flash will need to be clocked
at 82 MHz, not the 50 MHz I’ve clocked it at before. The memory should also be able to
support pipelined 32–bit interactions over the Wishbone bus at a 162 MHz clock. Finally,
the Ethernet controller should be supported by a DMA capable interface that can drive the
ethernet at its full 100Mbps rate.

2. Run using a 162.5 MHz clock, if for no other reason than to gain the experience of building
logic that can run that fast.1

3. Modify the ZipCPU to support an MMU and a data cache, and perhaps even a floating point
unit.

4. The default configuration will also include three Pmods: a USBUART, an SDCard, and the
GPS Pmod.

I intend to demonstrate this project with a couple programs:

1. NTP Server

2. A ZipOS that can actually load and run programs from the SD Card

This will require a functioning memory management unit (MMU), which will be a new addition
to the ZipCPU created to support this project. For those not familiar with MMU’s, an MMU
translates memory addresses from a virtual address space to a physical address space. This
allows every program running on the ZipCPU to believe that they own the entire memory ad-
dress space, while allowing the operating system to allocate actual physical memory addresses
as necessary to support whatever program needs more (or less) memory.

1The original goal was to run at 200 MHz. However, the memory controller cannot run faster than 83 MHz. If

we run it at 81.25 MHz and double that clock to get our logic clock, that now places us at 162.5 MHz. 200 MHz is

. . . too fast for DDR3 transfers using the Artix–7 chip on the Arty.

www.opencores.com Rev. 0.0 1

Gisselquist Technology, LLC Specification 2016/10/28

2.

Architecture

My philosophy in peripherals is to keep them simple. If there is a default mode on the peripheral,
setting that mode should not require turning any bits on. If a peripheral encounters an error
condition, a bit may be turned on to indicate this fact, otherwise status bits will be left in the off
position.

2.0.1 Bus Structure

The OpenArty project contains four bus masters, three of them within the CPU. These masters are
the instruction fetch unit, the data read/write unit, and the direct memory access peripheral within
the ZipCPU, as well as an external debug port which can be commanded from over the main UART
port connecting the Arty to its host.

There is also a second minor peripheral bus located within the ZipCPU ZipSystem. This bus
provides access to a number of peripherals within the ZipSystem, such as timers, counters, and the
direct memory access controller. This bus will also be used to configure the memory management unit
once integrated. This bus is only visible to the CPU, and located starting at address 0xc0000000.

The ZipCPU debug port is also available on the bus. This port, however, is only visible to the
external debug port. It can be found at address 0x08000000 for the control register, and 0x08000001

for the data register.
Once the MMU has been integrated, it will be placed between the instruction fetch unit, data

read/write unit, and the rest of the peripheral bus.
The actual bus chosen for this design is the Wishbone Bus, based upon the pipeline mode defined

in the B4 specification. All optional wires required by this bus structure have been removed, such
as the tag lines, the cycle type identifier, the burst type, and so forth. This was done to simplify
the logic within the core.

However, because of the complicated bus structure–particularly because of the number of masters
and slaves on the bus and the speed for which the bus is defined, there are a number of delays
and arbiters placed on the bus. As a result, the stall wire which is supposed to be depend upon
combinational logic only, has been registered at a number of locations. What this means is that
there are a variety of delays as commands propagate through the bus structure. Most of these are
variable, in that they can be turned on or off at build time, or even that the stall line may (or may
not) be registered as configured.

All interactions between bus masters and any peripherals passes through the interconnect, located
in busmaster.v. This interconnect divides the slaves into separate groups. The first group of slaves
are those for which the bus is supposed to provide fast access to. These are the DDR3 SDRAM, the
flash, the block RAM, and the network. The next group of slaves will have their acknowledgements
delayed by an additional clock. The final group of slaves are those single register slaves whose results

www.opencores.com Rev. 0.0 2

Gisselquist Technology, LLC Specification 2016/10/28

may be known ahead of any read, and who only require one clock to access. These are grouped
together and controlled from within fastio.v.

Further information about the Wishbone bus structure found within this core can be found either
on the Wishbone datasheet (Ch. 6), or in the memory map table in the Registers chapter (Ch. 5).

2.0.2 DDR3 SDRAM

It is the intention of this project to use a completely open source DDR3 SDRAM controller. While

the controller has been written, it has yet to be successfully connected to the physical pins of the port.

Until that time, the design is running using a Wishbone to AXI bus bridge. Memory may still be

read or written, after an initial pipeline delay of roughly 27 clocks per access, at one access per clock.

The open source SDRAM controller should be able to achieve a delay closer to 9 clocks per

access–once I figure out how to connect it to the PHY.

2.0.3 Flash

2.0.4 Block RAM

The block RAM on this board has been arranged into one 32kW section. Programs that use block
RAM will run fastest using the block RAM, both for instructions as well as for memory.

2.0.5 Ethernet

The ether net controller has been split into three parts. The first part is an area of packet memory.
This part is simple: it acts like memory. The receive memory is read only, whereas the transmit
memory is both read and write. Packets received by the controller will be found in the receive
memory, packets transmitted must be in the transmit area of memory. The octets may be found in
memory with the first octet in the most significant byte. This is the easy part.

The format of the packets within this memory is a touch more interesting. With no options
turned on, the first 6 bytes are the destination MAC address, the next 6 bytes will be the source
MAC address, and the next 4 bytes will be the EtherType repeated twice. This was done to align
the packet, and particularly the IP header, onto word boundaries. If the hardware CRC has been
turned off, the packet must contain its own CRC as well as ensuring that it has a minimum packet
length (64 octets) when including that CRC.

With all options turned on, however, things are a touch simpler. The first two words of the
packet contain the destination MAC (for a transmit packet) or the source MAC (for a received
packet), followed by the two–octet EtherType. At this point the packet is word–aligned prior to the
IP header. Since broadcast packets are sent to a special destination MAC other than our own, a
flag in the command register will indicate this fact.

The second part of the controller is the MDIO interface. This follows from the specification,
and can be used to toggle the LED’s on the ethernet, to force the ethernet into a particular mode,
either 10M or 100M, to control auto–negotiation of the speed, and more. Reads or writes to MDIO
memory addresses will command reads or writes via the MDIO port from the FPGA to the ethernet
PHY. As the PHY can only handle 16–bit words, only 16 bits will ever be transferred as a result
of any read/write command, the top 16 bits are automatically set to zero. Further details of this
capability may be found within the specification for the chip.

www.opencores.com Rev. 0.0 3

Gisselquist Technology, LLC Specification 2016/10/28

The MDIO interface may be ignored. If ignored, the defaults within the interface will naturally
set up the network connection in full duplex mode (if your hardware supports it), at the highest
speed the network will support. However, if you ignore this interface you may not know what
problems you are suffering from this interface, if any. The netsetup program has been provided,
among the host software, to help diagnose how the various MDIO registers have been set, and what
the status is that is being reported from the PHY.

The third part of the controller is the packet command interface. This consists of two command
registers, one for reading and one for writing. Before doing anything with the network, it must
first be taken out of reset. According to the specification for the network chip, this must happen
a minimum of one second after power up. This may be done by simply writing to the transmit
command register with the reset bit turned off.

To send a packet, simply write the number of octets in the packet to the transmit control register
and set the GO bit (0x04000). Other bits in this control register can be used to turn off the hardware
MAC generation (and removal upon receive), the hardware CRC checking, and/or the hardware IP
header checksum validation (but not generation). The GO bit will remain high while the packet is
being sent, and only transition to low once the packet is away. While the packet is being sent, a zero
may be written to the command register to cancel the packet–although this is not recommended.

Packets are automatically received without intervention. Once a packet has been received, the
available bit will be set in the receive command register and a receive packet interrupt will be
generated. The ethernet port will then halt/stall until a user has reset the receive interface so that
it may receive the next packet. Without clearing this interface, the receive port will not accept
further packets. Other status bits in this interface are used to indicate whether packets have been
missed (because the interface was busy), or thrown out due to some error such as a CRC error or a
more general error.1

2.0.6 SD Card

2.0.7 GPS Tracking

2.0.8 Configuration port

The registers associated with the ICAPE2 port have been made accessible to the core via the
wbicapetwo core. More information about the meaning of these registers can be found in Xilinx’s
“7–Series FPGAs Configuration User’s Guide”.

Testing with the OpenArty board has tended to focus on the warmboot capability. Using this
capability, a user is able to command the FPGA to reload its configuration. In support of this, two
configuration areas have been defined within memory. The first is the default configuration, found
at the beginning of the flash. This configuration is sometimes called the “golden configuration”
within Xilinx’s documentation because it is the configuration that the Xilinx device will always
start up from after a power on reset. On the OpenArty, a second configuration may immediately
follow the first in flash. Commanding the FPGA to reload it’s configuration is as simple as setting
the WBSTAR (warm boot start address) register to the location of the new configuration within
the flash, and then writing a 15 (a.k.a. IPROG) to the FPGA command register (offset 4 from the
beginning of the ICAPE2 addresses). Examples of doing this are found in the sw/host/zprog.sh

1It should be possible to extend this interface so that further packets may be read as long as the memory isn’t yet

full. This is left as an exercise to others.

www.opencores.com Rev. 0.0 4

Gisselquist Technology, LLC Specification 2016/10/28

and sw/host/program.sh scripts. The former programs the default configuration and then switches
to it,

This configuration capability makes it possible for a user to 1) reprogram the flash with an
experimental configuration in the second configuration location, and 2) test the configuration without
actually touching the board. If the configuration doesn’t work well enough to be communicated
with, the board may simply be powered down and it will come back up with the initial or golden
configuration. If the golden configuration ever gets corrupted, or loaded with a configuration that
will not work, then the user will need to reload the FPGA from the JTAG port.

2.0.9 OLED

2.0.10 Real Time Clock

The Arty board contains a real time clock core together with a companion real time date/calendar
core. The clock core itself contains not only current time, but also a stopwatch, seconds timer, and
alarm. The real time date core can be used to maintain the current date. The real–time clock core
uses the GPS PPS output, as schooled by the GPS tracking circuit, in order to synchronize their
subsecond timing to the GPS itself. Further, the real–time clock core then creates a synchronization
wire for the real–time date core.

Neither of these cores exports its subsecond precision to the rest of the design. This must be done
using either the internal GPS tracking wires, or by reading the time information from the tracking
test bench.

2.0.11 LEDs

The Arty board contains two sets of LEDs: a plain set of LEDs, and a colored set of LEDs.
The plain set of LEDs is controlled simply from the LED register. This register can be used

to turn these LEDs on and off, either individually or as a whole. It has been designed for atomic
access, so only one write to this register is necessary to set any particular LED.

The color LEDs are slightly different. Each color LED is supported by its own register, which
controls three pulse width modulation controllers. Three groups of eight bits within the color LED
register control the PWM thresholds, first for red, then green, and then in the lowest bits for blue.
These are used to turn on and off the various color components of the LEDs. Using this method,
there are 224 different colors each of these LEDs may be set to.

2.0.12 Buttons

2.0.13 Switches

2.0.14 Startup counter

A startup counter has been placed into the basic peripheral I/O area. This counter simply counts
the clocks since startup. Upon rollover, the high order bit remains set. This can be used to sequence
the start up of components within the design if so desired.

www.opencores.com Rev. 0.0 5

Gisselquist Technology, LLC Specification 2016/10/28

2.0.15 GPS UART

The GPS UART, debug control UART, as well as the auxilliary UART, are all based upon the same
underlying UART IP core, sometimes known as the WBUART32 core. The setup register is defined
within the documentation for that core, and provides for a large baud rate selection, 5-8 data bits,
1-2 stop bits, and several parity choices. Within OpenArty, the GPS core is initialized to 9.6 kBaud,
8 data bits, no parity, and one stop bit.

When a value is ready to be read from the GPS uart, the GPS interrupt line will go high. Once
read, and only when read, will this interrupt line reset. If the read is successful, only bits within
the bottom eight will be set. If a read is attempted when there is no data, when the UART is in a
reset condition, or when there has been a framing or parity error (were parity to be turned on), the
upper bits of the UART port will be set.

In a like manner, the GPS device can be written to. Certain strings, if sent to the UART, can
be used to change the UARTs baud rate, its serial port settings, or even its reporting interval. As
with the read port, the transmit port will interrupt the CPU when it is idle. Writing a character
to this port will reset the interrupt. Setting bits other than the bottom eight may result in a break
condition being set on this port as well.

Interacting with a controller can therefore be somewhat tricky. The interrupt controller will
trigger whenever the port is ready to be read from, and will re–trigger every clock until the port
has been read from. At this point, the interrupt controller may be reset. If this is an auxilliary
interrupt controller, such as the bus interrupt controller or the ZipSystem’s auxiliary controller, the
auxiliary controller will then need to be reset, and the bit in the primary controller associated with
the auxiliary controller as well. It is for this reason that the UARTs have been placed on the primary
controller only.

It should also be possible to use the DMA to read from (or write to) either UART port.

2.0.16 Auxilliary UART

The Auxilliary UART has roughly the same structure as the GPS UART, save that it’s default
configuration is for a 115,200 Baud configuration with 8 data bits, no stop bits, and no parity.
Reads, writes, and interrupts are treated in the same fashion.

2.0.17 GPIO

A General Purpose I/O controller has been placed within the design as well. This controller can
handle 16–generic input wires, and set 16–generic output wires. A single register is used to read
both input and output wire values, as well as to set output values when written to.

However, to use this controller, you will need to manually configure it (i.e. change the Verilog
source) within the core, in order to wire the various GPIO values up to a device of interest. This
was done for the simple reason that wiring anything new up to the controller will require Verilog
changes anyway. For this reason, the controller has no way of setting wires to high impedence, or
pulling them up or down. Such control may be done within the top level design if necessary.

This controller will set an interrupt if ever any of the input wires within it are changed. The
interrupt may be cleared in the interrupt controller.

www.opencores.com Rev. 0.0 6

Gisselquist Technology, LLC Specification 2016/10/28

2.0.18 Linker Script

A linker script has been created to capture the memory structure needed by a program. This script
may be found in sw/board/arty.ld. It is a sample script, using it is not required.

The script defines three types of memory to the linker: flash, block RAM, and SDRAM. Programs
using this script will naturally start in flash (acting as a ROM memory). A bootloader must then
be used to copy, from flash, those sections of the program that are to be placed in block RAM or
SDRAM into their particular memory locations.

The block RAM locations are reserved for the user kernel, and specifically for any part of the
code in the .kernel section. C attributes, or assembly .section commands, must be used to place
items within this section. A final symbol within this section, top of stack, is used so that the initial
boot loader knows what to set the initial kernel stack to.

The rest of the initial program’s memory is placed into SDRAM.2 At the end, a top of heap

symbol is set to reference the final location in the setup. This symbol can then be used as a starting
point for a memory allocator.

An example bootloader is provided in sw/board that can be linked with any (bare metal, super-
visor) program in order to properly load it into memory.

2Hopefully, I’ll get a data cache running on the ZipCPU to speed this up.

www.opencores.com Rev. 0.0 7

Gisselquist Technology, LLC Specification 2016/10/28

3.

Software

3.1 Directory Structure

3.2 Zip CPU Tool Chain

3.3 Bench Test Software

3.4 Host Software

• readflash: As I am loathe to remove anything from a device that came factory installed, the
readflash program reads the original installed configuration from the flash and dumps it to
a file.

• wbregs: This program offers a capability very similar to the PEEK and POKE capability
Apple user’s may remember from before the days of Macintosh. wbregs <address> will read
from the Wishbone bus the value at the given address. Likewise wbregs <address> <value>

will write the given value into the given address. While both address and value have the
semantics of numbers acceptable to strtoul(), the address can also be a named address.
Supported names can be found in regdefs.cpp, and their register mapping in regdefs.h.

• ziprun:

• zipload:

3.5 Zip CPU Programs

• ntpserver:

• goldenstart:

3.6 ZipOS

3.6.1 System Calls

• int wait(unsigned event mask, int timeout)

www.opencores.com Rev. 0.0 8

Gisselquist Technology, LLC Specification 2016/10/28

• int clear(unsigned event mask, int timeout)

• void post(unsigned event mask)

• void yield(void)

• int read(int fid, void *buf, int len)

• int write(int fid, void *buf, int len)

• unsigned time(void)

• void *malloc(void)

• void free(void *buf)

3.6.2 Scheduler

www.opencores.com Rev. 0.0 9

Gisselquist Technology, LLC Specification 2016/10/28

4.

Operation

www.opencores.com Rev. 0.0 10

Gisselquist Technology, LLC Specification 2016/10/28

5.

Registers

There are several address regions on the S6 SoC, as shown in Tbl. 5.1.

Binary Address Base Size(W) Purpose

0000 0000 0000 0000 0001 000x xxxx 0x00000100 32 Peripheral I/O Control
0000 0000 0000 0000 0001 0010 0yyx 0x00000120 8 Debug scope control
0000 0000 0000 0000 0001 0010 10xx 0x00000128 4 RTC control
0000 0000 0000 0000 0001 0010 11xx 0x0000012c 4 SDCard controller
0000 0000 0000 0000 0001 0011 00xx 0x00000130 4 GPS Clock loop control
0000 0000 0000 0000 0001 0011 01xx 0x00000134 4 OLEDrgb control
0000 0000 0000 0000 0001 0011 1xxx 0x00000138 8 Network packet interface
0000 0000 0000 0000 0001 0100 0xxx 0x00000140 8 GPS Testbench
0000 0000 0000 0000 0001 0100 1xxx 0x00000148 8 Unused

0000 0000 0000 0000 0001 0101 xxxx 0x00000150 16 Unused

0000 0000 0000 0000 0001 011x xxxx 0x00000160 32 Unused

0000 0000 0000 0000 0001 100x xxxx 0x00000180 32 Unused

0000 0000 0000 0000 0001 101x xxxx 0x000001a0 32 Ethernet configuration registers
0000 0000 0000 0000 0001 110x xxxx 0x000001c0 32 Extended Flash Control Port
0000 0000 0000 0000 0001 111x xxxx 0x000001e0 32 ICAPE2 Configuration Port
0000 0000 0000 0000 10xx xxxx xxxx 0x00000800 1k Ethernet RX Buffer
0000 0000 0000 0000 11xx xxxx xxxx 0x00000c00 1k Ethernet TX Buffer
0000 0000 0000 1xxx xxxx xxxx xxxx 0x00008000 32k On-chip Block RAM
0000 01xx xxxx xxxx xxxx xxxx xxxx 0x00400000 4M QuadSPI Flash
0000 0100 0000 0000 0000 0000 0000 0x00400000 Configuration Start
0000 0100 0111 0000 0000 0000 0000 0x00470000 Alternate Configuration
0000 0100 1110 0000 0000 0000 0000 0x004e0000 CPU Reset Address
01xx xxxx xxxx xxxx xxxx xxxx xxxx 0x04000000 64M DDR3 SDRAM
1000 0000 0000 0000 0000 0000 000x 0x08000000 2 ZipCPU debug control port—

only visible to debug WB master

Table 5.1: Address Regions

www.opencores.com Rev. 0.0 11

Gisselquist Technology, LLC Specification 2016/10/28

Base Size(W) Purpose

0x0c0000000 1 Primary Zip PIC
0x0c0000001 1 Watchdog Timer
0x0c0000002 1 Bus Watchdog Timer
0x0c0000003 1 Alternate Zip PIC
0x0c0000004 1 ZipTimer-A
0x0c0000005 1 ZipTimer-B
0x0c0000006 1 ZipTimer-C
0x0c0000007 1 ZipJiffies
0x0c0000008 1 Master task counter
0x0c0000009 1 Master prefetch stall counter
0x0c000000a 1 Master memory stall counter
0x0c000000b 1 Master instruction counter
0x0c000000c 1 User task counter
0x0c000000d 1 User prefetch stall counter
0x0c000000e 1 User memory stall counter
0x0c000000f 1 User instruction counter
0x0c0000010 1 DMA command register
0x0c0000011 1 DMA length
0x0c0000012 1 DMA source address
0x0c0000013 1 DMA destination address
0x0c0000040 1 Reserved for MMU context register

0x0c0000080 32 Reserved for MMU TLB

Table 5.2: ZipSystem Addresses

www.opencores.com Rev. 0.0 12

Gisselquist Technology, LLC Specification 2016/10/28

5.1 Peripheral I/O Control

Tbl. 5.3 shows the addresses of various I/O peripherals included as part of the SoC. We’ll walk

Name Address Width Access Description

VERSION 0x0100 32 R Build date
PIC 0x0101 32 R/W Bus Interrupt Controller
BUSERR 0x0102 32 R Last Bus Error Address
PWRCOUNT 0x0103 32 R Ticks since startup
BTNSW 0x0104 32 R/W Button/Switch controller
LEDCTRL 0x0105 32 R/W LED Controller
AUXSETUP 0x0106 29 R/W Auxilliary UART config
GPSSETUP 0x0107 29 R/W GPS UART config
CLR-LEDx 0x0108-b 32 R/W Color LED controller
RTCDATE 0x010c 32 R/W BCD Calendar Date
GPIO 0x010d 32 R/W Reserved for GPIO controller
UARTRX 0x010e 32 R/W Aux UART receive byte
UARTTX 0x010f 32 R/W Aux UART transmit byte
GPSRX 0x0110 32 R/W GPS UART receive byte
GPSTX 0x0111 32 R/W GPS UART transmit byte
GPSSECS 0x0110 32 R/W Reserved for a one-up seconds counter

GPSSUB 0x0110 32 R/W GPS PPS tracking subsecond info
GPSSTEP 0x0111 32 R/W Current GPS step size, units TBD

Table 5.3: I/O Peripheral Registers

through each of these peripherals in turn, describing how they work.

5.1.1 Interrupt Controller

The OpenArty design maintains three interrupt controllers. Two of them are found within the
ZipSystem, and the third is located on the bus itself. Of these, the primary interrupt controller
is located in the ZipSystem. This interrupt controller accepts, as interrupt inputs, the outputs of
both the auxilliary interrupt controller as well as the bus interrupt controller. Hence, even though
the CPU only supports a single interrupt line, by using these three interrupt controllers many more
interrupts can be supported.

The primary interrupt controller handles interrupts from the sources listed in Tbl. 5.4. These
interrupts are listed together with the mask that would need to be used when referencing them to
the interrupt controller. In a similar fashion, the auxilliary interrupt controller accepts inputs from
the sources listed in Tbl. 5.5. Finally, the bus interrupt controller handles the interrupts from the
sources listed in Tbl. 5.6.

www.opencores.com Rev. 0.0 13

Gisselquist Technology, LLC Specification 2016/10/28

Name Bit Mask DMAC ID Description

SYS DMAC 0x0001 The DMA controller is idle.
SYS JIF 0x0002 1 A Jiffies timer has expired.
SYS TMC 0x0004 2 Timer C has timed out.
SYS TMB 0x0008 3 Timer C has timed out.
SYS TMA 0x0010 4 Timer C has timed out.
SYS AUX 0x0020 5 The auxilliary interrupt controller sends an inter-

rupt
SYS PPS 0x0040 6 An interrupt marking the top of the second
SYS NETRX 0x0080 7 A packet has been received via the network
SYS NETTX 0x0100 8 The network controller is idle, having sent its last

packet
SYS UARTRX 0x200 9 A character has been received via the UART
SYS UARTTX 0x400 10 The transmit UART is idle, and ready for its next

character.
SYS GPSRX 0x0800 11 A character has been received via GPS
SYS GPSTX 0x1000 12 The GPS serial port transmit is idle
SYS SDCARD 0x2000 13 The SD-Card controller has become idle
SYS OLED 0x4000 14 The OLED port is idle

Table 5.4: Primary System Interrupts

Name Bit Mask DMAC ID Description

AUX UIC 0x0001 16 The user instruction counter has overflowed.
AUX UPC 0x0002 17 The user prefetch stall counter has overflowed.
AUX UOC 0x0004 18 The user ops stall counter has overflowed.
AUX UTC 0x0008 19 The user clock tick counter has overflowed.
AUX MIC 0x0010 20 The supervisor instruction counter has overflowed.
AUX MPC 0x0020 21 The supervisor prefetch stall counter has over-

flowed.
AUX MOC 0x0040 22 The supervisor ops stall counter has overflowed.
AUX MTC 0x0080 23 The supervisor clock tick counter has overflowed.
AUX RTC 0x0100 24 An alarm or timer has taken place (assuming

the RTC is installed, and includes both alarm or
timer)

AUX BTN 0x0200 25 A button has been pressed
AUX SWITCH 0x0400 26 A switch has changed state
AUX FLASH 0x0800 27 The flash controller has completed a write/erase

cycle
AUX SCOPE 0x1000 28 The Scope has completed its collection
AUX GPIO 0x2000 29 The GPIO input lines have changed values.

Table 5.5: Auxilliary System Interrupts

www.opencores.com Rev. 0.0 14

Gisselquist Technology, LLC Specification 2016/10/28

Name Bit Mask Description

BUS BUTTON 0x0001 A Button has been pressed.
BUS SWITCH 0x0002 The Scope has completed its collection
BUS PPS 0x0004 Top of the second
BUS RTC 0x0008 An alarm or timer has taken place (assuming the RTC is in-

stalled, and includes both alarm or timer)
BUS NETRX 0x0010 A packet has been received via the network
BUS NETTX 0x0020 The network controller is idle, having sent its last packet
BUS UARTRX 0x0040 A character has been received via the UART
BUS UARTTX 0x0080 The transmit UART is idle, and ready for its next character.
BUS GPIO 0x0100 The GPIO input lines have changed values.
BUS FLASH 0x0200 The flash device has finished either its erase or write cycle, and

is ready for its next command. (Alternate config only.)
BUS SCOPE 0x0400 A scope has completed collecting.
BUS GPSRX 0x0800 A character has been received via GPS
BUS SDCARD 0x1000 The SD-Card controller has become idle
BUS OLED 0x2000 The OLED interface has become idle
BUS ZIP 0x4000 True if the ZipCPU has come to a halt

Table 5.6: Bus Interrupts

5.1.2 Last Bus Error Address

5.1.3 General Purpose I/O

5.1.4 UART Data Register

5.2 Debugging Scopes

5.3 Internal Configuration Access Port

5.4 Real–Time Clock

5.5 On-Chip Block RAM

5.6 Flash Memory

www.opencores.com Rev. 0.0 15

Gisselquist Technology, LLC Specification 2016/10/28

Name Address Width Access Description

ewreg 0x0180 32 R Erase/write control and status
status 0x0181 8 R/W Bus Interrupt Controller
nvconf 0x0182 16 R Last Bus Error Address
vconf 0x0183 8 R Ticks since startup
evonc 0x0184 8 R/W Button/Switch controller
lock 0x0185 8 R/W LED Controller
flagstatus 0x0186 8 R/W Auxilliary UART config
clear 0x0187 8 R/W Clear status on write
Device ID 0x0188- 5x32 R Device ID

-0x018c

asyncOTP 0x18e 32 W Asynch Read OTP. Write starts the ASynch
read, 0xff returned until complete

OTP 0x0190- 16x32 R/W OTP Memory
-0x19f

Table 5.7: Flash control registers

www.opencores.com Rev. 0.0 16

Gisselquist Technology, LLC Specification 2016/10/28

6.

Wishbone Datasheet

The master and slave interfaces have been simplified with the following requirement: the STB line
is not allowed to be high unless the CYC line is high. In this fashion, a slave may often be able to
ignore CYC and only act on the presence of STB, knowing that CYC must be active at the same time.

www.opencores.com Rev. 0.0 17

Gisselquist Technology, LLC Specification 2016/10/28

7.

Clocks

www.opencores.com Rev. 0.0 18

Gisselquist Technology, LLC Specification 2016/10/28

Name Source Rates (MHz) Description
Max Min

i clk 100mhz Ext 100 100 MHz Crystal Oscillator
Future

s clk

PLL 152 166 Internal Logic, Wishbone Clock

s clk PLL 83.33 75.76 DDR3 SDRAM Controller Clock
mem clk 200mhz 200 MHz MIG Reference clock for PHASERs

ddr3 ck x DDR 166.67 303 DDR3 Command Clock
o qspi sck DDR 95 QSPI Flash clock
o sd clk Logic 50 0.100 SD–Card clock
o oled sck Logic 166 OLED SPI clock
o eth mdclk Logic 25 2.5 Ethernet MDIO controller clock

Table 7.1: OpenArty clocks

www.opencores.com Rev. 0.0 19

Gisselquist Technology, LLC Specification 2016/10/28

8.

I/O Ports

Table. 8.1 lists the various I/O ports associated with OpenArty.

www.opencores.com Rev. 0.0 20

Gisselquist Technology, LLC Specification 2016/10/28

Port Width Direction Description

i clk 100mhz 1 Input Clock
o qspi cs n 1 Output Quad SPI Flash chip select
o qspi sck 1 Output Quad SPI Flash clock
io qspi dat 4 Input/Output Four-wire SPI flash data bus
i btn 4 Input Inputs from the two on-board push-buttons
i sw 4 Input Inputs from the two on-board push-buttons
o led 4 Output Outputs controlling the four on-board LED’s
o clr led0 3 Output
o clr led1 3 Output
o clr led2 3 Output
o clr led3 3 Output
i uart rx 1 Input UART receive input
o uart tx 1 Output UART transmit output

i aux rx 1 Input Auxiliary/Pmod UART receive input
o aux tx 1 Output Auxiliary/Pmod UART transmit output
i aux rts 1 Input Auxiliary/Pmod UART receive input
o aux cts 1 Output Auxiliary/Pmod UART transmit output

i gps rx 1 Input GPS/Pmod UART receive input
o gps tx 1 Output GPS/Pmod UART transmit output
i gps pps 1 Input GPS Part-per-second (PPS) signal
i gps 3df 1 Input GPS

o oled cs n 1 Output
o oled sck 1 Output
o oled mosi 1 Output
i oled miso 1 Input
o oled reset 1 Output
o oled dc 1 Output
o oled en 1 Output
o oled pmen 1 Output

o sd sck 1 Output SD Clock
i sd cd 1 Input Card Detect
i sd wp 1 Input Write Protect
io cmd 1 In/Output SD Bi-directional command wire
io sd 4 In/Output SD Bi-directional data lines

o cls cs n 1 Output CLS Display chip select
o cls sck 1 Output CLS Display clock
o cls mosi 1 Output CLS Display MOSI
i cls miso 1 Input CLS Display MISO

Table 8.1: List of IO ports

www.opencores.com Rev. 0.0 21

	Introduction
	Architecture
	Bus Structure
	DDR3 SDRAM
	Flash
	Block RAM
	Ethernet
	SD Card
	GPS Tracking
	Configuration port
	OLED
	Real Time Clock
	LEDs
	Buttons
	Switches
	Startup counter
	GPS UART
	Auxilliary UART
	GPIO
	Linker Script

	Software
	Directory Structure
	Zip CPU Tool Chain
	Bench Test Software
	Host Software
	Zip CPU Programs
	ZipOS
	System Calls
	Scheduler

	Operation
	Registers
	Peripheral I/O Control
	Interrupt Controller
	Last Bus Error Address
	General Purpose I/O
	UART Data Register

	Debugging Scopes
	Internal Configuration Access Port
	Real–Time Clock
	On-Chip Block RAM
	Flash Memory

	Wishbone Datasheet
	Clocks
	I/O Ports

