
 APPLICATION NOTE

R01AN0757EU0100 Rev.1.00 Page 1 of 17
Oct 25, 2011

RX600 Series
How to Setup and Run CoreMark on a MCU

Introduction
This document details the steps needed to obtain, configure, and run the EEMBC CoreMark Benchmark. The RDK
RX62N was the platform chosen for the examples throughout this document and results for this setup are shown. The
Renesas High-performance Embedded Workshop (HEW) IDE is used along with the KPIT GNU RX Toolchain.

For more information on the EEMBC CoreMark Benchmark please follow the link below:

http://www.coremark.org/

Target Device
The RX62N is used as an example in this document but the same methods can be used to properly configure CoreMark
for any MCU.

Contents

1. Overview ... 2

2. Obtaining the CoreMark Benchmark ... 2

3. Downloading & Installing the KPIT GNU Tools ... 3

4. Creating a CoreMark HEW Project ... 4

5. Adding CoreMark Source .. 5

6. Adding Board Support Files .. 6

7. Configuring CoreMark ... 7

8. Optimizing CoreMark... 11

9. Run the CoreMark Benchmark .. 13

10. Results for RX62N ... 15

11. Summary ... 16

R01AN0757EU0100
Rev.1.00

Oct 25, 2011

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 2 of 17
Oct 25, 2011

1. Overview
When looking for a MCU to fit a certain application users need to know if a MCU has enough processing power to meet
their needs. There are a number of benchmarking options available with the most widely known probably being the
Dhrystone. There are inherit problems with the Dhrystone though that are discussed in the ‘Background’ section of the
‘Coremark-requirements.doc’ document that comes packaged with the CoreMark Software. To address these problems
and provide a “simple, open source benchmark” EEMBC created the CoreMark.

2. Obtaining the CoreMark Benchmark
The CoreMark Software is free to download from the CoreMark website. Start by going
to http://www.coremark.org/download.

Figure 1 : Register & Download CoreMark

 In order to download the software users first have to register with EEMBC. This can be done by following the
instructions underneath the ‘REGISTER’ section on the previously referenced webpage. After the registration process
is finished follow the instructions under the ‘DOWNLOAD’ section to get to the ‘Download CoreMark Software’
webpage. From this webpage download the CoreMark Software shown below in Figure 2. The CoreMark
documentation is included with this download.

Figure 2 : Download CoreMark Software & Documentation

http://www.coremark.org/download�

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 3 of 17
Oct 25, 2011

3. Downloading & Installing the KPIT GNU Tools
This section assumes that the Renesas High-performance Embedded Workshop (HEW) is already installed. If it is not
installed, please go the Renesas website and download and install the latest Renesas RX Toolchain. This will install the
Renesas RX Toolchain and HEW.

The example project described in this document uses the KPIT GNU RX Toolchain. KPIT provides free GNU
toolchains for Renesas MCUs with free customer support. To download and install the KPIT GNU RX Toolchain
follow these steps:

1. Go to http://www.kpitgnutools.com/ in a web browser.
2. If this is your first time using KPIT tools then click the Register button and obtain a username and password.
3. Click the button that says ‘Download Latest KPIT GNU Toolchains (for Windows)’

4. Log in with your KPIT username and password.
5. Under the list of tools download the latest GNU RX Toolchain. As of this writing it was v11.03.

6. After downloading, install the GNU RX Toolchain. It will automatically integrate the toolchain with HEW.

http://www.kpitgnutools.com/�

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 4 of 17
Oct 25, 2011

4. Creating a CoreMark HEW Project
Now that we have the CoreMark source files and the KPIT GNU RX Toolchain we can create a HEW workspace. Start
off by opening HEW and creating a new workspace for the MCU you are using.

Figure 3 : Create New HEW Workspace

The following steps are related to the example used with this application note. Choose ‘RX’ for the CPU family and
‘KPIT GNURX [ELF]’ for the toolchain. Make sure ‘C Application’ is chosen in the left pane and enter a name in the
‘Workspace Name’ input box. Click OK.

Figure 4 : Choosing Toolchain

On the next screen choose the latest toolchain version and the RX62N.

Figure 5 : Choose RX62N & Toolchain Version

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 5 of 17
Oct 25, 2011

Continue to click ‘Next’ until you get to the screen where you choose the target system for debugging. On this screen
select the ‘RX600 Segger J-Link’. The Segger J-Link debugger comes installed on the RX62N RDK board.

Figure 6 : Choose J-Link for Debugging

Click ‘Finish’ and then ‘OK’ in the next pop-up window. At this point the HEW workspace has been created. The
CoreMark software and board support files can now be added.

5. Adding CoreMark Source
Once the HEW workspace has been setup the CoreMark source files can be added. Find the CoreMark Software
package that was downloaded earlier and copy the following files to your HEW project:

• core_list_join.c
• core_main.c
• core_matrix.c
• core_state.c
• core_util.c
• coremark.h
• simple/core_portme.c
• simple/core_portme.h

Files can be added to your HEW project by going to Project >> Add Files. After adding the files you may wish to
group them in the HEW navigation pane by right-clicking on ‘C source file’ and choosing ‘Add Folder’. After creating
the folder drag the CoreMark files into it.

Figure 7 : Add & Group CoreMark Files

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 6 of 17
Oct 25, 2011

Since CoreMark has its own main() function the user will need to remove the one that comes by default with the HEW
project. The source file that needs to be removed will have the same name that was given to the project. The example
project used in this document is named ‘CoreMark_RX62N’ so the CoreMark_RX62N.c file needs to be removed from
the project. This is done in HEW by clicking Project >> Remove Files. From the window that pops up, select
CoreMark_RX62N.c and click ‘Remove’.

Figure 8 : Remove Default main()

6. Adding Board Support Files
Along with the CoreMark Software the user will also need to add files to support their development system. This
application note uses the RX62N RDK and the board support files can be found in the ‘bsp’ (Board Support Package)
folder that was packaged with this application note. Copy the files listed below to your own project workspace and then
add them to your project in HEW. Adding files to your project in HEW is done by clicking Project >> Add Files.

• rx62n_mtu.c & rx62n_mtu.h
o Contains code to use the MTU timer peripheral. This is used for measuring performance.

• serial_printf.c & serial_printf.h
o Replaces low-level functions to redirect printf() to a serial port. Also initializes SCI peripheral.

• hardware_setup.c
o Sets up the clocks on the RX62N MCU. This replaces the default hardware_setup.c file that comes

from the project generators. This means the user will first need to remove the previous file and then
add the new one. The user could also just copy the new file over the old one.

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 7 of 17
Oct 25, 2011

7. Configuring CoreMark
After the CoreMark source has been added, it needs to be configured. This is done through the core_portme.c and
core_portme.h files. These files are commented well and if more information is needed then the CoreMark
documentation (located here: <CoreMark Software>/docs/index.html) can be consulted.

7.1 System Definitions and Data Types
The following information details the settings that are used for the provided example project. Open the file
core_portme.h. This file has a list of definitions that need to be changed to meet the requirements of the system being
developed for. These definitions are listed below with the values that should be assigned to them for the RX62N
example setup.

• HAS_FLOAT
o Should be defined as ‘1’ since the RX62N has a single-precision FPU

• HAS_TIME_H
o Should be defined as ‘0’ since the time functions are not implemented

• USE_CLOCK
o Should be defined as ‘0’ since the time functions are not implemented

• HAS_STDIO
o Should be defined as ‘1’ since KPIT GNU toolchain does support stdio.h

• HAS_PRINTF
o Should be defined as ‘1’ since KPIT GNU toolchain does support printf()

• MAIN_HAS_NOARGC
o Should be set to ‘1’ since arguments to main() are not used

The data types defined in core_portme.h should be fine by default. The user will need to include stddef.h at the top of
the file to make sure the size_t typedef is defined.

#include <stddef.h>

Since time.h is not supported the use of the clock_t type will need to be changed to unsigned long. This should be done
in two places. In core_portme.h find the following code and make the changes shown below.

Find: Change to:

#include <time.h>

typedef clock_t CORE_TICKS;

#if 0

#include <time.h>

typedef clock_t CORE_TICKS;

#else

typedef unsigned long CORE_TICKS;

#endif

In core_portme.c find the following code and the make the changes shown below.

Find: Change to:

#define CORETIMETYPE clock_t #define CORETIMETYPE unsigned long

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 8 of 17
Oct 25, 2011

The CLOCKS_PER_SEC definition will also be missing. To fix this make the changes shown below in core_portme.c.

Find: Change to:

#define NSECS_PER_SEC CLOCKS_PER_SEC #ifndef CLOCKS_PER_SEC

/* Timer clock frequency: PCLK=48MHz */

#define CLOCKS_PER_SEC 48000000

#endif

#define NSECS_PER_SEC CLOCKS_PER_SEC

7.2 Run Configuration Definitions
There are two definitions that need to be defined that have to do with the CoreMark run. The first definition is
ITERATIONS. This definition defines the number of CoreMark iterations that will be run. The second definition is
FLAGS_STR which is discussed in Section 8.3. These definitions may be placed inside of core_portme.h or can be
defined in the toolchain options.

For this example the definitions will be put in the toolchain options. This is done by following these steps:

1. Go to Build >> KPIT GNURX [ELF] Toolchain.
2. Make sure the ‘C/C++’ tab is chosen.
3. Change the ‘Show entries for’ dropdown to ‘Defines’
4. Click ‘Add’
5. Put the name of the definition in the ‘Macro’ input box.
6. Put the value of the definition in the ‘Replacement’ input box.

Use these steps to define ITERATIONS to be ‘6000’.

Figure 9 : Defining ITERATIONS

Figure 10 : ITERATIONS Definition

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 9 of 17
Oct 25, 2011

7.3 Increasing Stack Size
The default memory allocation method used by CoreMark is to use the stack. Using the KPIT GNU RX project
generators the number of bytes allocated for the user and interrupts stacks is 256 bytes by default. The size of the user
stack needs to be increased to avoid stack overflow. Follow the steps below to increase the stack size.

1. Go to Build >> KPIT GNURX [ELF] Toolchain.
2. Make sure the ‘Link/Library’ tab is chosen.
3. Change the ‘Category’ dropdown to ‘Sections’.
4. Scroll down the list until ‘.ustack’ is shown.
5. Double click on ‘.ustack’ and when the window pops up change the address to 0x5000. Click OK.
6. Double click on ‘.istack’ and change its address to 0x5100.
7. Click OK.

Figure 11 : Increasing Stack Size

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 10 of 17
Oct 25, 2011

7.4 Getting Execution Cycles and Outputting Results
In order to get performance results from the CoreMark benchmark we must know how many cycles it took to execute
the CoreMark program. This is done in core_portme.c using the start_time() and stop_time() functions. For this
example the MTU timer on the RX62N was used to count cycles. Each MTU channel is 16-bits and two channels can
be cascaded to make a 32-bit timer. If the MTU is run at the maximum speed of 48MHz this gives a maximum time of
around 89.5 seconds. According to the CoreMark documentation the benchmark must be run for a minimum of 10
seconds which means there is no reason to divide the clock any further. The high resolution of the timer combined with
a large number of CoreMark iterations makes the resulting cycle count very accurate. The functions to initialize, start,
and stop the MTU are provided in rx62n_mtu.c which is provided with this application note.

After the measured section of the CoreMark has finished the results will be calculated and output using the printf()
function. For this example the output of printf() will be directed to SCI2-B which is connected to the serial port on the
RDK board. The user redirects the output of printf() by writing their own putchar() and getchar() functions. These
functions and a function to initialize the SCI peripheral are included with this application note in serial_printf.c.

Table 1 shows the changes that need to be made to core_portme.c to use the MTU timer and initialize the SCI
peripheral. The user should add the rx62n_mtu.c and serial_printf.c files to their project before making these changes.

Find: Change to:

#include <stdlib.h>

#include "coremark.h"

#include <stdlib.h>

#include “rx62n_mtu.h”

#include “serial_printf.h”

#include “coremark.h”

#define CORETIMETYPE unsigned long

#define GETMYTIME(_t) (*_t=clock())

#if 0

#define GETMYTIME(_t) (*_t=clock())

#endif

void start_time(void) {

 GETMYTIME(&start_time_val);

}

void start_time(void) {

 start_time_val = timer_start();

}

void stop_time(void) {

 GETMYTIME(&stop_time_val);

}

void stop_time(void) {

 stop_time_val = timer_stop();

}

void portable_init(core_portable *p,
int *argc, char *argv[])

{

 ...

 p->portable_id=1;

}

void portable_init(core_portable *p,
int *argc, char *argv[])

{

 ...

 p->portable_id=1;

 timer_init();

 sci_init();

}

Table 1 : Changes to core_portme.c

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 11 of 17
Oct 25, 2011

8. Optimizing CoreMark
To obtain the best benchmark results optimizations should be turned on. This section will guide the user through using
the same optimizations that were used to obtain the CoreMark number shown in Section 10.

8.1 Compiler Optimizations
There are two optimizations that need to be turned on with the compiler. The reason for this will be discussed later.

1. Go to Build >> KPIT GNURX [ELF] Toolchain.
2. Make sure the ‘C/C++’ tab is chosen.
3. Change the ‘Category’ dropdown to ‘Optimize’
4. Make sure the ‘Optimize C/C++ Source Code’ box is checked
5. Change ‘Optimization Type’ to ‘Optimize for speed’.
6. Make sure the ‘Enable Link-time optimizations (-flto)’ box is checked.
7. Click OK.

Figure 12: Enable Link-time Optimizations for Compiler

8.2 Linker Optimizations
The linker settings are where the optimization settings that make a large performance impact will be defined.

8. Go to Build >> KPIT GNURX [ELF] Toolchain.
9. Make sure the ‘Link/Library’ tab is chosen.
10. Change the ‘Category’ dropdown to ‘Output’.
11. Make sure the ‘Enable link-time optimizations (-flto)’ box is checked.

Figure 13 : Enable Link-time Optimizations for Linker

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 12 of 17
Oct 25, 2011

12. Change the ‘Category’ dropdown to ‘Other’.
13. Append the following string to the ‘User defined options’ input box: “-O3 -funroll-all-loops -finline-limit=500

-g -g2” (without the quotation marks).

14. Click OK.

Some users might see the options that were used for the linker optimizations and think that they appear to be
optimizations that would normally be used for the compiler. The reason the optimizations are setup this way is because
Link-Time Optimizations (-flto) are enabled. When this setting is enabled the link-time optimizer is used at the link
stage. The –flto option should be used both when compiling and when linking. When compiling with the –flto option
the compiler will store a special bytecode representation (used internally by GCC tools) of the source in the object file.
When the linker is called with the –flto option it will extract these separate bytecode images and will merge them all
into a single internal image. The resulting image will then be compiled with the optimizations specified. Since the
bytecode images were combined before being optimized inter-module optimizations will be performed.

For a full description of this option users can reference http://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html#Optimize-Options.

8.3 Reporting Optimization Settings
When reporting the CoreMark results the optimization settings used are included. Using the same steps as detailed in
Section 7.2 add a definition for FLAGS_STR to be \"-O3_-flto_-finline-limit-500_-funroll-all-loops\". The (\”) are
included for compilation purposes. These are the settings that were detailed earlier in this section. If the user changes
these settings, then they will need to change this definition as well for accurate reporting.

Figure 14 : Defining Optimization Settings

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options�
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options�

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 13 of 17
Oct 25, 2011

9. Run the CoreMark Benchmark
With the changes made from the previous sections go ahead and build the project by going to Build >> Build All. After
this process has finished, we can connect to the RDK board and run the code. Follow the steps below to do this.

1. Connect the RDK to your PC using the supplied USB cable.
2. Change the debugging session from ‘DefaultSession’ to ‘SessionRX600_Segger_Jlink’ using the session drop

down box.

Figure 15 : Select JLink Debugging Session

3. Choose ‘RX62N Group’ for the ‘MCU Group’.
4. Choose ‘R5F562N8’ for the ‘Device’. Click Next.

Figure 16 : Choose MCU to Debug

5. Choose ’16.5Mhz’ for the JTAG Clock and hit Finish.

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 14 of 17
Oct 25, 2011

6. In the next window input ‘12’ for the ‘Input clock (EXTAL)’. Click OK.

Figure 17 : JLink Configuration Properties

7. When the connection process has completed double-click on the icon underneath the ‘Download modules’
folder in the left pane. This will download the program to the RX62N MCU.

Figure 18 : Download Program to MCU

8. Connect a serial cable between the RDK board and your PC.
9. Open up a terminal program with the following settings:

a. 115200 baud
b. 8 data bits
c. 1 stop bit
d. No parity
e. No flow control

10. Click Debug >> Reset Go.
11. After approximately 27 seconds the results should show up in the terminal window. Example output is shown

in Section 10.

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 15 of 17
Oct 25, 2011

10. Results for RX62N
This section shows the results for the example project that was built throughout this document. The system used was a
RDK RX62N. These results will be the same for all RX610, RX62x, and RX63x devices since they all share the same
core.

CoreMark Output

2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 1281394099

Total time (secs): 26.695709

Iterations/Sec : 224.755239

Iterations : 6000

Compiler version : GCC4.5-GNURX_v11.03

Compiler flags : -O3_-flto_-finline-limit-500_-funroll-all-loops

Memory location : STACK

seedcrc : 0xe9f5

[0]crclist : 0xe714

[0]crcmatrix : 0x1fd7

[0]crcstate : 0x8e3a

[0]crcfinal : 0xa14c

Correct operation validated. See readme.txt for run and reporting rules.

CoreMark 1.0 : 224.755239 / GCC4.5-GNURX_v11.03 -O3_-flto_-finline-limit-500_-
funroll-all-loops / STACK

When discussing MCUs, many users are interested in seeing the CoreMark per megahertz of the MCU. The CoreMark
number helps in showing raw horsepower while the CoreMark/MHz number helps show the efficiency of the core. If
you have to run MCU-A at 100MHz and 80mA to match the processing power of MCU-B running at 50MHz and
40mA then most users will select MCU-B.

To calculate CoreMark/MHz the CoreMark number should be divided by the clock speed that was used when the
benchmark was performed. For this example the RX62N was run at 96MHz.

CoreMark/MHz = CoreMark Score / Clock Speed

CoreMark/MHz = 224.755239 / 96MHz

CoreMark/MHz = 2.341

To report the score, CoreMark recommends using the same format as before. This is shown below.

CoreMark/MHz

CoreMark/MHz 1.0 : 2.34 / GCC4.5-GNURX_v11.03 -O3 –flto -finline-limit=500 -funroll-all-loops / STACK

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 16 of 17
Oct 25, 2011

11. Summary
Detailed instructions were provided to aid users in replicating the CoreMark/MHz number that Renesas provides. As
with any benchmark, these results should not be used as the sole reason to choose one MCU over another. Rather, the
CoreMark should be used as a general indicator of a MCU’s core processing power. For example, if MCU-A has a
CoreMark of 230 and MCU-B has a CoreMark of 220 then the conclusion that can be drawn is that both MCUs have
similar core capabilities and if one has enough power for you, then so should the other one. Using the same example, if
a user says that MCU-A will work but MCU-B will not because it is not powerful enough then that means the margin
for error is very small. In this case the user would be better off moving up to the next ‘class’ of MCUs with more
processing power.

RX600 Series How to Setup and Run CoreMark on a MCU

R01AN0757EU0100 Rev.1.00 Page 17 of 17
Oct 25, 2011

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/�
http://www.renesas.com/inquiry�

A-1

Revision Record

Rev. Date
Description
Page Summary

1.00 Oct.25.11 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	1. Overview
	2. Obtaining the CoreMark Benchmark
	3. Downloading & Installing the KPIT GNU Tools
	4. Creating a CoreMark HEW Project
	5. Adding CoreMark Source
	6. Adding Board Support Files
	7. Configuring CoreMark
	7.1 System Definitions and Data Types
	7.2 Run Configuration Definitions
	7.3 Increasing Stack Size
	7.4 Getting Execution Cycles and Outputting Results

	8. Optimizing CoreMark
	8.1 Compiler Optimizations
	8.2 Linker Optimizations
	8.3 Reporting Optimization Settings

	9. Run the CoreMark Benchmark
	10. Results for RX62N
	11. Summary

