
openMSP430

Author: Olivier GIRARD

olgirard@gmail.com

Rev. 1.12

November 27, 2012

http://www.opencores.org/

 OpenCores Nov 27, 2012

www.opencores.org Rev 1.10 ii

http://www.opencores.org/

Revision History

Rev. Date Author Description

1.0 August 4th, 2009 GIRARD First version.
1.1 August 30th, 2009 GIRARD Replaced “openMSP430.inc“ with

“openMSP430_defines.v“
1.2 December 27th, 2009 GIRARD - Update file and directory description for hte FPGA

projects (in particular, add the Altera project).
- Diverse minor updates.

1.3 December 29th, 2009 GIRARD - Renamed the “rom_*“ ports to “pmem_*“.
- Renamed the “ram_*“ ports to “dmem_*“.
- Renamed the “ROM_AWIDTH“ Verilog define to
“PMEM_AWIDTH“.
- Renamed the “RAM_AWIDTH“ Verilog define to
“DMEM_AWIDTH“.
- Prefixed all the verilog sub-modules of the
openMSP430 core with “omsp_“.
- Diverse minor updates

1.4 January 12th, 2010 GIRARD - Added the “Integration and Connectivity“section.
1.5 March 7th, 2010 GIRARD - Add Hardware multiplier info.

- Added the “Area and Speed Analysis“ section.
1.6 August 1st, 2010 GIRARD - Update core configuration section.

- Expand the CPU selection table for msp430-gcc.
1.7 August 18th, 2010 GIRARD - Update CPU_ID description in the serial debug

interface chapter..
1.8 March 1st, 2011 GIRARD - Update openmsp430-minidebug tool section.

- Add. Actel ProASIC3 example to the file and
directory description section.

1.9 June 6th, 2011 GIRARD - General update to reflect the latest RTL
implementation (cpu_en/dbg_en ports, configurable
peripheral address space, software development tools
update...)..

1.10 March 20th, 2012 GIRARD - Global update reflecting the ASIC support and
corresponding configuration options.

1.11 July 15th, 2012 GIRARD - Add benchmark results
- Add custom memory size configuration

1.12 November 27th, 2012 GIRARD - Global update reflecting the I2C based serial debug
interface update.

Contents

1. OVERVIEW...1

2. CORE..4

3. SERIAL DEBUG INTERFACE...29

4. INTEGRATION AND CONNECTIVITY ...45

5. ASIC IMPLEMENTATION …..61

6. AREA AND SPEED ANALYSIS ..78

7. SOFTWARE DEVELOPMENT TOOLS...82

8. FILE AND DIRECTORY DESCRIPTION..95

1.
Overview

Introduction

The openMSP430 is a synthesizable 16bit microcontroller core written in Verilog. It is
compatible with Texas Instruments' MSP430 microcontroller family and can execute the
code generated by an MSP430 toolchain in a near cycle accurate way.

The core comes with some peripherals (16x16 Hardware Multiplier, Watchdog, GPIO,
TimerA, generic templates) and most notably with a two-wire Serial Debug Interface
supporting the MSPGCC GNU Debugger (GDB) for in-system software debugging.

While being fully FPGA friendly, this design is also particularly suited for ASIC
implementations (typically mixed signal ICs with strong area and low-power
requirements).

In a nutshell, the openMSP430 brings with it:

• Low area (8k-Gates), without hidden extra infrastructure overhead (memory
backbone, IRQ controller and watchdog timer are already included).

• Excellent code density.

• Good performances.

• Build-in power and clock management options.

• Multiple time Silicon Proven.

1

http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki
http://www.ti.com/litv/pdf/slau049f
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=K2VBGQU7C4ZQY
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=SD9F58JAMB8XA
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=QVSEARCQD88FQ
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=6CQD25UJLD2CY
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=EQFEFFJZFCXBW
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=MG8M87BXDL3K8

Download

Design
The complete tar archive of the project can be downloaded here (OpenCores account
required).

The following SVN command can be run from a console (or GUI):

svn export http://opencores.org/ocsvn/openmsp430/openmsp430/trunk/ openmsp430

Changelog

• The Core's ChangeLog lists the CPU updates
• The Tools' ChangeLog lists the Software development tools updates.
• Subscribe to the following RSS feed to keep yourself informed about ALL

updates.

Documentation
Being fully compatible with the original MSP430 architecture, TI's official
documentation is applicable: SLAU49F.PDF

In addition, the openMSP430 online documentation is also available in pdf.

Features & Limitations
Features

• Core:
• Full instruction set support.
• Interrupts: IRQs (x14), NMI (x1).
• Power saving modes.
• Configurable memory size for both program and data.
• Scalable peripheral address space.
• Two-wire Serial Debug Interface (Nexus class 3, w/o trace) with GDB

support (I2C or UART based).
• FPGA friendly (option for single clock domain, no clock gate).
• ASIC friendly (options for full power & clock management support).
• Small size (Xilinx: 1650 LUTs / Altera: 1550 LEs / ASIC: 8k gates).

2

http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/doc/openMSP430.pdf
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://opencores.org/websvn,rss?repname=openmsp430&path=/openmsp430/&isdir=1
http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/ChangeLog_tools.txt
http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/ChangeLog_core.txt
http://www.syntevo.com/smartsvn/index.html
http://opencores.org/download,openmsp430

• Peripherals:
• 16x16 Hardware Multiplier.
• Basic Clock Module.
• Watchdog.
• Timer A (FPGA only).
• GPIO (FPGA only).
• Templates for 8 and 16 bit peripherals.

Limitations
• Core:

• Instructions can't be executed from the data memory.

Links
Development has been performed using the following freely available (excellent) tools:

• Icarus Verilog : Verilog simulator.
• GTKWave Analyzer : Waveform viewer.
• MSPGCC : GCC toolchain for the Texas Instruments MSP430 MCUs.
• ISE WebPACK : Xilinx's free FPGA synthesis tool.

A few MSP430 links:

• Wikipedia: MSP430
• TI: MSP430x1xx Family User's Guide
• TI: MSP430 Competitive Benchmarking
• TI: a list of available MSP430 Open Source projects out there on the web today.

Legal information

MSP430 is a trademark of Texas Instruments, Inc. This project is not affiliated in any
way with Texas Instruments. All other product names are trademarks or registered
trademarks of their respective owners.

3

http://processors.wiki.ti.com/index.php/Open_Source_Projects_-_MSP430
http://www.ti.com/lit/an/slaa205c/slaa205c.pdf
http://www.ti.com/litv/pdf/slau049f
http://en.wikipedia.org/wiki/MSP430
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki
http://gtkwave.sourceforge.net/
http://iverilog.icarus.com/

2.
Core

Table of content

• 1. Introduction
• 2. Design

• 2.1 Core
• 2.1.1 Design structure
• 2.1.2 Limitations
• 2.1.3 Configuration

• 2.1.3.1 Basic System Configuration
• 2.1.3.2 Advanced System Configuration
• 2.1.3.3 Expert System Configuration
• 2.1.3.4 Parameters For Multi-Core Systems

• 2.1.4 Memory mapping
• 2.1.5 Pinout
• 2.1.6 Instruction Cycles and Lengths
• 2.1.7 Serial Debug Interface
• 2.1.8 Benchmark results

• 2.1.8.1 Dhrystone
• 2.1.8.2 CoreMark

• 2.2 System Peripherals
• 2.2.1 Basic Clock Module: FPGA
• 2.2.2 Basic Clock Module: ASIC
• 2.2.3 SFR
• 2.2.4 Watchdog Timer
• 2.2.5 16x16 Hardware Multiplier

• 2.3 External Peripherals
• 2.3.1 Digital I/O (FPGA ONLY)
• 2.3.2 Timer A (FPGA ONLY)

4

1. Introduction

The openMSP430 is a 16-bit microcontroller core compatible with TI's MSP430 family
(note that the extended version of the architecture, the MSP430X, isn't supported by this
IP). It is based on a Von Neumann architecture, with a single address space for
instructions and data.

Depending on the selected configuration, this design can either be:

• FPGA friendly: the core doesn't contain any clock gate and has only a single
clock domain. As a consequence, in this mode, the Basic Clock Module peripheral
has a few limitations.

• ASIC friendly: the core contains up to all clock management options (clock
muxes & low-power modes, fine grained clock gating, …) and is also ready for
scan insertion. In this mode, the Basic Clock Module offers all features listed in
the official documentation.

It is to be noted that this IP doesn't contain the instruction and data memory blocks
internally (these are technology dependent hard macros which are connected to the IP
during chip integration). However the core is fully configurable in regard to the supported
RAM and/or ROM sizes.

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration.

5

http://www.ti.com/litv/pdf/slau049f
http://www.ti.com/litv/pdf/slau049f

2. Design
2.1 Core
2.1.1 Design structure

The following diagram shows the openMSP430 design structure:

• Frontend: This module performs the instruction Fetch and Decode tasks. It also
contains the execution state machine.

• Execution unit: Containing the ALU and the register file, this module executes
the current decoded instruction according to the execution state.

• Serial Debug Interface: Contains all the required logic for a Nexus class 3
debugging unit (without trace). Communication with the host is done with a
standard two-wire interface following either the UART 8N1 or I2C serial protocol.

• Memory backbone: This block performs a simple arbitration between the
frontend and execution-unit for program, data and peripheral memory access.

• Basic Clock Module: Generates MCLK, ACLK, SMCLK and manage the low
power modes.

• SFRs: The Special Function Registers block contains diverse configuration
registers (NMI, Watchdog, ...).

6

• Watchdog: Although it is a peripheral, the watchdog is directly included in the
core because of its tight links with the NMI interrupts and the PUC reset
generation.

• 16x16 Multiplier: The hardware multiplier peripheral is transparently supported
by the GCC compiler and is therefore located in the core. It can be included or
excluded at will through a Verilog define.

2.1.2 Limitations

The known core limitations are the following:

• Instructions can't be executed from the data memory.

2.1.3 Configuration

It is possible to configure the openMSP430 core through the openMSP430_defines.v file
located in the rtl directory (see file and directory description).

In this section, three sets of adjustable user parameters are discussed in order to
customize the core. A fourth set is available for ASIC specific options and will be
discussed in the ASIC implementation section.

2.1.3.1 Basic System Configuration

The basic system can be adjusted with the following set of defines in order to match the
target system requirements.

//===
//===
//BASIC SYSTEM CONFIGURATION
//===
//===
//
// Note: the sum of program, data and peripheral memory spaces must not
// exceed 64 kB
//

// Program Memory Size:
// Uncomment the required memory size
//---
//`define PMEM_SIZE_CUSTOM
//`define PMEM_SIZE_59_KB
//`define PMEM_SIZE_55_KB
//`define PMEM_SIZE_54_KB
//`define PMEM_SIZE_51_KB
//`define PMEM_SIZE_48_KB
//`define PMEM_SIZE_41_KB
//`define PMEM_SIZE_32_KB
//`define PMEM_SIZE_24_KB
//`define PMEM_SIZE_16_KB
//`define PMEM_SIZE_12_KB
//`define PMEM_SIZE_8_KB
//`define PMEM_SIZE_4_KB

7

`define PMEM_SIZE_2_KB
//`define PMEM_SIZE_1_KB

// Data Memory Size:
// Uncomment the required memory size
//---
//`define DMEM_SIZE_CUSTOM
//`define DMEM_SIZE_32_KB
//`define DMEM_SIZE_24_KB
//`define DMEM_SIZE_16_KB
//`define DMEM_SIZE_10_KB
//`define DMEM_SIZE_8_KB
//`define DMEM_SIZE_5_KB
//`define DMEM_SIZE_4_KB
//`define DMEM_SIZE_2p5_KB
//`define DMEM_SIZE_2_KB
//`define DMEM_SIZE_1_KB
//`define DMEM_SIZE_512_B
//`define DMEM_SIZE_256_B
`define DMEM_SIZE_128_B

// Include/Exclude Hardware Multiplier
`define MULTIPLIER

// Include/Exclude Serial Debug interface
`define DBG_EN

The only design considerations at this stage are:

• Make sure that the program and data memories have the correct size :-P

• The sum of program, data and peripheral memory space MUST NOT exceed
64kB.

Note: when selected, custom memory sizes can be specified in the “Expert System
Configuration” section.

2.1.3.2 Advanced System Configuration

In this section, some additional features are available in order to match the needs of more
experienced users.

//==
//==
// ADVANCED SYSTEM CONFIGURATION (FOR EXPERIENCED USERS)
//==
//==

//---
// Custom user version number
//---
// This 5 bit field can be freely used in order to allow
// custom identification of the system through the debug
// interface.
// (see CPU_ID.USER_VERSION field in the documentation)
//---

8

`define USER_VERSION 5'b00000

//---
// Include/Exclude Watchdog timer
//---
// When excluded, the following functionality will be
// lost:
// - Watchog (both interval and watchdog modes)
// - NMI interrupt edge selection
// - Possibility to generate a software PUC reset
//---
`define WATCHDOG

///---
// Include/Exclude Non-Maskable-Interrupt support
//---
`define NMI

//---
// Input synchronizers
//---
// In some cases, the asynchronous input ports might
// already be synchronized externally.
// If an extensive CDC design review showed that this
// is really the case, the individual synchronizers
// can be disabled with the following defines.
//
// Notes:
// - all three signals are all sampled in the MCLK domain
//
// - the dbg_en signal reset the debug interface
// when 0. Therefore make sure it is glitch free.
//
//---
`define SYNC_NMI
//`define SYNC_CPU_EN
//`define SYNC_DBG_EN

//---
// Peripheral Memory Space:
//---
// The original MSP430 architecture map the peripherals
// from 0x0000 to 0x01FF (i.e. 512B of the memory space).
// The following defines allow you to expand this space
// up to 32 kB (i.e. from 0x0000 to 0x7fff).
// As a consequence, the data memory mapping will be
// shifted up and a custom linker script will therefore
// be required by the GCC compiler.
//---
//`define PER_SIZE_CUSTOM
//`define PER_SIZE_32_KB
//`define PER_SIZE_16_KB
//`define PER_SIZE_8_KB
//`define PER_SIZE_4_KB
//`define PER_SIZE_2_KB
//`define PER_SIZE_1_KB
`define PER_SIZE_512_B

9

//---
// Defines the debugger CPU_CTL.RST_BRK_EN reset value
// (CPU break on PUC reset)
//---
// When defined, the CPU will automatically break after
// a PUC occurrence by default. This is typically useful
// when the program memory can only be initialized through
// the serial debug interface.
//---
`define DBG_RST_BRK_EN

Design consideration at this stage are:

• Setting a peripheral memory space to something else than 512B will shift the data
memory mapping up, which in turn will require the use of a custom linker script.
If you don't know what a linker script is and if you don't want to know what it is,
you should probably not modify this section.

• The sum of program, data and peripheral memory space MUST NOT exceed
64kB.

Note: when selected, custom peripheral memory space can be specified in the “Expert
System Configuration” section.

2.1.3.3 Expert System Configuration

In this section, you will find configuration options which will be relevant for roughly
0.1% of the users (according to a highly reliable market analysis ;-)).

//==
//==
// EXPERT SYSTEM CONFIGURATION (!!!! EXPERTS ONLY !!!!)
//==
//==
//
// IMPORTANT NOTE: Please update following configuration options ONLY if
// you have a good reason to do so... and if you know what
// you are doing :-P
//
//==

//---
// Select serial debug interface protocol
//---
// DBG_UART -> Enable UART (8N1) debug interface
// DBG_I2C -> Enable I2C debug interface
//---
`define DBG_UART
//`define DBG_I2C

//---
// Enable the I2C broadcast address

10

//---
// For multicore systems, a common I2C broadcast address
// can be given to all oMSP cores in order to
// synchronously RESET, START, STOP, or STEP all CPUs
// at once with a single I2C command.
// If you have a single openMSP430 in your system,
// this option can stay commented-out.
//---
//`define DBG_I2C_BROADCAST

//---
// Number of hardware breakpoint units (each unit contains
// two hardware address breakpoints):
// - DBG_HWBRK_0 -> Include hardware breakpoints unit 0
// - DBG_HWBRK_1 -> Include hardware breakpoints unit 1
// - DBG_HWBRK_2 -> Include hardware breakpoints unit 2
// - DBG_HWBRK_3 -> Include hardware breakpoints unit 3
//---
// Please keep in mind that hardware breakpoints only
// make sense whenever the program memory is not an SRAM
// (i.e. Flash/OTP/ROM/...) or when you are interested
// in data breakpoints (btw. not supported by GDB).
//---
//`define DBG_HWBRK_0
//`define DBG_HWBRK_1
//`define DBG_HWBRK_2
//`define DBG_HWBRK_3

//---
// Enable/Disable the hardware breakpoint RANGE mode
//---
// When enabled this feature allows the hardware breakpoint
// units to stop the cpu whenever an instruction or data
// access lays within an address range.
// Note that this feature is not supported by GDB.
//---
//`define DBG_HWBRK_RANGE

//---
// Custom Program/Data and Peripheral Memory Spaces
//---
// The following values are valid only if the
// corresponding *_SIZE_CUSTOM defines are uncommented:
//
// - *_SIZE : size of the section in bytes.
// - *_AWIDTH : address port width, this value must allow
// to address all WORDS of the section
// (i.e. the *_SIZE divided by 2)
//---

// Custom Program memory (enabled with PMEM_SIZE_CUSTOM)
`define PMEM_CUSTOM_AWIDTH 10
`define PMEM_CUSTOM_SIZE 2048

// Custom Data memory (enabled with DMEM_SIZE_CUSTOM)
`define DMEM_CUSTOM_AWIDTH 6
`define DMEM_CUSTOM_SIZE 128

// Custom Peripheral memory (enabled with PER_SIZE_CUSTOM)

11

`define PER_CUSTOM_AWIDTH 8
`define PER_CUSTOM_SIZE 512

//---
// ASIC version
//---
// When uncommented, this define will enable the
// ASIC system configuration section (see below) and
// will activate scan support for production test.
//
// WARNING: if you target an FPGA, leave this define
// commented.
//---
//`define ASIC

Design consideration at this stage are:

• This is the expert section... so you know what your are doing right ;-)

All remaining defines located after the ASIC section in the openMSP430_defines.v file
are system constants and MUST NOT be edited.

2.1.3.4 Parameters For Multi-Core Systems

In addition to the define file, two Verilog parmaeters are available to facilitate software
development on multi-core systems.

For example, in a dual-core openMSP430 system, the cores can be instantiated as
following:

openMSP430 #(.INST_NR (0), .TOTAL_NR(1)) openMSP430_core_0 (
...
);

openMSP430 #(.INST_NR (1), .TOTAL_NR(1)) openMSP430_core_1 (
...
);

The values of these parameters are then directly accessible through the CPU_NR register
of the SFR peripheral.

For example, if both cores share the same program memory, the software can take
advantage of this information as following:

"...
int main(void) {
 if (CPU_NR==0x0100) {
 main_core_0(); // Main routine call for core 0
 }
 if (CPU_NR==0x0101) {
 main_core_1(); // Main routine call for core 1
 }
}
…"

12

2.1.4 Memory mapping

As discussed earlier, the openMSP430 memory mapping is fully configurable.

The basic system configuration section allows to adjust program and data memory sizes
while keeping 100% compatibility with the pre-existing linker scripts provided by
MSPGCC (or any other toolchain for that matter).

However, an increasing number of users saw the 512B space available for peripherals in
the standard MSP430 architecture as a limitation. Therefore, the advanced system
configuration section gives the possibility to up-scale the reserved peripheral address
space anywhere between 512B and 32kB. As a consequence, the data memory space will
be shifted up, which means that the linker script of your favorite toolchain will have to be
modified accordingly.

The following schematic should hopefully summarize this:

13

2.1.5 Pinout

The full pinout of the openMSP430 core is provided in the following table:

Port Name
Direct

ion
Width

Clock
Domain

Description

Clocks

cpu_en Input 1
<async>
or mclk4

Enable CPU code execution
(asynchronous and non-glitchy).
Set to 1 if unused.

dco_clk Input 1 - Fast oscillator (fast clock)

lfxt_clk Input 1 -
Low frequency oscillator (typ. 32kHz)
Set to 0 if unused.

mclk Output 1 - Main system clock

aclk_en Output 1 mclk FPGA ONLY: ACLK enable

smclk_en Output 1 mclk FPGA ONLY: SMCLK enable

dco_enable Output 1 dco_clk ASIC ONLY: Fast oscillator enable

dco_wkup Output 1 <async>
ASIC ONLY: Fast oscillator wakeup
(asynchronous)

lfxt_enable Output 1 lfxt_clk
ASIC ONLY: Low frequency oscillator
enable

lfxt_wkup Output 1 <async>
ASIC ONLY: Low frequency oscillator
wakeup (asynchronous)

aclk Output 1 - ASIC ONLY: ACLK

smclk Output 1 - ASIC ONLY: SMCLK

wkup Input 1 <async>
ASIC ONLY: System Wake-up
(asynchronous and non-glitchy)
Set 0 if unused.

Resets

puc_rst Output 1 mclk Main system reset

reset_n Input 1 <async>
Reset Pin (active low, asynchronous and
non-glitchy)

Interrupts

irq Input 14 mclk Maskable interrupts (one-hot signal)

nmi Input 1
<async>
or mclk4

Non-maskable interrupt (asynchronous
and non-glitchy)
Set to 0 if unused.

irq_acc Output 14 mclk Interrupt request accepted (one-hot signal)

Program Memory interface

14

pmem_addr Output
`PMEM_

AWIDTH1 mclk Program Memory address

pmem_cen Output 1 mclk Program Memory chip enable (low active)

pmem_din Output 16 mclk Program Memory data input (optional2)

pmem_dout Input 16 mclk Program Memory data output

pmem_wen Output 2 mclk
Program Memory write byte enable (low
active) (optional2)

Data Memory interface

dmem_addr Output
`DMEM_

AWIDTH1 mclk Data Memory address

dmem_cen Output 1 mclk Data Memory chip enable (low active)

dmem_din Output 16 mclk Data Memory data input

dmem_dout Input 16 mclk Data Memory data output

dmem_wen Output 2 mclk
Data Memory write byte enable (low
active)

External Peripherals interface

per_addr Output 14 mclk Peripheral address

per_din Output 16 mclk Peripheral data input

per_dout Input 16 mclk Peripheral data output

per_en Output 1 mclk Peripheral enable (high active)

per_we Output 2 mclk Peripheral write enable (high active)

Serial Debug interface

dbg_en Input 1
<async>
or mclk4 Debug interface enable (asynchronous) 3

dbg_freeze Output 1 mclk Freeze peripherals

dbg_uart_txd Output 1 mclk Debug interface: UART TXD

dbg_uart_rxd Input 1 <async>
Debug interface: UART RXD
(asynchronous)

dbg_i2c_addr Input 7 mclk Debug interface: I2C Address

dbg_i2c_broadcast Input 7 mclk
Debug interface: I2C Broadcast Address
(for multicore systems)

dbg_i2c_scl Input 1 <async> Debug interface: I2C SCL (asynchronous)

dbg_i2c_sda_in Input 1 <async>
Debug interface: I2C SDA IN
(asynchronous)

dbg_i2c_sda_out Output 1 mclk Debug interface: I2C SDA OUT

Scan

scan_enable Input 1 dco_clk ASIC ONLY: Scan enable (active during

15

scan shifting)

scan_mode Input 1 <stable> ASIC ONLY: Scan mode

1: This parameter is declared in the "openMSP430_defines.v" file and defines the
RAM/ROM size.
2: These two optional ports can be connected whenever the program memory is a RAM.
This will allow the user to load a program through the serial debug interface and to use
software breakpoints.
3: When disabled, the debug interface is hold into reset (and clock gated in ASIC mode).
As a consequence, the dbg_en port can be used to reset the debug interface without
disrupting the CPU execution.
4: Clock domain is selectable through configuration in the “openMSP430_defines.v” file
(see Advanced System Configuration).

Note: in the FPGA configuration, the ASIC ONLY signals must be left unconnected (for
the outputs) and tied low (for the inputs).

2.1.6 Instruction Cycles and Lengths

Please note that a detailed description of the instruction and addressing modes can be
found in the MSP430x1xx Family User's Guide (Chapter 3).

The number of CPU clock cycles required for an instruction depends on the instruction
format and the addressing modes used, not the instruction itself.

In the following tables, the number of cycles refers to the main clock (MCLK).
Differences with the original MSP430 are highlighted in green (the original value being
red).

• Interrupt and Reset Cycles

Action No. of Cycles Length of Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 -

WDT reset 4 -

Reset (!RST/NMI) 4 -

• Format-II (Single Operand) Instruction Cycles and Lengths

16

http://www.ti.com/litv/pdf/slau049f

Addressing Mode
No. of Cycles

Length of Instruction
RRA, RRC, SWPB, SXT PUSH CALL

Rn 1 3 3 (4) 1

@Rn 3 4 4 1

@Rn+ 3 4 (5) 4 (5) 1

#N N/A 4 5 2

X(Rn) 4 5 5 2

EDE 4 5 5 2

&EDE 4 5 5 2

• Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute,
regardless of whether the jump is taken or not.

• Format-I (Double Operand) Instruction Cycles and Lengths

Addressing Mode
No. of Cycles Length of Instruction

Src Dst

Rn

Rm 1 1

PC 2 1

x(Rm) 4 2

EDE 4 2

&EDE 4 2

@Rn

Rm 2 1

PC 3 (2) 1

x(Rm) 5 2

EDE 5 2

&EDE 5 2

@Rn+

Rm 2 1

PC 3 1

x(Rm) 5 2

EDE 5 2

&EDE 5 2

#N Rm 2 2

PC 3 2

17

x(Rm) 5 3

EDE 5 3

&EDE 5 3

x(Rn)

Rm 3 2

PC 3 (4) 2

x(Rm) 6 3

EDE 6 3

&EDE 6 3

EDE

Rm 3 2

PC 3 (4) 2

x(Rm) 6 3

EDE 6 3

&EDE 6 3

&EDE

Rm 3 2

PC 3 2

x(Rm) 6 3

EDE 6 3

&EDE 6 3

2.1.7 Serial Debug Interface

All the details about the Serial Debug Interface are located here.

18

2.1.8 Benchmark results

2.1.8.1 Dhrystone (DMIPS/MHz)

Dhrystone is known for being susceptible to compiler optimizations (among other issues).
However, as it is still quite a popular metric, some results are provided here (ranging
from 0.30 to 0.45 DMIPS/MHz depending on the compiler version and options).

Note that the used C-code is available in the repository here and here.

Dhrystone flavor
Compiler options

-Os -O2 -O3
Compiler version

Dhrystone v2.1
(common version)

mspgcc v4.4.5 0.30 0.32 0.33

mspgcc v4.6.3 0.37 0.39 0.40

Dhrystone v2.1
(MCU adapted)

mspgcc v4.4.5 0.30 0.30 0.31

mspgcc v4.6.3 0.37 0.44 0.45

2.1.8.2 CoreMark (Coremark/MHz)

CoreMark tries to address most of Dhrystone's pitfall by preventing the compiler to
optimize some code away and using "real-life" algorithm.

Note that the used C-code is available in the repository here.

Compiler options
-Os -O2 -O3

Compiler version

CoreMark v1.0

(official version)

mspgcc v4.4.5 0.78 0.85 0.83

mspgcc v4.6.3 0.74 0.91 0.87

19

http://www.coremark.org/
http://opencores.org/websvn,listing?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2Fcore%2Fsim%2Frtl_sim%2Fsrc-c%2Fcoremark_v1.0%2F#path_openmsp430_trunk_core_sim_rtl_sim_src-c_coremark_v1.0_
http://www.ecrostech.com/Other/Resources/Dhrystone.htm
http://ftp.unicamp.br/pub/unix-c/benchmark/system/
http://opencores.org/websvn,listing?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2Fcore%2Fsim%2Frtl_sim%2Fsrc-c%2Fdhrystone_4mcu%2F#path_openmsp430_trunk_core_sim_rtl_sim_src-c_dhrystone_4mcu_
http://opencores.org/websvn,listing?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2Fcore%2Fsim%2Frtl_sim%2Fsrc-c%2Fdhrystone_v2.1%2F#path_openmsp430_trunk_core_sim_rtl_sim_src-c_dhrystone_v2.1_

2.2 System Peripherals

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration. The followings are directly integrated within the
core because of their tight links with the CPU.

It is to be noted that ALL system peripherals support both ASIC and FPGA versions.

2.2.1 Basic Clock Module: FPGA

In order to make an FPGA implementation as simple as possible (ideally, a non-
professional designer should be able to do it), clock gates are not used in the design
configuration and neither are clock muxes.

With these constrains, the Basic Clock Module is implemented as following:

Note: CPUOFF doesn't switch MCLK off and will instead bring the CPU state machines
in an IDLE state while MCLK will still be running.

20

In order to 'clock' a register with ACLK or SMCLK, the following structure needs to be
implemented:

For example, the following Verilog code would implement a counter clocked with
SMCLK:

reg [7:0] test_cnt;

always @ (posedge mclk or posedge puc_rst)
if (puc_rst) test_cnt <= 8'h00;
else if (smclk_en) test_cnt <= test_cnt + 8'h01;

Register Description

• DCOCTL: Not implemented
• BCSCTL1:

• BCSCTL1[7:6]: Unused
• BCSCTL1[5:4]: DIVAx
• BCSCTL1[4:0]: Unused

• BCSCTL2:
• BCSCTL2[7:4]: Unused
• BCSCTL2[3] : SELS
• BCSCTL2[2:1]: DIVSx
• BCSCTL2[0] : Unused

21

2.2.2 Basic Clock Module: ASIC

When targeting an ASIC, up to all clock management options available in the
MSP430x1xx Family User's Guide (Chapter 4) can be included:

Additional info can be found in the ASIC implementation section.

22

http://www.ti.com/litv/pdf/slau049f

2.2.3 SFR

Following the MSP430x1xx Family User's Guide, this peripheral implements flags and
interrupt enable bits for the Watchdog Timer and NMI:

Register
Name

Address
Bit Fields

7 6 5 4 3 2 1 0

IE1 0x0000 Reserved NMIIE 1 Reserved WDTIE 2

IFG1 0x0002 Reserved NMIIFG 1 Reserved WDTIFG 2

1: These fields are not available if the NMI is excluded (see openMSP430_defines.v)
2: These fields are not available if the Watchdog is excluded (see
openMSP430_defines.v)

In addition, two 16-bit read-only registers have been added in order to let the software
know with which version of the openMSP430 it is running:

Register
Name

Address
Bit field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_ID_LO 0x0004 PER_SPACE USER_VERSION ASIC CPU_VERSION

CPU_ID_HI 0x0006 PMEM_SIZE DMEM_SIZE MPY

CPU_NR 0x0008 CPU_TOTAL_NR CPU_INST_NR

• CPU_VERSION : Current CPU version.

• ASIC : Defines if the ASIC specific features are enabled in the
current openMSP430 implementation.

• USER_VERSION : Reflects the value defined in the openMSP430_defines.v
file.

• PER_SPACE : Peripheral address space for the current implementation
(byte size = PER_SPACE*512)

• MPY : This bit is set if the hardware multiplier is inclued in the
current implementation.

• DMEM_SIZE : Data memory size for the current implementation
(byte size = DMEM_SIZE*128)

• PMEM_SIZE : Program memory size for the current implementation
 (byte size = PMEM_SIZE*1024)

• CPU_INST_NR : Current oMSP instance number (for multicore systems)

• CPU_TOTAL_NR : Total number of oMSP instances-1 (for multicore systems)

23

http://www.ti.com/litv/pdf/slau049f

Note: attentive readers will have noted that CPU_ID_LO, CPU_ID_HI and CPU_NR are
identical to the Serial Debug Interface register counterparts.

2.2.4 Watchdog Timer

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 10)
have been implemented.

The following parameter in the openMSP430_defines.v file controls if the watchdog timer
should be included or not:

//---
// Include/Exclude Watchdog timer
//---
// When excluded, the following functionality will be
// lost:
// - Watchdog (both interval and watchdog modes)
// - NMI interrupt edge selection
// - Possibility to generate a software PUC reset
//---
`define WATCHDOG

2.2.5 16x16 Hardware Multiplier

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 7)
have been implemented.

The following parameter in the openMSP430_defines.v file controls if the hardware
multiplier should be included or not:

// Include/Exclude Hardware Multiplier
`define MULTIPLIER

24

http://www.ti.com/litv/pdf/slau049f
http://www.ti.com/litv/pdf/slau049f

2.3 External Peripherals

The external peripherals labeled with the “FPGA ONLY” tag do not contain any clock
gate nor clock muxes and are clocked with MCLK only. This mean that they don't
support any of the low power modes and therefore are most likely not suited for an ASIC
implementation.

2.3.1 Digital I/O (FPGA ONLY)

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 9)
have been implemented.

The following Verilog parameters will enable or disable the corresponding ports in order
to save area (i.e. FPGA utilization):

parameter P1_EN = 1'b1; // Enable Port 1

parameter P2_EN = 1'b1; // Enable Port 2

parameter P3_EN = 1'b0; // Enable Port 3

parameter P4_EN = 1'b0; // Enable Port 4

parameter P5_EN = 1'b0; // Enable Port 5

parameter P6_EN = 1'b0; // Enable Port 6

They can be updated as following during the module instantiation (here port 1, 2 and 3
are enabled):

gpio #(.P1_EN(1),

.P2_EN(1),

.P3_EN(1),

.P4_EN(0),

.P5_EN(0),

.P6_EN(0)) gpio_0 (

The full pinout of the GPIO module is provided in the following table:

Port Name Direction Width Description

Clocks & Resets

mclk Input 1 Main system clock

puc_rst Input 1 Main system reset

Interrupts

irq_port1 Output 1 Port 1 interrupt

irq_port2 Output 1 Port 2 interrupt

25

http://www.ti.com/litv/pdf/slau049f

External Peripherals interface

per_addr Input 8 Peripheral address

per_din Input 16 Peripheral data input

per_dout Output 16 Peripheral data output

per_en Input 1 Peripheral enable (high active)

per_wen Input 2 Peripheral write enable (high active)

Port 1

p1_din Input 8 Port 1 data input

p1_dout Output 8 Port 1 data output

p1_dout_en Output 8 Port 1 data output enable

p1_sel Output 8 Port 1 function select

Port 2

p2_din Input 8 Port 2 data input

p2_dout Output 8 Port 2 data output

p2_dout_en Output 8 Port 2 data output enable

p2_sel Output 8 Port 2 function select

Port 3

p3_din Input 8 Port 3 data input

p3_dout Output 8 Port 3 data output

p3_dout_en Output 8 Port 3 data output enable

p3_sel Output 8 Port 3 function select

Port 4

p4_din Input 8 Port 4 data input

p4_dout Output 8 Port 4 data output

p4_dout_en Output 8 Port 4 data output enable

p4_sel Output 8 Port 4 function select

Port 5

p5_din Input 8 Port 5 data input

p5_dout Output 8 Port 5 data output

p5_dout_en Output 8 Port 5 data output enable

p5_sel Output 8 Port 5 function select

Port 6

p6_din Input 8 Port 6 data input

p6_dout Output 8 Port 6 data output

26

p6_dout_en Output 8 Port 6 data output enable

p6_sel Output 8 Port 6 function select

2.3.2 Timer A (FPGA ONLY)

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 11)
have been implemented.

The full pinout of the Timer A module is provided in the following table:

Port Name Direction Width Description

Clocks, Resets & Debug

mclk Input 1 Main system clock

aclk_en Input 1 ACLK enable (from CPU)

smclk_en Input 1 SMCLK enable (from CPU)

inclk Input 1 INCLK external timer clock (SLOW)

taclk Input 1 TACLK external timer clock (SLOW)

puc_rst Input 1 Main system reset

dbg_freeze Input 1 Freeze Timer A counter

Interrupts

irq_ta0 Output 1 Timer A interrupt: TACCR0

irq_ta1 Output 1 Timer A interrupt: TAIV, TACCR1, TACCR2

irq_ta0_acc Input 1 Interrupt request TACCR0 accepted

External Peripherals interface

per_addr Input 8 Peripheral address

per_din Input 16 Peripheral data input

per_dout Output 16 Peripheral data output

per_en Input 1 Peripheral enable (high active)

per_wen Input 2 Peripheral write enable (high active)

Capture/Compare Unit 0

ta_cci0a Input 1 Timer A capture 0 input A

ta_cci0b Input 1 Timer A capture 0 input B

ta_out0 Output 1 Timer A output 0

ta_out0_en Output 1 Timer A output 0 enable

Capture/Compare Unit 1

ta_cci1a Input 1 Timer A capture 1 input A

27

http://www.ti.com/litv/pdf/slau049f

ta_cci1b Input 1 Timer A capture 1 input B

ta_out1 Output 1 Timer A output 1

ta_out1_en Output 1 Timer A output 1 enable

Capture/Compare Unit 2

ta_cci2a Input 1 Timer A capture 2 input A

ta_cci2b Input 1 Timer A capture 2 input B

ta_out2 Output 1 Timer A output 2

ta_out2_en Output 1 Timer A output 2 enable

Note: for the same reason as with the Basic Clock Module FPGA version, the two
additional clock inputs (TACLK and INCLK) are internally synchronized with the
MCLK domain. As a consequence, TACLK and INCLK should be at least 2 times
slowlier than MCLK, and if these clock are used toghether with the Timer A output unit,
some jitter might be observed on the generated output. If this jitter is critical for the
application, ACLK and INCLK should idealy be derivated from DCO_CLK.

28

3
Serial Debug Interface

Table of content

• 1. Introduction
• 2. Debug Unit

• 2.1 Register Mapping
• 2.2 CPU Control/Status Registers

• 2.2.1 CPU_ID
• 2.2.2 CPU_CTL
• 2.2.3 CPU_STAT
• 2.2.4 CPU_NR

• 2.3 Memory Access Registers
• 2.3.1 MEM_CTL
• 2.3.2 MEM_ADDR
• 2.3.3 MEM_DATA
• 2.3.4 MEM_CNT

• 2.4 Hardware Breakpoint Unit Registers
• 2.4.1 BRKx_CTL
• 2.4.2 BRKx_STAT
• 2.4.3 BRKx_ADDR0
• 2.4.4 BRKx_ADDR1

• 3 Debug Communication Interface: UART
• 3.1 Serial communication protocol: 8N1
• 3.2 Synchronization frame
• 3.3 Read/Write access to the debug registers

• 3.3.1 Command Frame
• 3.3.2 Write access
• 3.3.3 Read access

• 3.4 Read/Write burst implementation for the CPU Memory access
• 3.4.1 Write Burst access

29

• 3.4.2 Read Burst access

• 4 Debug Communication Interface: I2C
• 4.1 I2C communication protocol
• 4.2 Synchronization frame
• 4.3 Read/Write access to the debug registers

• 4.3.1 Command Frame
• 4.3.2 Write access
• 4.3.3 Read access

• 4.4 Read/Write burst implementation for the CPU Memory access
• 4.4.1 Write Burst access
• 4.4.2 Read Burst access

1. Introduction

The original MSP430 from TI provides a serial debug interface to allow in-system
software debugging. In that case, the communication with the host computer is typically
built on a JTAG or Spy-Bi-Wire serial protocol. However, the global debug architecture
from the MSP430 is unfortunately poorly documented on the web (and is also probably
tightly linked with the internal core architecture).

A custom module has therefore been implemented for the openMSP430. The
communication with the host is done with a simple two-wire cable following either the
UART or I2C serial protocol (interface is selectable in the Expert System Configuration
section).

The debug unit provides all required features for Nexus Class 3 debugging (beside trace),
namely:

Debug unit features

• CPU control (run, stop, step, reset).
• Software & hardware breakpoint support.
• Hardware watchpoint support.
• Memory read/write on-the-fly (no need to halt

execution).
• CPU registers read/write on-the-fly (no need to halt

execution).

30

Depending on the selected serial interface, the following features are available:

Debug unit features

UART I2C

Strengths:

• No extra hardware required for
most FPGA boards (almost all
come with a UART interface,
either RS232 or USB based.

• Possibility to use USB to serial
TTL cables.

Weaknesses:

• Need to reset the debug interface
after cable insertion.

• For ASICs, no possibility to
change the MCLK frequency
during a debug session.

Strengths:

• Very stable interface (synchronous
protocol, no synchronization frame
required).

• Multi-core chip support with a single
I2C interface (i.e. TWO pins)... in
such a system, each openMSP430
instance has its own I2C device
address.

• Possibility to combine the
openMSP430 debug interface with an
already existing “functional” I2C
interface... effectively creating a
ZERO wire serial debug interface.

• Affordable USB-ISS adapter (≈23€).

Weaknesses:

• Extra I2C adapter required (USB-ISS
currently supported).

2. Debug Unit
2.1 Register Mapping
The following table summarize the complete debug register set accessible through the
debug communication interface:

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_ID_LO 0x00 PER_SPACE USER_VERSION ASIC CPU_VERSION

CPU_ID_HI 0x01 PMEM_SIZE DMEM_SIZE MPY

CPU_CTL 0x02 Reserved CPU_RST RST_BRK_EN FRZ_BRK_EN
SW_BRK_E

N
ISTEP RUN HALT

CPU_STAT 0x03 Reserved HWBRK3_PND HWBRK2_PND
HWBRK1_PN

D
HWBRK0_PN

D
SWBRK_PN

D
PUC_PND Res. HALT_RUN

MEM_CTL 0x04 Reserved B/W MEM/REG RD/WR START

MEM_ADDR 0x05 MEM_ADDR[15:0]

MEM_DATA 0x06 MEM_DATA[15:0]

MEM_CNT 0x07 MEM_CNT[15:0]

BRK0_CTL 0x08 Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK0_STAT 0x09 Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

31

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBRS232.htm

BRK0_ADDR0 0x0A BRK_ADDR0[15:0]

BRK0_ADDR1 0x0B BRK_ADDR1[15:0]

BRK1_CTL 0x0C Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK1_STAT 0x0D Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK1_ADDR0 0x0E BRK_ADDR0[15:0]

BRK1_ADDR1 0x0F BRK_ADDR1[15:0]

BRK2_CTL 0x10 Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK2_STAT 0x11 Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK2_ADDR0 0x12 BRK_ADDR0[15:0]

BRK2_ADDR1 0x13 BRK_ADDR1[15:0]

BRK3_CTL 0x14 Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK3_STAT 0x15 Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK3_ADDR0 0x16 BRK_ADDR0[15:0]

BRK3_ADDR1 0x17 BRK_ADDR1[15:0]

CPU_NR 0x18 CPU_TOTAL_NR CPU_INST_NR

2.2 CPU Control/Status Registers
2.2.1 CPU_ID

This 32 bit read-only register holds the program and data memory size information of the
implemented openMSP430.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_ID_LO 0x00 PER_SPACE USER_VERSION ASIC CPU_VERSION

CPU_ID_HI 0x01 PMEM_SIZE DMEM_SIZE MPY

• CPU_VERSION : Current CPU version

• ASIC : Defines if the ASIC specific features are enabled in the current
openMSP430 implementation.

• USER_VERSION : Reflects the value defined in the openMSP430_defines.v file

• PER_SPACE : Peripheral address space for the current implementation
(byte size = PER_SPACE*512)

• MPY : This bit is set if the hardware multiplier is included in the
current implementation.

• DMEM_SIZE : Data memory size for the current implementation
(byte size = DMEM_SIZE * 128)

• PMEM_SIZE : Program memory size for the current implementation
(byte size = PMEM_SIZE * 1024)

32

2.2.2 CPU_CTL

This 8 bit read-write register is used to control the CPU and to configure some basic
debug features. After a POR, this register is set to 0x10 or 0x30 (depending on the
DBG_RST_BRK_EN configuration option).

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

CPU_CTL 0x02 Res. CPU_RST RST_BRK_EN FRZ_BRK_EN SW_BRK_EN ISTEP RUN HALT

• CPU_RST : Setting this bit to 1 will activate the PUC reset. Setting it back to
0 will release it.

• RST_BRK_EN : If set to 1, the CPU will automatically break after a PUC
occurrence.

• FRZ_BRK_EN : If set to 1, the timers and watchdog are frozen when the CPU is
halted.

• SW_BRK_EN : Enables the software breakpoint detection.

• ISTEP1 : Writing 1 to this bit will perform a single instruction step if the
CPU is halted.

• RUN1 : Writing 1 to this bit will get the CPU out of halt state.

• HALT1 : Writing 1 to this bit will put the CPU in halt state.

1:this field is write-only and always reads back 0.

2.2.3 CPU_STAT

This 8 bit read-write register gives the global status of the debug interface. After a POR,
this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

CPU_STAT 0x03 HWBRK3_PND HWBRK2_PND HWBRK1_PND HWBRK0_PND SWBRK_PND PUC_PND Res. HALT_RUN

• HWBRK3_PND : This bit reflects if one of the Hardware Breakpoint Unit 3 status
bit is set (i.e. BRK3_STAT≠0).

• HWBRK2_PND : This bit reflects if one of the Hardware Breakpoint Unit 2 status
bit is set (i.e. BRK2_STAT≠0).

• HWBRK1_PND : This bit reflects if one of the Hardware Breakpoint Unit 1 status
bit is set (i.e. BRK1_STAT≠0).

33

• HWBRK0_PND : This bit reflects if one of the Hardware Breakpoint Unit 0 status
bit is set (i.e. BRK0_STAT≠0).

• SWBRK_PND : This bit is set to 1 when a software breakpoint occurred. It can be
cleared by writing 1 to it.

• PUC_PND : This bit is set to 1 when a PUC reset occurred. It can be cleared
by writing 1 to it.

• HALT_RUN : This read-only bit gives the current status of the CPU:

0 - CPU is running.
1 - CPU is stopped.

2.2.4 CPU_NR

This 16 bit read only register gives useful information for multi-core systems.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_NR 0x18 CPU_TOTAL_NR CPU_INST_NR

• CPU_TOTAL_NR : Total number of oMSP instances – 1 (for multicore systems).

• CPU_INST_NR : Current oMSP instance number (for multicore systems).

2.3 Memory Access Registers
The following four registers enable single and burst read/write access to both CPU-
Registers and full memory address range.

In order to perform an access, the following sequences are typically done:

• single read access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be read
2. set MEM_CTL (in particular RD/WR=0 and START=1)
3. read MEM_DATA

• single write access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be

written
2. set MEM_DATA with the data to be written
3. set MEM_CTL (in particular RD/WR=1 and START=1)

• burst read/write access (MEM_CNT≠0):

34

 ◦ burst access are optimized for the communication interface used (i.e. for
the UART). The burst sequence are therefore described in the corresponding section (3.4
Read/Write burst implementation for the CPU Memory access)

2.3.1 MEM_CTL

This 8 bit read-write register is used to control the Memory and CPU-Register read/write
access. After a POR, this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

MEM_CTL 0x04 Reserved B/W MEM/REG RD/WR START

• B/W : 0 - 16 bit access.

1 - 8 bit access (not valid for CPU-Registers).

• MEM/REG : 0 - Memory access.

1 - CPU-Register access.

• RD/WR : 0 - Read access.

1 - Write access.

• START : 0- Do nothing

1 - Initiate memory transfer.

2.3.2 MEM_ADDR

This 16 bit read-write register specifies the Memory or CPU-Register address to be used
for the next read/write transfer. After a POR, this register is set to 0x0000.

Note: in case of burst (i.e. MEM_CNT≠0), this register specifies the first address of the
burst transfer and will be incremented automatically as the burst goes (by 1 for 8-bit
access and by 2 for 16-bit access).

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEM_ADDR 0x05 MEM_ADDR[15:0]

• MEM_ADDR : Memory or CPU-Register address to be used for the next
read/write transfer.

35

2.3.3 MEM_DATA

This 16 bit read-write register gives (wr) or receive (rd) the Memory or CPU-Register
data for the next transfer. After a POR, this register is set to 0x0000.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEM_DATA 0x06 MEM_DATA[15:0]

• MEM_DATA : if MEM_CTL.WR - data to be written during the next write
transfer.

 if MEM_CTL.RD - updated with the data from the read transfer

2.3.4 MEM_CNT

This 16 bit read-write register controls the burst access to the Memory or CPU-Registers.
If set to 0, a single access will occur, otherwise, a burst will be performed. The burst
being optimized for the communication interface, more details are given there. After a
POR, this register is set to 0x0000.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEM_CNT 0x07 MEM_CNT[15:0]

• MEM_CNT : =0 - a single access will be performed with the next transfer.

 ≠0 - specifies the burst size for the next transfer (i.e number of data
access). This field will be automatically decremented as the burst goes.

2.4 Hardware Breakpoint Unit Registers
Depending on the defines located in the "openMSP430_defines.v" file, up to four
hardware breakpoint units can be included in the design. These units can be individually
controlled with the following registers.

2.4.1 BRKx_CTL

This 8 bit read-write register controls the hardware breakpoint unit x. After a POR, this
register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

BRKx_CTL
0x08, 0x0C,
0x10, 0x14

Reserved RANGE_MODE INST_EN BREAK_EN ACCESS_MODE

36

• RANGE_MODE : 0 - Address match on BRK_ADDR0 or BRK_ADDR1 (normal
mode)

 1 - Address match on BRK_ADDR0→BRK_ADDR1 range
(range mode)

Note: range mode is not supported by the core unless the
`DBG_HWBRK_RANGE define is set to 1'b1 in the
openMSP430_define.v file.

• INST_EN : 0 - Checks are done on the execution unit (data flow).

 1 - Checks are done on the frontend (instruction flow).

• BREAK_EN : 0 - Watchpoint mode enable (don't stop on address match).

 1 - Breakpoint mode enable (stop on address match).

• ACCESS_MODE : 00 - Disabled

 01 - Detect read access.

 10 - Detect write access.

 11 - Detect read/write access

Note: '10' & '11' modes are not supported on the instruction flow

2.4.2 BRKx_STAT

This 8 bit read-write register gives the status of the hardware breakpoint unit x. Each
status bit can be cleared by writing 1 to it. After a POR, this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

BRKx_STAT
0x09, 0x0D,
0x11, 0x15

Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD ADDR0_WR ADDR0_RD

• RANGE_WR : This bit is set whenever the CPU performs a write access within the
BRKx_ADDR0→BRKx_ADDR1 range (valid if RANGE_MODE=1
and ACCESS_MODE[1]=1).

• RANGE_RD : This bit is set whenever the CPU performs a read access within the
BRKx_ADDR0→BRKx_ADDR1 range (valid if RANGE_MODE=1
and ACCESS_MODE[0]=1).

Note: range mode is not supported by the core unless the
`DBG_HWBRK_RANGE define is set to 1'b1 in the

37

openMSP430_define.v file.

• ADDR1_WR : This bit is set whenever the CPU performs a write access at the
BRKx_ADDR1 address (valid if RANGE_MODE=0 and
ACCESS_MODE[1]=1).

• ADDR1_RD : This bit is set whenever the CPU performs a read access at the
BRKx_ADDR1 address (valid if RANGE_MODE=0 and
ACCESS_MODE[0]=1).

• ADDR0_WR : This bit is set whenever the CPU performs a write access at the
BRKx_ADDR0 address (valid if RANGE_MODE=0 and
ACCESS_MODE[1]=1).

• ADDR0_RD : This bit is set whenever the CPU performs a read access at the
BRKx_ADDR0 address (valid if RANGE_MODE=0 and
ACCESS_MODE[0]=1).

2.4.3 BRKx_ADDR0

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is
set to 0x0000.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRKx_ADDR0
0x0A, 0x0E,
0x12, 0x16

BRK_ADDR0[15:0]

• BRK_ADDR0 : Value compared against the address value currently present on the
program or data address bus.

2.4.4 BRKx_ADDR1

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is
set to 0x0000.

Register Name Addresses
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRKx_ADDR1
0x0B, 0x0F,
0x13, 0x17

BRK_ADDR1[15:0]

• BRK_ADDR1 : Value compared against the address value currently present on the
program or data address bus.

38

3. Debug Communication Interface:
UART

With its UART interface, the openMSP430 debug unit can communicate with the host
computer using a simple RS232 cable (connected to the dbg_uart_txd and dbg_uart_rxd
ports of the IP).

Typically, a USB to RS232 or USB to serial TTL cable will provide a reliable
communication link between your host PC and the openMSP430 (speed being typically
limited by the cable length).

3.1 Serial communication protocol: 8N1
There are plenty tutorials on Internet regarding RS232 based protocols. However, here is
quick recap about 8N1 (1 Start bit, 8 Data bits, No Parity, 1 Stop bit):

As you can see in the above diagram, data transmission starts with a Start bit, followed by
the data bits (LSB sent first and MSB sent last), and ends with a "Stop" bit.

3.2 Synchronization frame
After a POR, the Serial Debug Interface expects a synchronization frame from the host
computer in order to determine the communication speed (i.e. the baud rate).

The synchronization frame looks as following:

As you can see, the host simply sends the 0x80 value. The openMSP430 will then
measure the time between the falling and rising edge, divide it by 8 and automatically
deduce the baud rate it should use to properly communicate with the host.

Important note: if you want to change the communication speed between two debugging
sessions, the Serial Debug Interface needs to go through a reset cycle (i.e. through the
reset_n or dbg_en pins) and a new synchronization frame needs to be send.

39

http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.google.com/search?q=usb+to+rs232+converter

3.3 Read/Write access to the debug registers
In order to perform a read / write access to a debug register, the host needs to send a
command frame to the openMSP430.

In case of write access, this command frame will be followed by 1 or 2 data frames and in
case of read access, the openMSP430 will send 1 or 2 data frames after receiving the
command.

3.3.1 Command Frame

The command frame looks as following:

• WR : Perform a Write access when set. Read otherwise.

• B/W : Perform a 8-bit data access when set (one data frame). 16-bit otherwise
(two data frame).

• Address : Debug register address.

3.3.2 Write access

A write access transaction looks like this:

3.3.3 Read access

A read access transaction looks like this:

40

3.4 Read/Write burst implementation for the CPU
Memory access
In order to optimize the data burst transactions for the UART, read/write access are not
done by reading or writing the MEM_DATA register.

Instead, the data transfer starts immediately after the MEM_CTL.START bit has been
set.

3.4.1 Write Burst access

A write burst transaction looks like this:

3.4.2 Read Burst access

A read burst transaction looks like this:

41

4. Debug Communication Interface: I2C

With its I2C interface, the openMSP430 debug unit can communicate with the host
computer using an I2C adapter (connected to the dbg_i2c_scl and
dbg_i2c_sda_in/dbg_i2c_sda_out ports of the IP).

Currently, the USB-ISS adapter from Devantech (Robot Electronics) is supported by the
software development tools and provides a reliable communication link between your
host PC and the openMSP430.

4.1 I2C communication protocol
There are plenty tutorials on Internet regarding the I2C protocol (see the official I2C
specification for more info).

A simple byte read or write frame looks as following:

4.2 Synchronization frame
Unlike the UART interface, the I2C is a synchronous communication protocol.

A synchronization frame is therefore not required.

4.3 Read/Write access to the debug registers
In order to perform a read / write access to a debug register, the host needs to send a
command frame to the openMSP430.

In case of write access, this command frame will be followed by 1 or 2 data frames and in
case of read access, the openMSP430 will send 1 or 2 data frames after receiving the
command.

42

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.robot-electronics.co.uk/acatalog/USB_I2C.html

4.3.1 Command Frame

The command frame looks as following:

• WR : Perform a Write access when set. Read otherwise.

• B/W : Perform a 8-bit data access when set (one data frame). 16-bit otherwise
(two data frame).

• Address : Debug register address.

4.3.2 Write access

A write access transaction looks like this:

4.3.3 Read access

A read access transaction looks like this:

43

4.4 Read/Write burst implementation for the CPU
Memory access
In order to optimize the data burst transactions for the I2C, read/write access are not done
by reading or writing the MEM_DATA register.

Instead, the data transfer starts immediately after the MEM_CTL.START bit has been
set.

4.4.1 Write Burst access

A write burst transaction looks like this:

4.4.2 Read Burst access

A read burst transaction looks like this:

44

4 .
Integration and

Connectivity

Table of content

• 1. Overview
• 2. Clocks
• 3. Resets
• 4. Program Memory
• 5. Data Memory
• 6. Peripherals
• 7. Interrupts
• 8. Serial Debug Interfaces

• 8.1 UART Configuration
• 8.2 I2C Configuration

45

1. Overview
This chapter aims to give a comprehensive description of all openMSP430 core interfaces
in order to facilitate its integration within an ASIC or FPGA.

The following diagram shows an overview of the openMSP430 core connectivity in an
FPGA system (i.e. all ASIC specific pins are left unused):

46

The full pinout of the core is summarized in the following table.

Port Name
Direc-
tion

Width
Clock

Domain
Description

Clocks

cpu_en Input 1
<async>
or mclk4

Enable CPU code execution
(asynchronous and non-glitchy).
Set to 1 if unused.

dco_clk Input 1 - Fast oscillator (fast clock)

lfxt_clk Input 1 -
Low frequency oscillator (typ. 32KHz)
Set to 0 if unused.

mclk Output 1 - Main system clock

aclk_en Output 1 mclk FPGA ONLY: ACLK enable

smclk_en Output 1 mclk FPGA ONLY: SMCLK enable

dco_enable Output 1 dco_clk ASIC ONLY: Fast oscillator enable

dco_wkup Output 1 <async>
ASIC ONLY: Fast oscillator wakeup
(asynchronous)

lfxt_enable Output 1 lfxt_clk
ASIC ONLY: Low frequency oscillator
enable

lfxt_wkup Output 1 <async>
ASIC ONLY: Low frequency oscillator
wakeup (asynchronous)

aclk Output 1 - ASIC ONLY: ACLK

smclk Output 1 - ASIC ONLY: SMCLK

wkup Input 1 <async>
ASIC ONLY: System Wake-up
(asynchronous and non-glitchy)
Set to 0 if unused.

Resets

puc_rst Output 1 mclk Main system reset

reset_n Input 1 <async>
Reset Pin (active low, asynchronous and
non-glitchy)

47

Program Memory interface

pmem_addr Output
`PMEM_
AWIDT

H1

mclk Program Memory address

pmem_cen Output 1 mclk
Program Memory chip enable (low
active)

pmem_din Output 16 mclk Program Memory data input (optional2)

pmem_dout Input 16 mclk Program Memory data output

pmem_wen Output 2 mclk
Program Memory write byte enable (low
active) (optional2)

Data Memory interface

dmem_addr Output

`DMEM
_

AWIDT
H1

mclk Data Memory address

dmem_cen Output 1 mclk Data Memory chip enable (low active)

dmem_din Output 16 mclk Data Memory data input

dmem_dout Input 16 mclk Data Memory data output

dmem_wen Output 2 mclk
Data Memory write byte enable (low
active)

External Peripherals interface

per_addr Output 14 mclk Peripheral address

per_din Output 16 mclk Peripheral data input

per_dout Input 16 mclk Peripheral data output

per_en Output 1 mclk Peripheral enable (high active)

per_we Output 2 mclk
Peripheral write byte enable (high
active)

Interrupts

irq Input 14 mclk Maskable interrupts (one-hot signal)

48

nmi Input 1
<async>
or mclk4 Non-maskable interrupt (asynchronous)

irq_acc Output 14 mclk
Interrupt request accepted (one-hot
signal)

Serial Debug interface

dbg_en Input 1
<async>
or mclk4 Debug interface enable (asynchronous)3

dbg_freeze Output 1 mclk Freeze peripherals

dbg_uart_txd Output 1 mclk Debug interface: UART TXD

dbg_uart_rxd Input 1 <async>
Debug interface: UART RXD
(asynchronous)

dbg_i2c_addr Input 7 mclk Debug interface: I2C Address

dbg_i2c_broadcast Input 7 mclk
Debug interface: I2C Broadcast Address
(for multicore only)

dbg_i2c_scl Input 1 <async> Debug interface: I2C SCL

dbg_i2c_sda_in Input 1 <async> Debug interface: I2C SDA input

dbg_i2c_sda_out Output 1 mclk Debug interface: I2C SDA output

Scan

scan_enable Input 1 dco_clk
ASIC ONLY: Scyn enable (active
during scan shifting)

scan_mode Input 1 <stable> ASIC ONLY: Scan mode

1: This parameter is declared in the openMSP430_defines.v file and defines the
RAM/ROM size.
2: These two optional ports can be connected whenever the program memory is a RAM.
This will allow the user to load a program through the serial debug interface and to use
software breakpoints.
3: When disabled, the debug interface is hold into reset (and clock gated in ASIC mode).
As a consequence, the dbg_en port can be used to reset the debug interface without
disrupting the CPU execution.
4: Clock domain is selectable through configuration in the openMSP430_defines.v file
(see Advanced System Configuration).

49

2. Clocks
The different clocks in the design are managed by the Basic Clock Module as following
in the FPGA configuration:

 or as following in the ASIC configuration:

50

• CPU_EN: this input port provides a hardware mean to stop or resume CPU
execution. When unused, this port should be set to 1.

• DCO_CLK: this input port is typically connected to a PLL, RC oscillator or any
clock resource the target FPGA/ASIC might provide.
From a synthesis tool perspective (ISE, Quartus, Libero, Design Compiler...), this
the only port where a clock needs to be declared.

• LFXT_CLK: in an FPGA system, if ACLK_EN or SMCLK_EN are going to be
used in the project (for example through the Watchdog or TimerA peripherals),
then this port needs to be connected to a clock running at least two time slower as
DCO_CLK (typically 32kHz). It can be connected to 0 or 1 otherwise.
In an ASIC, if ACLK or SMCLK are used and if the clock muxes are included,
then this port can be connected to any kind of clock source (it doesn't need to be
low-frequency. The name was just kept to be consistent with TI's documentation).

• MCLK: the main system clock drives the complete openMSP430 clock domain,
including program/data memories and the peripheral interfaces.

• ACLK_EN / SMCLK_EN: these two clock enable signals can be used in order to
emulate the original ACLK and SMCLK from the MSP430 specification when the
core is targeting an FPGA.
An example of this can be found in the Watchdog and TimerA modules, where it
is implemented as following:

• ACLK / SMCLK: ACLK and MCLK are available through these two ports when
targeting an ASIC.

• DCO_ENABLE / DCO_WKUP: ASIC specific signals controlling the fast
clock generator for low power mode support (SCG0 bit in the status register).

• LFXT_ENABLE / LFXT_WKUP: ASIC specific signals controlling the low
frequency clock generator for low power mode support (OSCOFF bit in the status
register).

• WKUP: When activated, this signal allows a peripheral to restore all CPU clocks
(i.e. wakeup the cpu) prior IRQ generation. Note that IRQs MUST always be
generated from the MCLK clock domain.

51

As an FPGA system illustration, the following waveform shows the different clocks
where the software running on the openMSP430 configures the BCSCTL1 and
BCSCTL2 registers so that ACLK_EN and SMCLK_EN are respectively running at
LFXT_CLK/2 and DCO_CLK/4.

3. Resets

• RESET_N: this input port is typically connected to a board push button and is
generally combined with the system power-on-reset.

• PUC_RST: the Power-Up-Clear signal is asynchronously set with the reset pin
(RESET_N), the watchdog reset or the serial debug interface reset. In order to get
clean timings, it is synchronously cleared with MCLK. As a general rule, this
signal should be used as the reset of the MCLK clock domain.

The following waveform illustrates this:

52

4. Program Memory

Depending on the project needs, the program memory can be either implemented as a
ROM or RAM.

If a ROM is selected then the PMEM_DIN and PMEM_WEN ports won't be connected.
In that case, the software debug capabilities are limited because the serial debug interface
can only use hardware breakpoints in order to stop the program execution. In addition,
updating the software will require a reprogramming of the FPGA... or a new ROM mask
for an ASIC.

If the program memory is a RAM, the developer gets full flexibility regarding software
debugging. The serial debug interface can be used to update the program memory and
software breakpoints can be used.

That said, the protocol between the openMSP430 and the program memory is quite
standard. Signal description goes as following:

• PMEM_CEN: when this signal is active, the read/write access will be executed
with the next MCLK rising edge. Note that this signal is LOW ACTIVE.

• PMEM_ADDR: Memory address of the 16 bit word which is going to be
accessed.
Note: in order to calculate the core logical address from the program memory
physical address, the formula goes as following:
LOGICAL@=2*PHYSICAL@+0x10000-PMEM_SIZE

• PMEM_DOUT: the memory output word will be updated with every valid
read/write access (i.e. PMEM_DOUT is not updated if PMEM_CEN=1).

• PMEM_WEN: this signal selects which byte should be written during a valid
access. PMEM_WEN[0] will activate a write on the lower byte, PMEM_WEN[1]
a write on the upper byte. Note that these signals are LOW ACTIVE.

• PMEM_DIN: the memory input word will be written with the valid write access
according to the PMEM_WEN value.

53

The following waveform illustrates some read accesses of the program memory (write
access are illustrated in the data memory section):

5. Data Memory

The data memory is always implemented as a RAM.

The protocol between the openMSP430 and the data memory is the same as the one of
the program memory. Therefore, the signal description is the same:

• DMEM_CEN: when this signal is active, the read/write access will be executed
with the next MCLK rising edge. Note that this signal is LOW ACTIVE.

• DMEM_ADDR: Memory address of the 16 bit word which is going to be
accessed.
Note: in order to calculate the core logical address from the data memory physical
address, the formula goes as following: LOGICAL@=2*PHYSICAL@+0x200

• DMEM_DOUT: the memory output word will be updated with every valid
read/write access (i.e. DMEM_DOUT is not updated if DMEM_CEN=1).

• DMEM_WEN: this signal selects which byte should be written during a valid
access. DMEM_WEN[0] will activate a write on the lower byte, DMEM_WEN[1]
a write on the upper byte. Note that these signals are LOW ACTIVE.

• DMEM_DIN: the memory input word will be written with the valid write access
according to the DMEM_WEN value.

54

The following waveform illustrates some read/write access to the data memory:

6. Peripherals

The protocol between the openMSP430 core and its peripherals is the exactly same as the
one with the data and program memories in regard to write access and differs slightly for
read access.

On the connectivity side, the specificity is that the read data bus of all peripherals should
be ORed together before being connected to the core, as showed in the diagram of the
Overview section.

From the logical point of view, during a read access, each peripheral outputs the
combinatorial value of its read mux and returns 0 if it doesn't contain the addressed
register. On the waveforms, this translates by seeing the register value on PER_DOUT
while PER_EN is valid and not one clock cycle afterward as it is the case with the
program and data memories.

In any case, it is recommended to use the templates provided with the core in order to
develop your own custom peripherals.

55

The signal description therefore goes as following:

• PER_EN: when this signal is active, read access are executed during the current
MCLK cycle while write access will be executed with the next MCLK rising edge.
Note that this signal is HIGH ACTIVE.

• PER_ADDR: peripheral register address of the 16 bit word which is going to be
accessed. It is to be noted that a 14 bit address will always be provided from the
openMSP430 to the peripheral in order to accommodate the biggest possible
PER_SIZE Verilog configuration option (i.e. 32kB as opposed to 512B by
default).
Note: in order to calculate the core logical address from the peripheral register
physical address, the formula goes as following: LOGICAL@=2*PHYSICAL@

• PER_DOUT: the peripheral output word will be updated with every valid
read/write access, it will be set to 0 otherwise.

• PER_WE: this signal selects which byte should be written during a valid access.
PER_WE[0] will activate a write on the lower byte, PER_WE[1] a write on the
upper byte. Note that these signals are HIGH ACTIVE.

• PER_DIN: the peripheral input word will be written with the valid write access
according to the PER_WEN value.

The following waveform illustrates some read/write access to the peripheral registers:

56

7. Interrupts

As with the original MSP430, the interrupt priorities of the openMSP430 are fixed in
hardware accordingly to the connectivity of the NMI and IRQ ports.

If two interrupts are pending simultaneously, the higher priority interrupt will be serviced
first.
The following table summarize this:

 Interrupt Port Vector address Priority

RESET_N 0xFFFE 15 (highest)

NMI 0xFFFC 14

IRQ[13] 0xFFFA 13

IRQ[12] 0xFFF8 12

IRQ[11] 0xFFF6 11

IRQ[10] 0xFFF4 10

IRQ[9] 0xFFF2 9

IRQ[8] 0xFFF0 8

IRQ[7] 0xFFEE 7

IRQ[6] 0xFFEC 6

IRQ[5] 0xFFEA 5

IRQ[4] 0xFFE8 4

IRQ[3] 0xFFE6 3

IRQ[2] 0xFFE4 2

IRQ[1] 0xFFE2 1

IRQ[0] 0xFFE0 0 (lowest)

The signal description goes as following:

• NMI: The Non-Maskable Interrupt has higher priority than other IRQs and is
masked by the NMIIE bit instead of GIE.
It is internally synchronized to the MCLK domain and can therefore be connected
to any asynchronous signal of the chip (which could for example be a pin of the
FPGA). If unused, this signal should be connected to 0.

• IRQ: The standard interrupts can be connected to any signal coming from the
MCLK domain (typically a peripheral). Priorities can be chosen by selecting the
proper bit of the IRQ bus as shown in the table above. Unused interrupts should be

57

connected to 0.
Note: IRQ[10] is internally connected to the Watchdog interrupt. If this bit is also
used by an external peripheral, they will both share the same interrupt vector.

• IRQ_ACC: Whenever an interrupt request is serviced, some peripheral
automatically clear their pending flag in hardware. In order to do so, the
IRQ_ACC bus can be used by using the bit matching the corresponding IRQ bit.
An example of this is shown in the implementation of the TACCR0 Timer A
interrupt.

The following waveform illustrates a TAIV interrupt issued by the Timer-A, which is
connected to IRQ[8]:

58

8. Serial Debug Interface

The serial debug interface module provides a two-wires communication bus for remote
debugging and an additional freeze signal which might be useful for some peripherals
(typically timers).

• DBG_EN: this signal allows the user to enable or disable the serial debug
interface without interfering with the CPU execution. It is to be noted that when
disabled (i.e. DBG_EN=0), the debug interface is held into reset.

• DBG_FREEZE: this signal will be set whenever the debug interface stops the
CPU (and if the FRZ_BRK_EN field of the CPU_CTL debug register is set). As
its name implies, the purpose of DBG_FREEZE is to freeze a peripheral whenever
the CPU is stopped by the software debugger.
For example, it is used by the Watchdog timer in order to stop its free-running
counter. This prevents the CPU from being reseted by the watchdog every times
the user stops the CPU during a debugging session.

8.1 UART Configuration

• DBG_UART_TXD / DBG_UART_RXD: these signals are typically connected
to an RS-232 transceiver and will allow a PC to communicate with the
openMSP430 core.

The following waveform shows some communication traffic on the serial bus :

59

8.2 I2C Configuration

• DBG_I2C_ADDR: I2C Device address of the oMSP core (between 8 and 119). In
a multi-core configuration, each core has its own address.

• DBG_I2C_BROADCAST: I2C Device broadcast address of the oMSP core
(between 8 and 119). In a multi-core configuration, all cores have the same
broadcast address.

• DBG_I2C_SCL: I2C bus clock input (SCL).

• DBG_I2C_SDA_OUT / DBG_I2C_SDA_IN: these signals are connected to the
SDA I/O cell as following:

The following waveform shows some communication traffic on the I2C bus:

60

5 .
ASIC Implementation

Table of content

• 1. Introduction
• 2. RTL Configuration

• 2.1 Basic Clock Module
• 2.1.1 Low-frequency clock domain
• 2.1.2 Clock muxes
• 2.1.3 Clock dividers
• 2.1.4 Low-Power modes

• 2.1.4.1 Internal clocks (MCLK / SMCLK)
• 2.1.4.2 Clock oscillators (DCO_CLK / LFXT_CLK)

• 2.2 Other configuration options
• 2.2.1 Fine grained clock gating
• 2.2.2 Watchdog clock mux

• 3. DFT considerations
• 3.1 Resets
• 3.2 Clock Gates
• 3.3 Clock Muxes
• 3.4 Coverage

• 4. Sensitive modules
• 4.1 AND Gate (omsp_and_gate.v)
• 4.2 Clock Gate (omsp_clock_gate.v)
• 4.3 Clock Mux (omsp_clock_mux.v)
• 4.4 Scan Mux (omsp_scan_mux.v)
• 4.5 Sync Cell (omsp_sync_cell.v)
• 4.6 Sync Reset (omsp_sync_reset.v)
• 4.7 Wakeup Cell (omsp_wakeup_cell.v)

61

1. Introduction
This section covers specific points of the openMSP430 ASIC implementation, in
particular:

• The ASIC specific RTL configuration options.
• Some DFT considerations.
• A description of each ASIC sensitive module.

Keep in mind that as no exotic design technique were used in the openMSP430,
following a standard implementation flow from Synthesis to P&R is the best way to go.

2. RTL Configuration
Whenever the "`define ASIC" statement of the Expert System Configuration section is
uncommented, all ASIC specific configuration options are enabled.

2.1 Basic Clock Module

In its ASIC configuration, the Basic clock module of the openMSP430 can support up to
all features described in the MSP430x1xx Family User's Guide (Chapter 4).
All these options are highlighted in the following diagram and discussed below:

62

http://www.ti.com/litv/pdf/slau049f
http://opencores.org/project,openmsp430,core#2.1.3.3%20Expert%20System%20Configuration

2.1.1 Low-Frequency Clock Domain

The LFXT clock domain can be enabled thanks to the following configuration option:
//==
// LFXT CLOCK DOMAIN
//==

//---
// When uncommented, this define will enable the lfxt_clk
// clock domain.
// When commented out, the whole chip is clocked with dco_clk.
//---
`define LFXT_DOMAIN

Note 1: When commented-out:

• ACLK is running on DCO_CLK
• MCLK_MUX and SMCLK_MUX options are not supported
• OSCOFF_EN low power mode is not supported

Note 2: Unlike its name suggest, there is no frequency limitation on LFXT_CLK. The
name was simply kept in order to be consistent with the original MSP430 documentation,
where LFXT_CLK is typically connected to a 32 kHz crystal oscillator.

2.1.2 Clock Muxes

The MCLK and SMCLK clock muxes can be enabled or disabled with the following
options:

//==
// CLOCK MUXES
//==

//---
// MCLK: Clock Mux
//---
// When uncommented, this define will enable the
// MCLK clock MUX allowing the selection between
// DCO_CLK and LFXT_CLK with the BCSCTL2.SELMx register.
// When commented, DCO_CLK is selected.
//---
`define MCLK_MUX

//---
// SMCLK: Clock Mux
//---
// When uncommented, this define will enable the
// SMCLK clock MUX allowing the selection between
// DCO_CLK and LFXT_CLK with the BCSCTL2.SELS register.
// When commented, DCO_CLK is selected.
//---
`define SMCLK_MUX

63

Note 1: When a MUX is excluded, the concerned clock (MCLK and/or SMCLK) is
running with DCO_CLK.

Note 2: If a MUX is included, the implementation and sign-off tools (in particular CTS
and STA) must be aware that a new clock needs to be defined on the MUX output.

2.1.3 Clock Dividers

The MCLK, SMCLK and ACLK clock dividers can be enabled or disabled with the
following options:

//==
// CLOCK DIVIDERS
//==

//---
// MCLK: Clock divider
//---
// When uncommented, this define will enable the
// MCLK clock divider (/1/2/4/8)
//---
`define MCLK_DIVIDER

//---
// SMCLK: Clock divider (/1/2/4/8)
//---
// When uncommented, this define will enable the
// SMCLK clock divider
//---
`define SMCLK_DIVIDER

//---
// ACLK: Clock divider (/1/2/4/8)
//---
// When uncommented, this define will enable the
// ACLK clock divider
//---
`define ACLK_DIVIDER

The clock dividers instantiate a clock gate on the clock tree and are implemented as
following:

64

2.1.4 Low-Power Modes

2.1.4.1 Internal clocks (MCLK / SMCLK)

Two bit fields in the status register (R2) allow to control the system clocks:

• CPUOFF allows to switch-off MCLK
• SCG1 allows to switch-off SMCLK

These control bits are supported by the openMSP430 and can be included in the design
with the following defines:

//==
// LOW POWER MODES
//==

//---
// LOW POWER MODE: CPUOFF
//---
// When uncommented, this define will include the
// clock gate allowing to switch off MCLK in
// all low power modes: LPM0, LPM1, LPM2, LPM3, LPM4
//---
`define CPUOFF_EN

//---
// LOW POWER MODE: SCG1
//---
// When uncommented, this define will include the
// clock gate allowing to switch off SMCLK in
// the following low power modes: LPM2, LPM3, LPM4
//---
`define SCG1_EN

In order to keep the clock tree as flat as possible, the CPUOFF and SCG1 low power
options share the same clock gate with the clock divider:

65

2.1.4.2 Clock oscillators (DCO_CLK / LFXT_CLK)

There are two bit fields in the status register (R2) allowing to control the clock
oscillators:

• SCG0 allows to switch-off the DCO oscillator
• OSCOFF allows to switch-off the LFXT oscillator

These control bits are supported by the openMSP430 and can be included in the design
with the following defines:

//==
// LOW POWER MODES
//==

//---
// LOW POWER MODE: SCG0
//---
// When uncommented, this define will enable the
// DCO_ENABLE/WKUP port control (always 1 when commented).
// This allows to switch off the DCO oscillator in the
// following low power modes: LPM1, LPM3, LPM4
//---
`define SCG0_EN

//---
// LOW POWER MODE: OSCOFF
//---
// When uncommented, this define will include the
// LFXT_CLK clock gate and enable the LFXT_ENABLE/WKUP
// port control (always 1 when commented).
// This allows to switch off the low frequency oscillator
// in the following low power modes: LPM4
//---
`define OSCOFF_EN

The control logic of both DCO and LFXT oscillators is identical.

When disabled, the *_WKUP signal is used to asynchronously wake up the oscillator.
Once the oscillator is awake (and therefore a clock is available), the *_ENABLE signal
will take over and synchronously keep the oscillator enabled until the CPU clears the
SCG0 or OSCOFF bit again.

66

The following two waveforms illustrate the CPU entering the LPM1 mode, and in
particular the DCO oscillator being switched-off:

• Entering LPM1 through a BIS #N, R2 instruction:

• Entering LPM1 through a RETI instruction:

Note: the DCO oscillator is enabled until the BIS and RETI instruction are fully executed
(i.e. until the CPU state machines reach their IDLE state).

67

At last, this waveform shows the CPU going out of LPM1 mode and in particular the
DCO oscillator wake-up sequence:

In order to wake-up the CPU from ANY low power mode, the system MUST ALWAYS
go through the following chain of events (as illustrated in the previous waveform):

1. The peripheral (for example a timer) asserts the WKUP input of the
openMSP430 in order to asynchronously restore the clocks. At this
stage, DCO_WKUP is activated and DCO_ENABLE is still
cleared.

2. Once MCLK is available, the peripheral generates a synchronous
IRQ signal in order to re-activate the CPU state machines.

3. The CPU state machines activated, DCO_ENABLE is
synchronously set.

4. When the global interrupt enable flag (GIE) is cleared,
DCO_WKUP is released two clock cycles later (i.e. same behavior
as a reset synchronizer).
Important note: the peripheral should release the WKUP input
when its interrupt pending flag is cleared. Otherwise the
DCO_WKUP signal will be set again as soon as the GIE flag is
restored by the RETI instruction... which is probably not the
intended behavior :-P

5. The DCO oscillator is now enabled until SCG0 is set again.

68

2.2 Other configuration options

2.2.1 Fine Grained Clock Gating

Nowadays, all synthesis tools support automatic (fine grained) clock gating insertion.
However, as some design houses still prefer to have the clock gates directly instantiated
in the RTL, there is the possibility to include the 'manual' fine grained clock gates in the
design with the following define:

//==
// FINE GRAINED CLOCK GATING
//==

//---
// When uncommented, this define will enable the fine
// grained clock gating of all registers in the core.
//---
`define CLOCK_GATING

2.2.2 Watchdog Clock Mux

The watchdog clock mux allows to select between ACLK and SMCLK. It can be enabled
or disabled with the WATCHDOG_MUX define.
When excluded, the additional WATCHDOG_NOMUX_ACLK option allows the user
to decide if the watchdog clock should be hard-wired to ACLK (if uncommented) or
SMCLK (if commented-out)

//==
// CLOCK MUXES
//==

//---
// WATCHDOG: Clock Mux
//---
// When uncommented, this define will enable the
// Watchdog clock MUX allowing the selection between
// ACLK and SMCLK with the WDTCTL.WDTSSEL register.
// When commented out, ACLK is selected if the
// WATCHDOG_NOMUX_ACLK define is uncommented, SMCLK is
// selected otherwise.
//---
`define WATCHDOG_MUX
//`define WATCHDOG_NOMUX_ACLK

69

3. DFT Considerations

The openMSP430 is designed to be fully scan friendly. During production, the ATE
controls the core through the scan_mode and scan_enable signals. The scan_mode port
is always asserted during scan testing and is used to switch between functional and scan
mode.

3.1 Resets
When in scan mode (i.e. scan_mode input port is set), ALL internal resets of the
openMSP430 are connected the reset_n input port.
Taking the POR generation as an example, it is implemented using the omsp_scan_mux
module as following:

3.2 Clock Gates
When in scan mode (i.e. scan_mode input port is set), ALL clock gates instantiated in the
design must be enabled during scan shifting. This is can be achieved by setting the
scan_enable input port during the shift phase.
On the other hand, during the capture phase, the scan_enable port must be cleared in
order to restore the functional behavior of the clock gate.

This feature is implemented in the omsp_clock_gate module as following:

70

3.3 Clock Muxes
When in scan mode (i.e. scan_mode input port is set), the MCLK and SMCLK clock
muxes are both running on DCO_CLK. The watchdog mux is running SMCLK (i.e.
DCO_CLK).

This feature is implemented in the omsp_clock_mux module as following:

Note: if the LFXT clock domain is enabled, the LFXT_CLK input port should also be
connected to the scan clock when in scan mode.

3.4 Coverage
After synthesizing the openMSP430 in its maximum configuration (in particular with
ALL clock domains available and ALL clock muxes included), the core reaches
99.7%stuck-at fault coverage:

71

4. Sensitive Modules

ALL modules discussed in this section have a simple and well defined functionality but
nonetheless lay on sensitive parts of the design (clock tree, wake-up path, ...).

In the industry, it is common place for companies to have policies recommending
designers to use textbook structures or specific standard cells when implementing circuits
considered as 'sensitive'.
This section will hopefully help to quickly identify these 'sensitive' circuits and adapt
them to your requirements if necessary.

4.1 AND Gate (omsp_and_gate.v)

This module implements a simple AND2 gate and is instantiated several times on the
wake-up paths in order to ensure a glitch free generation of the wake-up signals. The idea
behind this block is to prevent the synthesis tool from optimizing the combinatorial wake-
up path and potentially generate a glitchy logic.

There are three different ways to handle this block:

1. Do nothing
2. Modify the RTL by directly instantiating an AND2 cell from the target library and

applying a don't touch or size only attribute on it before proceeding to the
synthesis compile step

3. Keep the RTL unchanged and when running synthesis, first compile this module
separately before going to the top down compile (don't forget the don't touch or
size only attribute)

Note that the first option is actually acceptable because in low power mode, there are no
clocks available, which means no glitch... However, in active mode, the wake-up line
could see a lot of glitches, which is functionally not a problem (since the core is awake
anyway) but could be considered as not really elegant...

72

4.2 Clock Gate (omsp_clock_gate.v)

Almost every company has a different policy for handling clock gates. Therefore, this
module is probably the most likely to be modified.

So here are the facts:

• There are only rising edge flip-flop in the design1

→ as a consequence clock gates can indifferently park the clock high or low
without affecting functionality.

• The enable signal of ALL clock gates in the openMSP430 are generated with the
rising edge of the clock
→ this leaves the door open for both LATCH and NAND2 based clock gates.

1: beside for the DCO_ENABLE and LFXT_ENABLE signals and the clock MUXes. However, these can be
safely ignored

As a consequence, you can feel free to use:

• A LATCH based clock gate. For example:

• Or a NAND2 based clock gate:

73

4.3 Clock Mux (omsp_clock_mux.v)

The clock muxes of the openMSP430 are implemented as following:

In order to make this implementation 100% bullet proof, the RTL could be modified by
manually instantiating the NAND2 and AND2 cells directly from the target library (with
the associated don't touch or size only attributes of course).

However, if you decide to compile this module as it is, the synthesis tool should normally
be smart enough and not mess it up (but PLEASE PLEASE PLEASE double check
manually the resulting gate netlist).

74

4.4 Scan Mux (omsp_scan_mux.v)

As illustrated in the section 3.1, the scan mux cell allows ALL internal resets to be
controllable with the reset_n input port in scan mode.
In addition, the scan mux is also used by the omsp_wakeup_cell (see section 4.7 below).

4.5 Sync Cell (omsp_sync_cell.v)

The following synchronization cell is instantiated on all clock domain crossing data
paths:

4.6 Sync Reset (omsp_sync_reset.v)

Internal resets are generated using the following standard reset synchronizer:

75

4.7 Wakeup Cell (omsp_wakeup_cell.v)

The wakeup cell is the most unconventional module of the openMSP430 design as it
contains a flip-flop whose clock and reset are both coming from a data path.
In the openMSP430 core, it is instantiated a single time in the watchdog timer but can
also be reused in external custom peripherals.

The implementation of the block looks as following:

The basic idea here is simply to set the WKUP_OUT signal with a rising edge on the
WKUP_EVENT port, and clear it when WKUP_CLEAR is active (i.e. level sensitive
clear).

76

In order to give a better perspective from a system point of view, the following diagram
shows how the wakeup cell has been used in the particular case of the watchdog timer
(note that WDTIFG_CLR_REG and WDTQN_EDGE_REG are both output of a flip-flop
and therefore glitch-free):

Note: Wake-up signals can of course be generated in a different way as long as they
directly come from a flip-flop (or are certified to be non-glitchy).
For example a simple handshake between the WDT_CLK and MCLK clock domains
could have been used to clear the WDT_WKUP signal in a fully synchronous manner.
However, it is to be noted that this handshake would introduce some synchronization
delay, which might not be negligible if MCLK and WDT_CLK frequencies are orders of
magnitude apart (i.e. several MHz for MCLK and 32kHz for WDT_CLK).
As getting the oscillators back to sleep as fast as possible might prove to be extremely
important for low-power designs, this asynchronous solution was selected for the
omsp_watchdog implementation.

77

6 .
Area and Speed Analysis

Table of content

• 1. Overview
• 1.1 FPGAs
• 1.2 ASICs

• 2. Detailed results

Warning: the results presented here might vary depending on the tool versions, applied
timing constraints and exact configuration of the openMSP430 core.

The FPGA results were obtained using the free tool versions provided by the vendors (i.e
ISE 11.1, QuartusII 9.1 & Libero 8.5).

The ASIC synthesis was run with Synopsys Design Compiler 2007.12 (without dc_ultra
or any special feature).

78

1. Overview

1.1 FPGAs

Utilization

Manu-
facturer

Devices Info
Basic Config.

(Core +
Watchdog)

Hardware
Multiplier

With debug
interface
(Software

breakpoints)

Additional
Hardware
breakpoint

unit

Xilinx

Spartan 3
Spartan 3E
Spartan 3A
Spartan 3A

DSP
Virtex 4

4-inputs
LUTs

1 620 + 200 + 520 + 80

Spartan 6
Virtex 5
Virtex 6

6-inputs
LUTs

1 240 + 150 + 350 + 70

Altera

Cyclone II
Cyclone III

Cyclone IV GX
Stratix

LEs 1 550 + 210 + 480 + 110

Arria GX
Arria II GX

Stratix II
Stratix III

ALUTs 1 030 + 115 + 380 + 90

Actel

ProASIC3E
ProASIC3L
ProASIC3

Fusion
IGLOOe

Tiles 3 550 + 1 060 + 1 200 + 220

- - Registers 470 + 75 + 140 + 45

79

Speed
(in MHz, min and max values across all speed grades)

Manufacturer Devices
Basic Configuration

(Core + Watchdog + HW
Multiplier)

With debug
interface

Xilinx

Spartan 3
Spartan 3E
Spartan 3A
Spartan 3A

DSP

30 - 40 25 - 35

Spartan 6 40 - 65 35 - 60

Virtex 4 50 - 70 45 - 60

Virtex 5 75 - 100 65 - 85

Virtex 6 90 - 115 75 - 100

Altera

Cyclone II 35 - 45 30 - 45

Cyclone III
Cyclone IV GX

40 - 55 35 - 50

Arria II GX 65 - 85 60 - 80

Stratix II 55 - 75 50 - 65

Stratix III 75 - 95 70 - 90

Actel

ProASIC3E
ProASIC3L
ProASIC3

Fusion
IGLOOe

15 - 25 15 - 25

80

1.2 ASICs

Area

Process
Target

Frequency
Info

Basic Config.
(Core +

Watchdog)

Hardware
Multiplier

With debug
interface
(Software

breakpoints)

Additional
Hardware
breakpoint

unit

180 nm
50 MHz kGates 8 + 2.5 + 2 + 0.8

100 MHz kGates 10 + 4.4 + 2 + 1.2

2. Detailed results

Detailed results can be found in the PDF documentation (see the online download
section).

81

http://opencores.org/usercontent,doc,1321215271

7.
Software Development

Tools

Table of content

• 1. Introduction
• 2. openmsp430-loader
• 3. openmsp430-minidebug
• 4. openmsp430-gdbproxy
• 5. MSPGCC Toolchain

• 5.1 Compiler options
• 5.2 MCU selection
• 5.3 Custom linker script

82

1. Introduction

Building on the serial debug interface capabilities provided by the openMSP430, three
utility programs are provided:

• openmsp430-loader: a simple command line boot loader.
• openmsp430-minidebug: a minimalistic debugger with simple GUI.
• openmsp430-gdbproxy: GDB Proxy server to be used together with MSP430-

GDB and the Eclipse, DDD, or Insight graphical front-ends.

All these software development tools have been developed in TCL/TK and were
successfully tested on both Linux and Windows (XP/Vista/7).

Note: to be able to execute the scripts, TCL/TK needs to be installed on your system.

In order to connect the host PC to the openMSP430 serial debug interface, a UART or
I2C serial cable/adapter is required.

Typically, the following solutions will suit any kind of development board:

UART I2C

USB to RS232 converter:

USB to Serial TTL converter:

Devantech USB-ISS adapter:

83

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBRS232.htm
http://www.tcl.tk/software/tcltk/

2. openmsp430-loader

This simple program allows the user to load the openMSP430 program memory with an
executable file (ELF or Intel-HEX format) provided as argument.

It is typically used in conjunction with 'make' in order to automatically load the program
after the compile step (see 'Makefile' from software examples provided with the project's
FPGA implementation).

The program can be called with the following syntax:

USAGE : openmsp430-loader.tcl [-device <communication port>]
 [-adaptor <adaptor type>]
 [-speed <communication speed>]
 [-i2c_addr <cpu address>] <elf/ihex-file>

DEFAULT : <communication port> = /dev/ttyUSB0
 <adaptor type> = uart_generic
 <communication speed> = 115200 (for UART) / I2C_S_100KHZ (for I2C)
 <core address> = 42

EXAMPLES: openmsp430-loader.tcl -device /dev/ttyUSB0 -adaptor uart_generic -speed 9600 leds.elf

 openmsp430-loader.tcl -device COM2: -adaptor i2c_usb-iss -speed I2C_S_100KHZ
 -i2c_addr 75 ta_uart.ihex

These screenshots show the script in action under Linux and Windows:

84

3. openmsp430-minidebug

This small program provides a minimalistic graphical interface enabling simple
interaction with the openMSP430:

As you can see from the screenshot, it allows the following actions:

• (1) Connect to the openMSP430 Serial Debug Interface
• (2) Load the program memory with an ELF or Intel-HEX file
• (3) Control the CPU: Reset, Stop, Start and Single-Step and Software breakpoints
• (4) Read/Write access of the CPU registers
• (5) Read/Write access of the whole memory range (program, data, peripherals)
• (6) Basic disassembled view of the loaded program (current PC location is

highlighted in green, software breakpoints in yellow, pink and violet)
• (7) Choose the disassembled view type
• (8) Source a custom external TCL script.

85

4. openmsp430-gdbproxy

The purpose of this program is to replace the 'msp430-gdbproxy' utility provided by the
mspgcc toolchain.

Typically, a GDB proxy creates a local port for GDB to connect to, and handles the
communication with the target hardware. In our case, it is basically a bridge between the
RSP communication protocol from GDB and the serial debug interface from the
openMSP430.

Schematically the communication flow looks as following:

Like the original 'msp430-gdbproxy' program, 'openmsp430-gdbproxy' can be controlled
from the command line. However, it also provides a simple graphical interface:

86

These two additional screenshots show the script in action together with the Eclipse and
DDD graphical frontends:

87

Tip 1: There are several tutorials on Internet explaining how to configure Eclipse for the
MSP430. As an Eclipse newbie, I found the followings quite helpful (the msp430-
gdbproxy sections should of course be ignored as we are using our own openmsp430-
gdbproxy program :-)):

• A Step By Step Guide To MSP430 Programming Under Linux (English)
• MSP430 eclipse helios mspgcc4 (German)

Tip 2: You probably want to install this excellent Eclipse plugin (see screenshot above):

- EmbSysRegView

5. MSPGCC Toolchain

5.1 Compiler options

The msp430-gcc compiler accepts the following MSP430 specific command line
parameters (copied from the MSPGCC manual page):

-mmcu= Specify the MCU name

-mno-volatile-workaround Do not perform a volatile workaround for bitwise operations.

-mno-stack-init Do not initialize the stack as main()starts.

-minit-stack= Specify the initial stack address.

-mendup-at= Jump to the specified routine at the end of main().

-mforce-hwmul Force use of a hardware multiplier.

-mdisable-hwmul Do not use the hardware multiplier.

-minline-hwmul
Issue inline code for 32-bit integer operations for devices
with a hardware multiplier.

-mnoint-hwmul

Do not disable and enable interrupts around hardware
multiplier operations. This makes multiplication faster when
you are certain no hardware multiplier operations will occur
at deeper interrupt levels.

-mcall-shifts
Use subroutine calls for shift operations. This may save some
space for shift intensive applications.

88

http://mspgcc.sourceforge.net/manual/c745.html
https://sourceforge.net/projects/embsysregview/
http://www.mikrocontroller.net/articles/MSP430_eclipse_helios_mspgcc4_gdb-proxy
http://www.43oh.com/2010/11/a-step-by-step-guide-msp430-programming-under-linux/

5.2 MCU selection

The following table aims to help selecting the proper MCU name for the -mmcu option
during the msp430-gcc call:

-mmcu option
Program
Memory

Data
Memory

Hardware
Multiplier

Program Memory Size: 1 kB

msp430x110 1 kB 128 B No

msp430x1101 1 kB 128 B No

msp430x2001 1 kB 128 B No

msp430x2002 1 kB 128 B No

msp430x2003 1 kB 128 B No

msp430x2101 1 kB 128 B No

Program Memory Size: 2 kB

msp430x1111 2 kB 128 B No

msp430x2011 2 kB 128 B No

msp430x2012 2 kB 128 B No

msp430x2013 2 kB 128 B No

msp430x2111 2 kB 128 B No

msp430x2112 2 kB 128 B No

msp430x311 2 kB 128 B No

Program Memory Size: 4 kB

msp430x112 4 kB 256 B No

msp430x1121 4 kB 256 B No

msp430x1122 4 kB 256 B No

msp430x122 4 kB 256 B No

msp430x1222 4 kB 256 B No

msp430x2122 4 kB 256 B No

msp430x2121 4 kB 256 B No

msp430x312 4 kB 256 B No

msp430x412 4 kB 256 B No

89

http://mspgcc.sourceforge.net/manual/c745.html

Program Memory Size: 8 kB

msp430x123 8 kB 256 B No

msp430x133 8 kB 256 B No

msp430x313 8 kB 256 B No

msp430x323 8 kB 256 B No

msp430x413 8 kB 256 B No

msp430x423 8 kB 256 B Yes

msp430xE423 8 kB 256 B Yes

msp430xE4232 8 kB 256 B Yes

msp430xW423 8 kB 256 B No

msp430x1132 8 kB 256 B No

msp430x1232 8 kB 256 B No

msp430x1331 8 kB 256 B No

msp430x2131 8 kB 256 B No

msp430x2132 8 kB 256 B No

msp430x2232 8 kB 512 B No

msp430x2234 8 kB 512 B No

msp430x233 8 kB 1024 B Yes

msp430x2330 8 kB 1024 B Yes

Program Memory Size: 12 kB

msp430xE4242 12 kB 512 B Yes

msp430x314 12 kB 512 B No

Program Memory Size: 16 kB

msp430x4250 16 kB 256 B No

msp430xG4250 16 kB 256 B No

msp430x135 16 kB 512 B No

msp430x1351 16 kB 512 B No

msp430x155 16 kB 512 B No

msp430x2252 16 kB 512 B No

msp430x2254 16 kB 512 B No

msp430x315 16 kB 512 B No

msp430x325 16 kB 512 B No

msp430x415 16 kB 512 B No

msp430x425 16 kB 512 B Yes

90

msp430xE425 16 kB 512 B Yes

msp430xW425 16 kB 512 B No

msp430xE4252 16 kB 512 B Yes

msp430x435 16 kB 512 B No

msp430x4351 16 kB 512 B No

msp430x235 16 kB 2048 B Yes

msp430x2350 16 kB 2048 B Yes

Program Memory Size: 24 kB

msp430x4260 24 kB 256 B No

msp430xG4260 24 kB 256 B No

msp430x156 24 kB 512 B No

msp430x4361 24 kB 1024 B No

msp430x436 24 kB 1024 B No

msp430x336 24 kB 1024 B Yes

Program Memory Size: 32 kB

msp430x4270 32 kB 256 B No

msp430xG4270 32 kB 256 B No

msp430x147 32 kB 1024 B Yes

msp430x1471 32 kB 1024 B Yes

msp430x157 32 kB 1024 B No

msp430x167 32 kB 1024 B Yes

msp430x2272 32 kB 1024 B No

msp430x2274 32 kB 1024 B No

msp430x337 32 kB 1024 B Yes

msp430x417 32 kB 1024 B No

msp430x427 32 kB 1024 B Yes

msp430xE427 32 kB 1024 B Yes

msp430xE4272 32 kB 1024 B Yes

msp430xW427 32 kB 1024 B No

msp430x437 32 kB 1024 B No

msp430xG437 32 kB 1024 B No

msp430x4371 32 kB 1024 B No

msp430x447 32 kB 1024 B Yes

msp430x2370 32 kB 2048 B Yes

91

msp430x247 32 kB 4096 B Yes

msp430x2471 32 kB 4096 B Yes

msp430x1610 32 kB 5120 B Yes

Program Memory Size: 41 kB

msp430x5438 41 kB 16384 B No

msp430x5437 41 kB 16384 B No

msp430x5436 41 kB 16384 B No

msp430x5435 41 kB 16384 B No

msp430x5419 41 kB 16384 B No

msp430x54 41 kB 16384 B No

Program Memory Size: 48 kB

msp430x1611 48 kB 10240 B Yes

msp430x248 48 kB 4096 B Yes

msp430x2481 48 kB 4096 B Yes

msp430x4783 48 kB 2048 B Yes

msp430xG438 48 kB 2048 B No

msp430x4784 48 kB 2048 B

msp430x148 48 kB 2048 B Yes

msp430x168 48 kB 2048 B Yes

msp430x1481 48 kB 2048 B Yes

msp430x448 48 kB 2048 B Yes

Program Memory Size: 51 kB

msp430xG4617 51 kB 8192 B Yes

msp430x2418 51 kB 8192 B Yes

msp430x2618 51 kB 8192 B Yes

msp430x2417 51 kB 8192 B Yes

msp430xG4618 51 kB 8192 B Yes

msp430x2617 51 kB 8192 B Yes

Program Memory Size: 54 kB

msp430x1612 54 kB 5120 B Yes

Program Memory Size: 55 kB

msp430x2619 55 kB 4096 B Yes

msp430xG4619 55 kB 4096 B Yes

msp430xG4616 55 kB 4096 B Yes

92

msp430x2416 55 kB 4096 B Yes

msp430x2419 55 kB 4096 B Yes

msp430x2616 55 kB 4096 B Yes

msp430x2410 55 kB 4096 B Yes

Program Memory Size: 59 kB

msp430x4794 59 kB 2560 B Yes

msp430x4793 59 kB 2560 B Yes

msp430x2491 59 kB 2048 B Yes

msp430x1491 60 kB 2048 B Yes

msp430x149 60 kB 2048 B Yes

msp430xG439 59 kB 2048 B No

msp430x249 59 kB 2048 B Yes

msp430x449 59 kB 2048 B Yes

msp430x169 59 kB 2048 B Yes

Note: the program memory size should imperatively match the openMSP430
configuration.

5.3 Custom linker script

The use of the -mmcu switch is of course NOT mandatory. It is simply a convenient way
to use the pre-existing linker scripts provided with the MSPGCC4 toolchain.

However, if the peripheral address space is larger than the standard 512B of the original
MSP430 (see the Advanced System Configuration section), a customized linker script
MUST be provided.

To create a custom linker script, the simplest way is to start from an existing one:

• The MSPGCC(4) toolchain provides a wide range of examples for all supported
MSP430 models (see “msp430/lib/ldscripts/” sub-directory in the MSPGCC(4)
installation directory).

• The openMSP430 project also provide a simple linker script example:
ldscript_example.x

From there, the script can be modified to match YOUR openMSP430 configuration:

93

http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/core/sim/rtl_sim/src/ldscript_example.x

• In the text (rx) section definition, update the ORIGIN and LENGTH fields to
match the PROGRAM MEMORY configuration.

• In the data (rwx) section definition, update the ORIGIN field to match the
PERIPHERAL SPACE configuration and the LENGTH field to match the
DATA MEMORY configuration.

• At last, update the stack pointer initialization value (look for the “PROVIDE
(__stack =” section) and make sure that it falls in the data memory space (the
stack size should also matches your application requirements, i.e. not too small...
and not too big :-P).

94

8.
File and Directory

Description

Table of content

• 1. Introduction
• 2. Directory structure: openMSP430 core
• 3. Directory structure: FGPA projects

• 3.1 Xilinx Spartan 3 example
• 3.2 Altera Cyclone II example
• 3.3 Actel ProASIC3 example

• 4. Directory structure: Software Development Tools

1. Introduction

To simplify the integration of this IP, the directory structure is based on the OpenCores
recommendations.

2. Directory structure: openMSP430 core
core openMSP430 Core top level directory

abc
d

bench Top level testbench directory

abc
d

verilog

abc
d

tb_openMSP430.v Testbench top level module

ram.v RAM verilog model

95

http://cdn.opencores.org/downloads/opencores_coding_guidelines.pdf

registers.v
Connections to Core internals for easy
debugging

dbg_uart_tasks.v UART tasks for the serial debug interface

dbg_i2c_tasks.v I2C tasks for the serial debug interface

io_cell.v
Generic I/O cell model for building the
serial debug interface I2C bus

msp_debug.v
Testbench instruction decoder and ASCII
chain generator for easy debugging

timescale.v Global time scale definition for simulation.

doc Diverse documentation

abc slau049f.pdf MSP430x1xx Family User's Guide

rtl RTL sources

abc
d

verilog

abc
d openMSP430_defines.v

openMSP430 core configuration file
(Program and Data memory size definition,
Debug Interface configuration)

openMSP430_undefines.v openMSP430 Verilog `undef file

openMSP430.v openMSP430 top level

omsp_frontend.v Instruction fetch and decode

omsp_execution_unit.v Execution unit

omsp_alu.v ALU

omsp_register_file.v Register file

omsp_mem_backbone.v Memory backbone

omsp_clock_module.v Basic Clock Module

omsp_sfr.v Special function registers

omsp_watchdog.v Watchdog Timer

omsp_multiplier.v 16x16 Hardware Multiplier

omsp_dbg.v Serial Debug Interface main block

omsp_dbg_hwbrk.v
Serial Debug Interface hardware
breakpoint unit

omsp_dbg_uart.v
Serial Debug Interface UART
communication block

omsp_dbg_i2c.v
Serial Debug Interface I2C communication
block

omsp_sync_cell.v Simple synchronization module (double flip-
flop).

96

omsp_sync_reset.v
Generic Reset synchronizer (double flip-
flop).

omsp_clock_gate.v
Generic Clock gate (NAND2 or LATCH-
AND based).

omsp_clock_mux.v
Standard Clock Mux (used in the clock
module & watchdog timer).

omsp_and_gate.v
AND gate module used on sensitive glitch
free data paths.

omsp_wakeup_cell.v Generic Wake-up module.

omsp_scan_mux.v Scan MUX.

periph Peripherals directory

abc
d

omsp_gpio.v Digital I/O (Port 1 to 6)

omsp_timerA_defines.
v

Timer A configuration file

omsp_timerA_undefin
es.v

Timer A Verilog 'undef file

omsp_timerA.v Timer A

template_periph_16b.v Verilog template for 16 bit peripherals

template_periph_8b.v Verilog template for 8 bit peripherals

sim Top level simulations directory

abc
d

rtl_sim RTL simulations

abc
d

bin RTL simulation scripts

abc
d

msp430sim
Main simulation script for assembler vector
sources (located in the src directory)

msp430sim_c
Main simulation script for C vector sources
(located in the src-c directory).

asm2ihex.sh
Assembly file compilation (Intel HEX file
generation)

ihex2mem.tcl Verilog program memory file generation

rtlsim.sh Verilog Icarus simulation script

template.x ASM linker definition file template

template_defs.asm
Common ASM definition file included in all
“.s43” files

omsp_config.sh oMSP configuration file.

parse_results
Script parsing regression log files and
generating summary report.

cov_* Code coverage scripts for NC-Verilog and

97

ICM

run For running RTL simulations

abc
d

run
Run single simulation of a given assembler
vector

run_c Run single simulation of a given C vector

run_all Run regression of all vectors

run_all_mpy
Run regression of all hardware multiplier
vectors (!!! very long simulation time !!!)

run_disassemble
Disassemble the program memory content
of the latest simulation

run_coverage_analysis
Performs the coverage report merging of
the regression run and starts ICM for the
analysis.

load_waveform.sav SAV file for gtkWave

src
RTL simulation vectors sources (ASM
based)

abc
d

ldscript_example.x MSPGCC toolchain linker script example

submit.prj ISIM simulator verilog command file

submit.f Verilog simulator command file

core.f Command file listing the CPU files only.

sing-op_*.s43 Single-operand assembler vector files

sing-op_*.v Single-operand verilog stimulus vector files

two-op_*.s43 Two-operand assembler vector files

two-op_*.v Two-operand verilog stimulus vector files

c-jump_*.s43 Jump assembler vector files

c-jump_*.v Jump verilog stimulus vector files

nmi.s43 NMI assembler vector files

nmi.v NMI verilog stimulus vector files

cpu_startup_asic.s43 CPU startup assembler vector files

cpu_startup_asic.v CPU startup stimulus vector files

op_modes*.s43
CPU operating modes assembler vector
files (CPUOFF, OSCOFF, SCG1)

op_modes*.v
CPU operating modes verilog stimulus
vector files (CPUOFF, OSCOFF, SCG1)

clock_module*.s43 Basic Clock Module assembler vector files

clock_module*.v Basic Clock Module verilog stimulus vector

98

files

lp_modes_*.s43 Low Power modes assembler vector files

lp_modes_*.v
Low Power modes verilog stimulus vector
files

dbg_*.s43
Serial Debug Interface assembler vector
files

dbg_*.v
Serial Debug Interface verilog stimulus
vector files

sfr.s43 SFR assembler vector files

sfr.v SFR verilog stimulus vector files

gpio_*.s43 Digital I/O assembler vector files

gpio_*.v Digital I/O verilog stimulus vector files

template_periph_*.s43 Peripheral templates assembler vector files

template_periph_*.v
Peripheral templates verilog stimulus
vector files

wdt_*.s43 Watchdog timer assembler vector files

wdt_*.v Watchdog timer verilog stimulus vector files

tA_*.s43 Timer A assembler vector files

tA_*.v Timer A verilog stimulus vector files

mpy_*.s43 16x16 Multiplier assembler vector files

mpy_*.v
16x16 Multiplier verilog stimulus vector
files

scan.s43 Scan test assembler vector files

scan.v Scan test verilog stimulus vector files

src-c RTL simulation vectors sources (C based)

coremask_v1.0 CoreMark benchmark

dhrystone_v2.1 Dhrystone benchmark (“official” version)

dhrystone_4mcu Dhrystone benchmark (MCU adapted)

sandbox Small playground :-)

synthesis Top level synthesis directory

abc
d

synopsys Synopsys (Design Compiler) directory

abc
d

run_syn Run synthesis

run_tmax Run ATPG

synthesis.tcl Main synthesis TCL script

library.tcl Load library, set operating conditions and
wire load models

99

read.tcl Read RTL

constraints.tcl Set design constrains

tmax.tcl Main TetraMax (ATPG) script

results Results directory

actel
Actel synthesis setup for area & speed
analysis

altera
Altera synthesis setup for area & speed
analysis

xilinx
Xilinx synthesis setup for area & speed
analysis

3. Directory structure: FGPA projects
3.1 Xilinx Spartan 3 example

fpga
openMSP430 FPGA Projects top level
directory

abc
d

xilinx_diligent_s3board
Xilinx FPGA Project based on the
Diligent Spartan-3 board

abc
d

bench Top level testbench directory

abc
d

verilog

abc
d

tb_openMSP430_fpga.v FPGA testbench top level module

registers.v
Connections to Core internals for easy
debugging

msp_debug.v
Testbench instruction decoder and ASCII
chain generator for easy debugging

glbl.v Xilinx "glbl.v" file

timescale.v
Global time scale definition for
simulation.

doc Diverse documentation

abc
d

board_user_guide.pdf
Spartan-3 FPGA Starter Kit Board User
Guide

msp430f1121a.pdf msp430f1121a Specification

xapp462.pdf
Xilinx Digital Clock Managers (DCMs)
user guide

rtl RTL sources

100

abc
d

verilog

abc
d

openMSP430_fpga.v FPGA top level file

driver_7segment.v
Four-Digit, Seven-Segment LED Display
driver

io_mux.v I/O mux for port function selection.

openmsp430
Local copy of the openMSP430 core.
The *define.v file has been adjusted to the
requirements of the project.

coregen Xilinx's coregen directory

abc
d

ram_8x512_hi.* 512 Byte RAM (upper byte)

ram_8x512_lo.* 512 Byte RAM (lower byte)

ram_8x2k_hi.* 2 kByte RAM (upper byte)

ram_8x2k_lo.* 2 kByte RAM (lower byte)

sim Top level simulations directory

abc
d

rtl_sim RTL simulations

abc
d

bin RTL simulation scripts

abc
d

msp430sim Main simulation script

ihex2mem.tcl Verilog program memory file generation

rtlsim.sh Verilog Icarus simulation script

run For running RTL simulations

abc
d

run
Run simulation of a given software
project

run_disassemble
Disassemble the program memory
content of the latest simulation

src RTL simulation verilog stimulus

abc
d

submit.f Verilog simulator command file

*.v
Stimulus vector for the corresponding
software project

software
Software C programs to be loaded in
program memory

abc
d

leds
LEDs blinking application (from the
CDK4MSP project)

abc
d

makefile

hardware.h

main.c

7seg.h

101

7seg.c

ta_uart
Software UART with Timer_A (from the
CDK4MSP project)

synthesis Top level synthesis directory

abc
d

xilinx

abc
d

0_create_bitstream.sh
Run Xilinx ISE synthesis in a Linux
environment

1_initialize_pmem.sh
Update bitstream's program memory with
a given software ELF file

2_generate_prom_file.sh Generate PROM file

3_program_fpga.sh
Program FPGA and on-board flash
memory

bitstreams

*.bit Bitstream files

*.mcs PROM files

README.jpg README file

scripts

ihex2mem.tcl
TCL script converting Intel-HEX format
to Verilog memory file.

impact_generate_pr
om_file.batch

iMPACT TCL script for PROM file
generation.

impact_program_fp
ga.batch

iMPACT TCL script for programing
FPGA and on-board flash memory.

memory.bmm
FPGA memory description for bitstream's
program memory update

openMSP430_fpga.
ucf

UCF file

openMSP430_fpga.
prj

RTL file list to be synthesized

xst_verilog.opt
Verilog Option File for XST. Among
other things, the search path to the
include files is specified here.

102

3.2 Altera Cyclone II example

fpga
openMSP430 FPGA Projects top level
directory

abc
d

altera_de1_board
Altera FPGA Project based on
Cyclone II Starter Development Board

abc
d

README README file

bench Top level testbench directory

abcd

verilog

abcd

tb_openMSP430_fpga.v FPGA testbench top level module

registers.v
Connections to Core internals for easy
debugging

msp_debug.v
Testbench instruction decoder and
ASCII chain generator for easy
debugging

altsyncram.v
Altera verilog model of the altsyncram
module..

timescale.v
Global time scale definition for
simulation.

doc Diverse documentation

abc
d

DE1_Board_Schematic.pdf
Cyclone II FPGA Starter Development
Board Schematics

DE1_Reference_Manual.pdf
Cyclone II FPGA Starter Development
Board Reference Manual

DE1_User_Guide.pdf
Cyclone II FPGA Starter Development
Board User Guide

rtl RTL sources

abc
d

verilog

abc
d

OpenMSP430_fpga.v FPGA top level file

driver_7segment.v
Four-Digit, Seven-Segment LED
Display driver

io_mux.v I/O mux for port function selection.

ext_de1_sram.v
Interface with altera DE1's external
async SRAM (256kwords x 16bits)

ram16x512.v
Single port RAM generated with the
megafunction wizard

rom16x2048.v Single port ROM generated with the
megafunction wizard

103

openmsp430
Local copy of the openMSP430 core.
The *define.v file has been adjusted to
the requirements of the project.

sim Top level simulations directory

abc
d

rtl_sim RTL simulations

abc
d

bin RTL simulation scripts

abcd

msp430sim Main simulation script

ihex2mem.tcl
Verilog program memory file
generation

rtlsim.sh Verilog Icarus simulation script

run For running RTL simulations

abcd
run

Run simulation of a given software
project

run_disassemble
Disassemble the program memory
content of the latest simulation

src RTL simulation verilog stimulus

abcd
submit.f Verilog simulator command file

*.v
Stimulus vector for the corresponding
software project

software
Software C programs to be loaded in
the program memory

abc
d

bin
Specific binaries required for software
development.

abc
d

mifwrite.cpp

This prog is taken from
http://www.johnloomis.org/ece595c/not
es/isa/mifwrite.html and slightly
changed to satisfy quartus6.1 *.mif
eating engine.

mifwrite.exe Windows executable.

mifwrite Linux executable.

memledtest
LEDs blinking application (from the
CDK4MSP project)

synthesis Top level synthesis directory

abc
d

altera

abc
d

main.qsf Global Assignments file

main.sof SOF file

OpenMSP430_fpga.qpf Quartus II project file

104

openMSP430_fpga_top.v RTL file list to be synthesized

3.3 Actel ProASIC3 example

fpga
openMSP430 FPGA Projects top level
directory

abc
d

actel_m1a3pl_dev_kit
Actel FPGA Project based on the
ProASIC3 M1A3PL development kit

abc
d

bench Top level testbench directory

abc
d

verilog

abc
d

tb_openMSP430_fpga.v FPGA testbench top level module

registers.v
Connections to Core internals for easy
debugging

msp_debug.v
Testbench instruction decoder and ASCII
chain generator for easy debugging

dbg_uart_tasks.v
UART tasks for the serial debug
interface.

timescale.v
Global time scale definition for
simulation.

proasic3l.v Actel ProASIC3L library file.

DAC121S101.v
Verilog model of National's DAC121S101
12 bit DAC

doc Diverse documentation

abc
d

M1A3PL_DEV_KIT_QS.pdf Development Kit Quickstart Card

M1IGLOO_StarterKit_v1_5_
UG.pdf

Development Kit User's Guide

rtl RTL sources

abc
d

verilog

abc
d

openMSP430_fpga.v FPGA top level file

dac_spi_if.v
SPI interface to National's DAC121S101
12 bit DAC

openmsp430
Local copy of the openMSP430 core.
The *define.v file has been adjusted to the
requirements of the project.

smartgen Xilinx's coregen directory

abcd

dmem_128B.v 128 Byte RAM (for data memory)

pmem_2kB.v 2 kByte RAM (for program memory)

sim Top level simulations directory

105

abc
d

rtl_sim RTL simulations

abc
d

bin RTL simulation scripts

abcd

msp430sim Main simulation script

ihex2mem.tcl Verilog program memory file generation

rtlsim.sh Verilog Icarus simulation script

run For running RTL simulations

abcd

run
Run simulation of a given software
project

run_disassemble
Disassemble the program memory
content of the latest simulation

src RTL simulation verilog stimulus

abcd

submit.f Verilog simulator command file

*.v
Stimulus vector for the corresponding
software project

software
Software C programs to be loaded in
program memory

abc
d

spacewar SpaceWar oscilloscope game.

abc
d

synthesis Top level synthesis directory

abc
d

actel

abc
d

prepare_implementation.t
cl

Generate required files prior synthesis
and P&R.

synplify.tcl Synplify template for the synthesis run.

libero_designer.tcl
Libero Designer template for the P&R
run.

design_files.v RTL file list to be synthesized

design_constraints.pre.sd
c

Synthesis timing constraints.

106

design_constraints.post.s
dc

P&R timing constraints.

design_constraints.pdc P&R physical constraints.

107

4. Directory structure: Software
Development Tools

tools
openMSP430 Software Development
Tools top level directory

abc
d omsp_alias.xml

This XML file allows the software
development tools to identify a
openMSP430 implementation, and add
customized extra information (Alias,
URL, ...).

bin
Contains the main TCL scripts (and the
windows executable files if generated)

abc
d

openmsp430-loader.tcl Simple command line boot loader

openmsp430-minidebug.tcl Minimalistic debugger with simple GUI

openmsp430-gdbproxy.tcl
GDB Proxy server to be used together with
MSP430-GDB and the Eclipse, DDD, or
Insight graphical front-ends

README.TXT
README file regarding the use of TCL
scripts in a Windows environment.

lib Common library

abc
d

tcl-lib Common TCL library

abcd

dbg_uart_generic.tcl
Low level Generic UART communication
functions

dbg_i2c_usb-iss.tcl
Low level I2C communication functions for
the USB-ISS adapter

dbg_utils.tcl
Low level “COMx:” “/dev/tty”
communication functions

dbg_functions.tcl
Main utility functions for the openMSP430
serial debug interface

combobox.tcl
A combobox listbox widget written in pure
tcl (from Bryan Oakley)

xml.tcl Simple XML parser (from Keith Vetter).

openmsp430-gdbproxy GDB Proxy server main project directory

abc
d openmsp430-gdbproxy.tcl

GDB Proxy server main TCL Script
(symbolic link with the script in the bin
directory)

server.tcl TCP/IP Server utility functions.

108

Send/Receive RSP packets from GDB.

commands.tcl RSP command execution functions.

doc
Some documentation regarding GDB and
the RSP protocol.

abcd

ew_GDB_RSP.pdf
Document from Bill Gatliff: Embedding
with GNU: the gdb Remote Serial Protocol

Howto-
GDB_Remote_Serial_Protoc
ol.pdf

Document from Jeremy Bennett
(Embecosm): Howto: GDB Remote Serial
Protocol - Writing a RSP Server

109

