© 2013 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

The pin connection guidelines are considered preliminary. These pin connection guidelines should only be used as a recommendation, not as a specification. The use of the pin connection guidelines for any particular design should be verified for device operation, with the datasheet and Altera.

PLEASE REVIEW THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE USING THE PIN CONNECTION GUIDELINES("GUIDELINES") PROVIDED TO YOU. BY USING THESE GUIDELINES, YOU INDICATE YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS, WHICH CONSTITUTE THE LICENSE AGREEMENT ("AGREEMENT") BETWEEN YOU AND ALTERA CORPORATION ("ALTERA"). IF YOU DO NOT AGREE WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT DOWNLOAD, COPY, INSTALL, OR USE OF THESE GUIDELINES.

1. Subject to the terms and conditions of this Agreement, Altera grants to you the use of this pin connection guideline to determine the pin connections of an Altera<sup>®</sup> programmable logic device-based design. You may not use this pin connection guideline for any other purpose.

2. Altera does not guarantee or imply the reliability, or serviceability, of the pin connection guidelines or other items provided as part of these guidelines. The files contained herein are provided 'AS IS'. ALTERA DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

3. In no event shall the aggregate liability of Altera relating to this Agreement or the subject matter hereof under any legal theory (whether in tort, contract, or otherwise), exceed One US Dollar (US\$1.00). In no event shall Altera be liable for any lost revenue, lost profits, or other consequential, indirect, or special damages caused by your use of these guidelines even if advised of the possibility of such damages.

4. This Agreement shall be governed by the laws of the State of California, without regard to conflict of law or choice of law principles. You agree to submit to the exclusive jurisdiction of the courts in the County of Santa Clara, State of California for the resolution of any dispute or claim arising out of or relating to this Agreement. The parties hereby agree that the party who is not the substantially prevailing party with respect to a dispute, claim, or controversy relating to this Agreement shall pay the costs actually incurred by the substantially prevailing party in relation to such dispute, claim, or controversy, including attorneys' fees.

BY DOWNLOADING OR USING THESE GUIDELINES, YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU AND ALTERA FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND ALTERA, WHICH SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN YOU AND ALTERA RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT. Pin Connection Guidelines Agreement © 2013 Altera Corporation. All rights reserved.

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this

| Cyclone V Pin Name                                                                  | Pin Type (1st and 2nd Function) | Pin Description                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clock and PLL Pins                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |
| CLK[0:11][p:n]                                                                      | I/O, Clock                      | Dedicated positive and negative clock input pins that can also be used for data inputs or outputs.                                                                                                                                                                                                                                                                                             | When you do not use these pins, Altera record<br>pins are unconnected, use the Quartus II so<br>These pins can be reserved as inputs tri-sta                                                                                 |
|                                                                                     |                                 | When used as differential inputs, these pins support OCT Rd.<br>When used as single-ended inputs, these pins support OCT Rt.<br>When used as single-ended outputs, these pins support OCT Rs.<br>When you use the single-ended I/O standard, only the CLK[0:11]p<br>pins serve as the dedicated input pins to the PLL.<br>The programmable weak pull-up resistor is available for single-ended | GND.<br>Some CLK input pins share dual-purpose fu<br>information, refer to the specific device pino<br>Not all pins are available in each device der<br>device pinout file.                                                  |
|                                                                                     |                                 | I/O usage.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |
| FPLL_[BL,BR,TL,TR]_CLKOUT0,<br>FPLL_[BL,BR,TL,TR]_CLKOUTp,<br>FPLL_[BL,BR,TL,TR]_FB | I/O, Clock                      | Dual-purpose I/O pins that can be used as two single-ended clock<br>output pins, one differential clock output pair, or one single-ended<br>feedback input pin.                                                                                                                                                                                                                                | When you do not use these pins, Altera recorpins are unconnected, use the Quartus II so These pins can be reserved as inputs tri-sta GND.                                                                                    |
| FPLL_[BL,BR,TL,TR]_CLKOUT1,<br>FPLL_[BL,BR,TL,TR]_CLKOUTn                           | I/O, Clock                      | Dual-purpose I/O pins that can be used as two single-ended clock output pins or one differential clock output pair.                                                                                                                                                                                                                                                                            | When you do not use these pins, Altera recorpins are unconnected, use the Quartus II so These pins can be reserved as inputs tri-sta GND.                                                                                    |
| Dedicated Configuration/JTAG Pins                                                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |
| MSEL[0:4]                                                                           | Input                           | Use these pins to set the configuration scheme and POR delay.<br>These pins have an internal $25$ -k $\Omega$ pull-down that are always active.                                                                                                                                                                                                                                                | When you use these pins, tie these pins dire<br>configuration scheme as specified in the "Co<br>Cyclone V Devices" chapter in the Cyclone V<br>These pins are not used in the JTAG configu<br>the JTAG configuration scheme. |
| AS_DATA0/ ASDO/ DATA0                                                               | Bidirectional                   | In a passive serial (PS) or fast passive parallel (FPP) configuration scheme, DATA0 is a dedicated input data pin.                                                                                                                                                                                                                                                                             | When you do not use this pin, Altera recom                                                                                                                                                                                   |
|                                                                                     |                                 | In an active serial (AS) x1 and AS x4 configuration schemes, AS_DATA0 and ASDO are dedicated bidirectional data pins.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |
| AS_DATA[1:3 ]/ DATA[1:3]                                                            | Bidirectional                   | In an AS configuration scheme, AS_DATA[1:3] pins are used.                                                                                                                                                                                                                                                                                                                                     | When you do not use this pin, Altera recom                                                                                                                                                                                   |
|                                                                                     |                                 | In an FPP x8 or FPP x16 configuration scheme, the DATA[1:3] pins are used.                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |
| nCSO/ DATA4                                                                         | Output                          | In an AS configuration scheme, the nCSO pin is used. nCSO drives<br>the control signal from the Cyclone V device to the EPCS or EPCQ<br>device in the AS configuration scheme.                                                                                                                                                                                                                 | When you are not programming the device you do not use this pin as an output pin, Alte                                                                                                                                       |
|                                                                                     |                                 | In an FPP configuration scheme, the DATA4 pin is used.                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |
| nCE                                                                                 | Input                           | nCE is an active-low chip enable pin. When nCE is low, the device is enabled. When nCE is high, the device is disabled.                                                                                                                                                                                                                                                                        | In a multi-device configuration, the nCE pin<br>of the next device in the chain. In a single-de<br>GND.                                                                                                                      |
|                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |

| nections according to I/O assignment and placement rules. The document or the device handbook.                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection Guidelines                                                                                                                                                                              |
| ecommends tying them to GND or leaving them unconnected. If these software programmable options to internally bias these pins. state with the weak pull-up resistor enabled, or as outputs driving |
| e functionality with FPLL_[BL,BR,TL,TR]_FB pins. For more inout file.                                                                                                                              |
| density and package combination. For details, refer to the specific                                                                                                                                |
| ecommends tying them to GND or leaving them unconnected. If these                                                                                                                                  |
| software programmable options to internally bias these pins.<br>state with the weak pull-up resistor enabled, or as outputs driving                                                                |
| ecommends tying them to GND or leaving them unconnected. If these software programmable options to internally bias these pins. state with the weak pull-up resistor enabled, or as outputs driving |
|                                                                                                                                                                                                    |
| directly to VCCPGM or GND to get the combination for the<br>"Configuration, Design Security, and Remote System Upgrades in<br>ne V Device Handbook.                                                |
| figuration scheme. Tie the MSEL pins to GND if your device is using                                                                                                                                |
| ommends leaving the pins unconnected.                                                                                                                                                              |
|                                                                                                                                                                                                    |
| mmends leaving the pins unconnected.                                                                                                                                                               |
| ce in the AS configuration scheme, the nCSO pin is not used. When Altera recommends leaving the pin unconnected.                                                                                   |
| oin of the first device is tied low while its nCEO pin drives the nCE pin<br>e-device configuration and JTAG programming, connect the nCE pin to                                                   |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin conn rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this of the second second

| Cyclone V Pin Name | Pin Type (1st and<br>2nd Function) | Pin Description                                                                                                                                                                                                                                                         | c c                                                                                                                                                                                                                                       |
|--------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nCONFIG            | Input                              | Pulling this pin low during configuration and user mode causes the Cyclone V device to lose its configuration data, enter a reset state, and tri-states all the I/O pins.<br>A high-to-low logic initiates a reconfiguration.                                           | When you use the nCONFIG pin in a passive<br>controller.<br>When you use the nCONFIG pin in an AS co<br>to VCCPGM.                                                                                                                        |
|                    |                                    |                                                                                                                                                                                                                                                                         | When you do not use the nCONFIG pin, com<br>During JTAG programming, the nCONFIG st                                                                                                                                                       |
| CONF_DONE          | Bidirectional<br>(open-drain)      | As a status output, the CONF_DONE pin drives low before and during configuration. After all configuration data is received without error and the initialization cycle starts, the CONF_DONE pin is released.                                                            | Connect an external 10-k $\Omega$ pull-up resistor to specification of the I/O on the device and the                                                                                                                                      |
|                    |                                    | As a status input, the CONF_DONE pin goes high after all data is received. Then the device initializes and enters user mode.                                                                                                                                            |                                                                                                                                                                                                                                           |
|                    |                                    | This pin is not available as a user I/O pin.                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |
| nCEO               | I/O, Output<br>(open-drain)        | Dual-purpose open-drain output pin. This pin drives low when device configuration completes.                                                                                                                                                                            | During multi-device configuration, this pin fea<br>feeding the nCE pin of the next device, you c<br>In a single-device configuration, use this pin<br>leave this pin floating.<br>Connect this pin through an external $10$ -k $\Omega$ p |
| nSTATUS            | Bidirectional<br>(open-drain)      | The Cyclone V device drives the nSTATUS pin low immediately after power-up and releases it after the Cyclone V device exits power-on reset (POR).                                                                                                                       | Connect an external 10-k $\Omega$ pull-up resistor to specification of the I/O on the device and the                                                                                                                                      |
|                    |                                    | As a status output, the nSTATUS pin is pulled low to indicate an error during configuration.                                                                                                                                                                            |                                                                                                                                                                                                                                           |
|                    |                                    | As a status input, the device enters an error state when the nSTATUS pin is driven low by an external source during configuration or initialization.                                                                                                                    |                                                                                                                                                                                                                                           |
|                    |                                    | This pin is not available as a user I/O pin.                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |
| ТСК                | Input                              | JTAG test clock input pin that<br>clock input to the boundary-scan testing (BST) circuitry. Some<br>operations occur at the rising edge, while others occur at the falling<br>edge.<br>It is expected that the clock input waveform have a nominal 50% duty<br>cycle.   | Connect this pin through a 1-k $\Omega$ pull-down re                                                                                                                                                                                      |
|                    |                                    | This pin has an internal 25-k $\Omega$ pull-down that is always active.                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |
| TMS                | Input                              | JTAG test mode select input pin that provides the control signal to determine the transitions of the test access port (TAP) controller state machine.                                                                                                                   | Connect this pin through a $1-k\Omega - 10-k\Omega$ pull-<br>JTAG pin resides.<br>To disable the JTAG circuitry, connect the TN                                                                                                           |
|                    |                                    | The TMS pin is evaluated on the rising edge of the TCK pin.<br>Therefore, you must set up the TMS pin before the rising edge of the<br>TCK pin.<br>Transitions in the state machine occur on the falling edge of the TCK<br>after the signal is applied to the TMS pin. |                                                                                                                                                                                                                                           |
|                    |                                    | This pin has an internal 25-k $\Omega$ pull-up that is always active.                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |
| TDI                | Input                              | JTAG test data input pin for instructions as well as test and programming data. Data is shifted in on the rising edge of the TCK pin.                                                                                                                                   | Connect this pin through a $1$ -k $\Omega$ - $10$ -k $\Omega$ pull-<br>pin resides.<br>To disable the JTAG circuitry, connect the TE                                                                                                      |
|                    |                                    | This pin has an internal 25-k $\Omega$ pull-up that is always active.                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |
| TDO                | Output                             | JTAG test data output pin for instructions as well as test and<br>programming data. Data is shifted out on the falling edge of the TCK<br>pin. This pin is tri-stated if the data is not being shifted out of the<br>device.                                            | To disable the JTAG circuitry, leave the TDO<br>In cases where the TDO pin uses VCCPD =<br>in the TDI input buffer of the interfacing devic<br>used to eliminate the leakage current if need                                              |

| nnections according to I/O assignment and placement rules. The is document or the device handbook.                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection Guidelines                                                                                                                                                                           |
| assive configuration scheme, connect the pin directly to the configuration                                                                                                                      |
| AS configuration scheme, connect the pin through a 10-k $\Omega$ resistor tied                                                                                                                  |
| , connect the pin directly or through a 10-k $\Omega$ resistor to VCCPGM. FIG status is ignored.                                                                                                |
| stor to VCCPGM. VCCPGM must be high enough to meet the VIH d the external host.                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
| bin feeds the nCE pin of the next device in the chain. If this pin is not you can use this pin as a regular I/O pin.<br>s pin as a regular I/O pin. During single-device configuration, you may |
| -kΩ pull-up resistor to VCCPGM.                                                                                                                                                                 |
| stor to VCCPGM. VCCPGM must be high enough to meet the VIH d the external host.                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
| wn resistor to GND.                                                                                                                                                                             |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
| 2 pull-up resistor to the VCCPD in the dedicated I/O bank which the                                                                                                                             |
| he TMS pin to VCCPD using a 1-k $\Omega$ resistor.                                                                                                                                              |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
| 2 pull-up resistor to VCCPD in the dedicated I/O bank which the JTAG                                                                                                                            |
| he TDI pin to VCCPD using a 1-k $\Omega$ resistor.                                                                                                                                              |
| TDO pin unconnected.<br>PD = 2.5 V to drive a 3.3 V JTAG interface, there may be leakage current                                                                                                |
| devices. An external pull-up resistor tied to 3.3 V on the TDI pin may be<br>needed.                                                                                                            |
|                                                                                                                                                                                                 |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin conn rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this of the second se

| Cyclone V Pin Name                  | Pin Type (1st and<br>2nd Function) | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optional/Dual-Purpose Configuration | on Pins                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  |
| DCLK                                | Input (PS, FPP)<br>Output (AS)     | Dedicated bidirectional clock pin.<br>In the PS and FPP configuration schemes, the DCLK pin is the clock<br>input used to clock configuration data from an external source into the<br>Cyclone V device.<br>In the AS configuration scheme, the DCLK pin is an output clock to<br>clock the EPCS or EPCQ device.                                                                                               | Do not leave this pin floating. Drive this pin                                                                                                                                                                                                                                                                                                                                   |
| CRC_ERROR                           | I/O, Output<br>(open-drain)        | Optional output pin. This pin is an open-drain output pin by default<br>and requires a 10-k $\Omega$ pull-up resistor. Active high signal indicates that<br>the error detection circuitry has detected errors in the configuration<br>SRAM bits. This pin is optional and is used when the CRC error<br>detection circuitry is enabled.                                                                        | When you use the dedicated CRC_ERROR<br>external 10-k $\Omega$ pull-up resistor to VCCPGM<br>When you do not use the dedicated CRC_E<br>not used as an I/O pin, connect this pin as o<br>The I/O buffer type is reported in the fitter re                                                                                                                                        |
| DEV_CLRn                            | I/O, Input                         | Optional input pin that allows you to override all clears on all the device registers. When this pin is driven low, all the registers are cleared. When this pin is driven high (VCCPGM), all registers behave as programmed.                                                                                                                                                                                  | When you do not use the dedicated input D<br>recommends connecting this pin to GND.                                                                                                                                                                                                                                                                                              |
| DEV_OE                              | I/O, Input                         | Optional input pin that allows you to override all tri-states on the device. When this pin is driven low, all the I/O pins are tri-stated. When this pin is driven high (VCCPGM), all the I/O pins behave as programmed.                                                                                                                                                                                       | When you do not use the dedicated input D recommends connecting this pin to GND.                                                                                                                                                                                                                                                                                                 |
| DATA[5:15]                          | I/O, Input                         | Dual-purpose data input pins. These pins are required for the FPP configuration scheme. Use DATA [5:7] pins for FPP x8, DATA [5:15] pins for FPP x16.<br>You can use the pins that are not required for configuration as regular I/O pins.                                                                                                                                                                     | When you do not use the DATA[5:15] input recommends leaving these pins unconnected                                                                                                                                                                                                                                                                                               |
| INIT_DONE                           | I/O, Output<br>(open-drain)        | This is a dual-purpose pin and can be used as an I/O pin when not<br>enabled as an INIT_DONE pin in the Quartus II software.<br>When this pin is enabled, a transition from low to high on the pin<br>indicates that the device has entered user mode. If the INIT_DONE<br>output pin option is enabled in the Quartus II software, the<br>INIT_DONE pin cannot be used as a user I/O pin after configuration. | When you use the dedicated INIT_DONE p<br>an external $10 \cdot k\Omega$ pull-up resistor to VCCP<br>In Active Serial (AS) multi-device configura<br>option is enabled in the Quartus II software<br>together between master and slave devices<br>successful transition into user-mode.<br>When you do not use the dedicated INIT_D<br>not used as an I/O pin, Altera recommends |
| CLKUSR                              | I/O, Input                         | Optional user-supplied clock input. Synchronizes the initialization of one or more devices. If this pin is not enabled for use as a user-supplied configuration clock, it can be used as a user I/O pin.                                                                                                                                                                                                       | When you do not use the CLKUSR pin as a pin, Altera recommends connecting this pin                                                                                                                                                                                                                                                                                               |
| CvP_CONFDONE                        | I/O, Output<br>(open-drain)        | The CvP_CONFDONE pin is driven low during configuration. When Configuration via Protocol (CvP) is complete, this signal is released and is pulled high by an external pull-up resistor. Status of this pin is only valid if the CONF_DONE pin is high.                                                                                                                                                         | When you use the dedicated CvP_CONFD0<br>through an external 10-kΩ pull-up resistor to<br>When you do not use the dedicated CvP_C<br>pin is not used as an I/O pin, Altera recomm                                                                                                                                                                                                |
| nPERST[L0,L1]                       | I/O, Input                         | Dedicated fundamental reset pins. These pins are only available<br>when you use them together with the PCI Express <sup>®</sup> (PCIe <sup>®</sup> ) hard IP.<br>When these pins are low, the transceivers are in reset.<br>When these pins are high, the transceivers are out of reset.<br>When these pins are not used as the fundamental reset pins, these<br>pins may be used as user I/O pins.            | Connect these pins as defined in the Quartu<br>This nPERSTL1 signal is required for the C<br>V devices, even if the device has fewer than<br>the top left hard IP and CvP blocks while the<br>For maximum compatibility, Altera recomm<br>location that supports the CvP configuration                                                                                           |
| Partial Reconfiguration Pins        | •                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  |
| PR_REQUEST                          | I/O, Input                         | Partial reconfiguration request pin. Drive this pin high to start partial reconfiguration. Drive this pin low to end reconfiguration. This pin can only be used in partial reconfiguration using external host mode in the FPP x16 configuration scheme.                                                                                                                                                       | When you do not use the dedicated input Pl recommends connecting this pin to GND.                                                                                                                                                                                                                                                                                                |

| nnections according to I/O assignment and placement rules. The is document or the device handbook.                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection Guidelines                                                                                                                                                                                                                                                                                                        |
| pin either high or low.                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                              |
| ROR pin configured as an open-drain output, connect this pin through an PGM.<br>C_ERROR pin configured as an open-drain output and when this pin is as defined in the Quartus II software.<br>er report.                                                                                                                     |
| ut DEV_CLRn pin and when this pin is not used as an I/O pin, Altera<br>D.                                                                                                                                                                                                                                                    |
| ut DEV_OE pin and when this pin is not used as an I/O pin, Altera<br>D.                                                                                                                                                                                                                                                      |
| put pins and when these pins are not used as an I/O pin, Altera nected.                                                                                                                                                                                                                                                      |
| IE pin configured as an open-drain output pin, connect this pin through CPGM.<br>guration mode, Altera recommends that the INIT_DONE output pin vare for devices in the configuration chain. Do not tie INIT_DONE pins vices. Monitor the INIT_DONE status for each of the device to ensure                                  |
| T_DONE pin configured as an open-drain output pin and when this pin is nds connecting this pin as defined in the Quartus II software.                                                                                                                                                                                        |
| as a configuration clock input pin and when the pin is not used as an I/O s pin to GND.                                                                                                                                                                                                                                      |
| IFDONE pin configured as an open-drain output pin, connect this pin<br>tor to VCCPGM.<br>P_CONFDONE configured as an open-drain output pin and when this<br>ommends connecting this pin as defined in the Quartus II software.                                                                                               |
| Lartus II software.<br>The CvP configuration scheme. There are two nPERST pins in all Cyclone<br>than two instances of hard IP for PCIe. The nPERSTL0 pin is located in<br>e the nPERSTL1 pin is located in the bottom left hard IP.<br>mmends using the bottom left PCIe hard IP first as this is the only<br>ation scheme. |
| ut PR_REQUEST pin and when this pin is not used as an I/O pin, Altera<br>D.                                                                                                                                                                                                                                                  |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this of the second second

| Cyclone V Pin Name                                  | Pin Type (1st and 2nd Function)        | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                                                                                                                                                                                           |
|-----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PR_READY                                            | I/O, Output or Output<br>(open-drain)  | The partial reconfiguration ready pin is driven low until the device is<br>ready to begin partial reconfiguration.<br>When the device is ready to start reconfiguration, this signal is<br>released and is pulled high by an external pull-up resistor.                                                                                                                                                                                                                                                  | When you use the dedicated PR_READY pir<br>external 10-k $\Omega$ pull-up resistor to VCCPGM.<br>When you do not use the dedicated PR_REA<br>not used as an I/O pin, Altera recommends of   |
| PR_ERROR                                            | I/O, Output, or Output<br>(open-drain) | The partial reconfiguration error pin is driven low during partial reconfiguration unless the device detects an error. If an error is detected, this signal is released and pulled high by an external pull-up resistor.                                                                                                                                                                                                                                                                                 | When you use the dedicated PR_ERROR pin<br>an external 10-kΩ pull-up resistor to VCCPG<br>When you do not use the dedicated PR_ERF<br>is not used as an I/O pin, Altera recommends          |
| PR_DONE                                             | I/O, Output or Output<br>(open-drain)  | The partial reconfiguration done pin is driven low until the partial reconfiguration is complete. When the reconfiguration is complete, this signal is released and is pulled high by an external pull-up resistor.                                                                                                                                                                                                                                                                                      | When you use the dedicated PR_DONE piner<br>external $10$ -k $\Omega$ pull-up resistor to VCCPGM.<br>When you do not use the dedicated PR_DON<br>used as an I/O pin, Altera recommends conn |
| Differential I/O Pins                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |
| DIFFIO_RX_[B,T,R][#:#]p,<br>DIFFIO_RX_[B,T,R][#:#]n | I/O, RX channel                        | These are true LVDS receiver channels on row and column I/O<br>banks. Pins with a "p" suffix carry the positive signal for the<br>differential channel. Pins with an "n" suffix carry the negative signal<br>for the differential channel. If not used for differential signaling, these<br>pins are available as user I/O pins. OCT Rd is supported on all the<br>DIFFIO_RX pins.                                                                                                                       | Connect unused pins as defined in the Quart                                                                                                                                                 |
| DIFFIO_TX_[B,T,R][#:#]p,<br>DIFFIO_TX_[B,T,R][#:#]n | I/O, TX channel                        | These are true LVDS transmitter channels on row and column I/O<br>banks. Pins with a "p" suffix carry the positive signal for the<br>differential channel. Pins with an "n" suffix carry the negative signal<br>for the differential channel. If not used for differential signaling, these<br>pins are available as user I/O pins.                                                                                                                                                                      | Connect unused pins as defined in the Quart                                                                                                                                                 |
| DIFFOUT_[B,T,R][#:#]p,<br>DIFFOUT_[B,T,R][#:#]n     | I/O, TX channel                        | These are emulated LVDS output channels. All the user I/Os,<br>including I/Os with true LVDS input buffers, can be configured as<br>emulated LVDS output buffers. External resistor network is needed<br>for emulated LVDS output buffers.<br>Pins with a "p" suffix carry the positive signal for the differential<br>channel. Pins with an "n" suffix carry the negative signal for the<br>differential channel. If not used for differential signaling, these pins<br>are available as user I/O pins. | Connect unused pins as defined in the Quart                                                                                                                                                 |
| External Memory Interface Pins                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |
| DQS[#][B,R,T]                                       | I/O, bidirectional                     | Optional data strobe signal for use in external memory interfacing.<br>These pins drive to dedicated DQS phase shift circuitry. The shifted<br>DQS signal can also drive to internal logic.                                                                                                                                                                                                                                                                                                              | Connect unused pins as defined in the Quart                                                                                                                                                 |
| DQSn[#][B,R,T]                                      | I/O, bidirectional                     | Optional complementary data strobe signal for use in external memory interfacing. These pins drive to dedicated DQS phase shift circuitry.                                                                                                                                                                                                                                                                                                                                                               | Connect unused pins as defined in the Quart                                                                                                                                                 |
| DQ[#][B,R,T]                                        | I/O, bidirectional                     | Optional data signal for use in external memory interfacing. The order<br>of the DQ bits within a designated DQ bus is not important; however,<br>use caution when making pin assignments if you plan on migrating to<br>a different memory interface that has a different DQ bus width.<br>Analyze the available DQ pins across all pertinent DQS columns in<br>the pin list.                                                                                                                           | Connect unused pins as defined in the Quart                                                                                                                                                 |
| Hard Memory PHY Pins                                | ļ                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |
| [B,T]_DQS_[#]                                       | I/O, bidirectional                     | Optional data strobe signal for use in external memory interfacing.<br>These pins drive to dedicated DQS phase shift circuitry. The shifted<br>DQS signal can also drive to internal logic.                                                                                                                                                                                                                                                                                                              | If hard memory PHY is used, connection to n<br>details, refer to the specific device pinout file<br>Connect unused pins as defined in the Quart                                             |
| [B,T]_DQS#_[#]                                      | I/O, bidirectional                     | Optional complementary data strobe signal for use in external memory interfacing. These pins drive to dedicated DQS phase shift circuitry.                                                                                                                                                                                                                                                                                                                                                               | If hard memory PHY is used, connection to n<br>details, refer to the specific device pinout file<br>Connect unused pins as defined in the Quart                                             |

| nnections according to I/O assignment and placement rules. The is document or the device handbook.                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection Guidelines                                                                                                                            |
| PY pin configured as an open-drain output pin, connect this pin to an PGM.                                                                       |
| _READY pin configured as an open-drain output pin and when this pin is nds connecting this pin as defined in the Quartus II software.            |
| DR pin configured as an open-drain output pin, connect this pin through                                                                          |
| CPGM.<br>_ERROR pin configured as an open-drain output pin and when this pin<br>nends connecting this pin as defined in the Quartus II software. |
| E pin configured as an open-drain output pin, connect this pin through an PGM.                                                                   |
| _DONE configured as an open-drain output pin and when this pin is not connecting this pin as defined in the Quartus II software.                 |
| Quartus II software.                                                                                                                             |
|                                                                                                                                                  |
| Quartus II software.                                                                                                                             |
|                                                                                                                                                  |
| Quartus II software.                                                                                                                             |
|                                                                                                                                                  |
|                                                                                                                                                  |
|                                                                                                                                                  |
| Quartus II software.                                                                                                                             |
|                                                                                                                                                  |
| Quartus II software.                                                                                                                             |
|                                                                                                                                                  |
| Quartus II software.                                                                                                                             |
|                                                                                                                                                  |
|                                                                                                                                                  |
| n to memory device DQS pin must start from [B,T]_DQS_0 pin. For<br>ut file.<br>Quartus II software.                                              |
| n to memory device DQSn pin must start from [B,T]_DQS#_0 pin. For<br>ut file.<br>Quartus II software.                                            |
|                                                                                                                                                  |

# Cyclone<sup>®</sup> V Device Family Pin Connection Guidelines

|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | Preliminary PCG-0101                                                                                                                                                                                                                                                             | 4-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Altera recommends that you create a Quartus <sup>®</sup> II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook. |                                    |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Cyclone V Pin Name                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pin Type (1st and<br>2nd Function) | Pin Description                                                                                                                                                                                                                                                                  | Connection Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| [B,T]_DQ_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                        | I/O, bidirectional                 | Optional data signal for use in external memory interfacing. Use caution when making pin assignments if you plan on migrating to a different memory interface that has a different DQ bus width. Analyze the available DQ pins across all pertinent DQS columns in the pin list. | If hard memory PHY is used, connection to memory device DQ pin must start from [B,T]_DQ_0 pin. For details, refer to the specific device pinout file.<br>Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                  |  |  |
| [B,T]_DM_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                        | I/O, Output                        | Optional write data mask, edge-aligned to DQ during write.                                                                                                                                                                                                                       | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_WE#                                                                                                                                                                                                                                                                                                                                                                                                                                           | I/O, Output                        | Write enable. Write-enable input for DDR2, DDR3 SDRAM, and RLDRAM II.                                                                                                                                                                                                            | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_CAS#                                                                                                                                                                                                                                                                                                                                                                                                                                          | I/O, Output                        | Column address strobe for DDR2 and DDR3 SDRAM.                                                                                                                                                                                                                                   | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_RAS#                                                                                                                                                                                                                                                                                                                                                                                                                                          | I/O, Output                        | Row address strobe for DDR2 and DDR3 SDRAM.                                                                                                                                                                                                                                      | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| REF#_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                            | TBD                                | ТВД                                                                                                                                                                                                                                                                              | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_RESET#                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO, Output                         | Active low reset signal.                                                                                                                                                                                                                                                         | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_CK                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO, Output                         | Output clock for external memory devices.                                                                                                                                                                                                                                        | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_CK#                                                                                                                                                                                                                                                                                                                                                                                                                                           | IO, Output                         | Output clock for external memory devices, inverted CK.                                                                                                                                                                                                                           | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_CKE_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO, Output                         | Active high clock enable.                                                                                                                                                                                                                                                        | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_BA_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO, Output                         | Bank address input for DDR2, DDR3 SDRAM, and RLDRAM II.                                                                                                                                                                                                                          | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_A_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                         | IO, Output                         | Address input for DDR2, DDR3 SDRAM, and RLDRAM II.                                                                                                                                                                                                                               | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_CS#_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO, Output                         | Active low chip select.                                                                                                                                                                                                                                                          | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_CA_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO, Output                         | Command and address inputs for LPDDR and LPDDR2 SDRAM.                                                                                                                                                                                                                           | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| [B,T]_ODT_[#]                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO, Output                         | On-die termination signal enables and disables termination resistance internal to the external memory.                                                                                                                                                                           | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Reference Pins                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RREF_TL                                                                                                                                                                                                                                                                                                                                                                                                                                             | Input                              | Reference resistor for PLL, specific to the left (L) side of the device.                                                                                                                                                                                                         | If any PLL pin, REFCLK pin, or transceiver channel is used, you must connect each RREF pin on that side of the device through its own individual 2.0- $k\Omega$ +/- 1% resistor to GND. Otherwise, you may connect each RREF pin on that side of the device directly to GND. In the PCB layout, the trace from this pin to the resistor needs to be routed so that it avoids any aggressor signals.                                                                                                  |  |  |
| RZQ_[0,1,2]                                                                                                                                                                                                                                                                                                                                                                                                                                         | I/O, Input                         | Reference pins for I/O banks. The RZQ pins share the same VCCIO with the I/O bank where they are located. The external precision resistor must be connected to the designated pin within the bank. If not required, these pins are regular I/O pins.                             | When the Cyclone V device does not use these dedicated input pins for the external precision resistor or as I/O pins, Altera recommends connecting these pins to GND.<br>When these pins are used for the OCT calibration, the RZQ pins are connected to GND through an external 100 or 240- reference resistor depending on the desired OCT impedance. For the OCT impedance options for the desired OCT scheme, refer to the Cyclone V device handbook, I/O Features in Cyclone V Devices Chapter. |  |  |
| DNU                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Do Not Use                         | Do Not Use (DNU).                                                                                                                                                                                                                                                                | Do not connect to power, GND, or any other signal. These pins must be left floating.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| NC                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Connect                         | Do not drive signals into these pins.                                                                                                                                                                                                                                            | When designing for device migration, these pins may be connected to power, GND, or a signal trace depending on the pin assignment of the devices selected for migration. However, if device migration is not a concern, leave these pins floating.                                                                                                                                                                                                                                                   |  |  |
| Supply Pins (See Notes 4 through 7)                                                                                                                                                                                                                                                                                                                                                                                                                 | )                                  |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| VCC                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power                              | VCC supplies power to the core, periphery, PCIe hard IP, and physical coding sublayer (PCS).                                                                                                                                                                                     | Connect all VCC pins to a 1.1V low noise switching regulator. VCCE_GXBL and VCCL_GXBL pins may be sourced from the same regulator as VCC with a proper isolation filter. Use the Cyclone V Early Power Estimator to determine the current requirements for VCC and other power supplies. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 6.                                                                                    |  |  |
| VCCA_FPLL                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power                              | PLL analog power.                                                                                                                                                                                                                                                                | Connect these pins to a 2.5V low noise switching power supply through a proper isolation filter. This power rail may be shared with VCC_AUX and VCCH_GXBL pins. With a proper isolation filter, these pins may be sourced from the same regulator as VCCIO, VCCPD, and VCCPGM when each of these power supplies require 2.5V. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 7.                                               |  |  |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this of the second second

| Cyclone V Pin Name                  | Pin Type (1st and<br>2nd Function) | Pin Description                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        |
|-------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC_AUX                             | Power                              | Auxiliary supply.                                                                                                                                                                                                                                                                                             | Connect all VCC_AUX pins to a 2.5V low n<br>power rail may be shared with VCCH_GXE<br>may be sourced from the same regulator a<br>supplies require 2.5V.<br>Decoupling for these pins depends on the o<br>3, 4, and 7. |
| VCCIO[#]                            | Power                              | These are I/O supply voltage pins for I/O banks. Each bank can<br>support a different voltage level from 1.2V to 3.3V. Supported I/O<br>standards are LVTTL/ LVCMOS (3.3, 3.0, 2.5, 1.8, 1.5, 1.2V),<br>SSTL(135,125,18,15, 2 Class-I/II), HSTL(18,15,12 Class-I/II),<br>HSUL12, LVDS, LVPECL, and PCI/PCI-X. | Connect these pins to a 1.2V, 1.25V, 1.35V<br>standard required by the specified bank. W<br>VCCPGM, they maybe tied to the same reg<br>Decoupling for these pins depends on the c<br>3, 4, and 8.                      |
| VCCPGM                              | Power                              | Configuration pins power supply which support 1.8, 2.5, 3.0, and 3.3V.                                                                                                                                                                                                                                        | Connect these pins to either a 1.8V, 2.5V, 3<br>requirements as VCCIO and VCCPD, they<br>Decoupling for these pins depends on the c<br>3, and 4.                                                                       |
| VCCPD[#]                            | Power                              | Dedicated power pins.                                                                                                                                                                                                                                                                                         | The VCCPD pins require 2.5V, 3.0V or 3.3V<br>VCCPGM and VCCIO, they maybe tied to t<br>VCCIO voltage.                                                                                                                  |
|                                     |                                    |                                                                                                                                                                                                                                                                                                               | When VCCIO is 3.3V, VCCPD must be 3.3<br>When VCCIO is 3.0V, VCCPD must be 3.0<br>When VCCIO is 2.5V or less, VCCPD must                                                                                               |
|                                     |                                    |                                                                                                                                                                                                                                                                                                               | Decoupling for these pins depends on the o<br>3, 4, and 8.                                                                                                                                                             |
| VCCBAT                              | Power                              | Battery back-up power supply for design security volatile key register.                                                                                                                                                                                                                                       | Connect this pin to a non-volatile battery po<br>volatile key. In this case, do not connect this<br>battery power selected for this supply. Whe<br>3.0V power supply.<br>Cyclone V devices will not exit POR if VCC    |
| GND                                 | Ground                             | Device ground pins.                                                                                                                                                                                                                                                                                           | All GND pins must be connected to the boa                                                                                                                                                                              |
| VREF[#]N0                           | Power                              | Input reference voltage for each I/O bank. If a bank uses a voltage referenced I/O standard for input operation, then these pins are used as the voltage-reference pins for the bank.                                                                                                                         | If the VREF pins are not used, you should o or GND.                                                                                                                                                                    |
| Transceiver Pins (See Notes 4 throu | ıgh 10)                            |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        |
| VCCE_GXBL                           | Power                              | Transmitter and receiver power, specific to the left (L) side of the device.                                                                                                                                                                                                                                  | For Cyclone V GX FPGA, connect VCCE_C<br>For Cyclone V GT FPGA, connect VCCE_C<br>increasing VCCE_GXBL from 1.1V to 1.2V<br>PCI Express Gen 2 transmit jitter specificat<br>device handbook.                           |
|                                     |                                    |                                                                                                                                                                                                                                                                                                               | For all Cyclone V transceiver-based device                                                                                                                                                                             |
|                                     |                                    |                                                                                                                                                                                                                                                                                                               | For details, refer to the respective Cyclone<br>Decoupling for these pins depends on the o<br>Notes 2, 3, 7, and 10.                                                                                                   |
|                                     |                                    |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        |

| nnections according to I/O assignment and placement rules. The is document or the device handbook.                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection Guidelines                                                                                                                                                                                                          |
| w noise switching power supply through a proper isolation filter. This<br>GXBL and VCCA_FPLL pins. With a proper isolation filter, these pins<br>or as VCCIO, VCCPD, and VCCPGM when each of these power                       |
| he design decoupling requirements of the specific board. See Notes 2,                                                                                                                                                          |
| 35V, 1.5V, 1.8V, 2.5V, 3.0V, or 3.3V power supply, depending on the I/O<br>. When these pins have the same voltage requirements as VCCPD and<br>regulator.                                                                     |
| he design decoupling requirements of the specific board. See Notes 2,                                                                                                                                                          |
| V, 3.0V, or 3.3V power supply. When these pins have the same voltage hey maybe tied to the same regulator. he design decoupling requirements of the specific board. See Notes 2,                                               |
| 3.3V. When these pins have the same voltage requirements as to the same regulator. The voltage on VCCPD is dependent on the                                                                                                    |
| 3.3V.<br>3.0V.<br>nust be 2.5V.                                                                                                                                                                                                |
| he design decoupling requirements of the specific board. See Notes 2,                                                                                                                                                          |
| y power source in the range of 1.2V - 3.0V when using design security<br>t this pin to a volatile power source on the board. 3.0V is the typical<br>When you do not use the volatile key, connect this pin to a 1.5V, 2.5V, or |
| CCBAT stays at logic low.                                                                                                                                                                                                      |
| board ground plane.                                                                                                                                                                                                            |
| Id connect them to either the VCCIO in the bank in which the pin resides                                                                                                                                                       |
| E CVPL pipe to a 1.11/ low paice quitabing regulator                                                                                                                                                                           |
| E_GXBL pins to a 1.1V low noise switching regulator.                                                                                                                                                                           |
| E_GXBL pins to a 1.1V or 1.2V linear regulator. Altera recommends .2V for systems which require full compliance to the CPRI 4.9G and ication. For more information, refer to the Transceivers chapters in the                  |
| vice variants, this power rail can be shared with the VCCL_GXBL pins.                                                                                                                                                          |
| one V GX and Cyclone V GT power supply sharing guidelines.<br>he design decoupling requirements of the specific board design. See                                                                                              |

# Cyclone<sup>®</sup> V Device Family Pin Connection Guidelines

| Cyclone <sup>®</sup> V Device Family Pin Connection Guidelines<br>Preliminary PCG-01014-1.5<br>Altera recommends that you create a Quartus <sup>®</sup> II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook. |        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| VCCL_GXBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Power  | Clock network power, specific to the left (L) side of the device.                                                                                                                               | For Cyclone V GX FPGA, connect VCCL_GXBL pins to a 1.1V low noise switching regulator.                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                 | For Cyclone V GT FPGA, connect VCCL_GXBL pins to a 1.1V or 1.2V linear regulator. Altera recommends increasing VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G and PC Express Gen 2 transmit jitter specification. For more information, refer to the Transceivers chapters in the device handbook.                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                 | For all Cyclone V transceiver-based device variants, this power rail can be shared with the VCCE_GXBL pins.                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                 | For details, refer to the respective Cyclone V GX and Cyclone V GT power supply sharing guidelines.<br>Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 7, and 10.                                                                                                                                                                                                                                             |  |  |
| VCCH_GXBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Power  | Transceiver high voltage power, specific to the left (L) side of the device.                                                                                                                    | Connect VCCH_GXBL to a 2.5V low noise switching regulator. This power rail may be shared with VCCA_FPL and VCC_AUX pins. With a proper isolation filter these pins may be sourced from the same regulator as VCCIO, VCCPD, and VCCPGM if any of these power supplies require 2.5V. VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. Decoupling depends on the design decoupling requirements of the specific board design. See Notes 2, 3, 4, and 7. |  |  |
| GXB_RX_L[0:11][p,n],<br>GXB_REFCLK_L[0:11][p,n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Input  | High speed positive (p) or negative (n) differential receiver channels.<br>High speed positive (p) or negative (n) differential reference clock<br>specific to the left (L) side of the device. | These pins are AC-coupled when used. Connect all unused GXB_RX and GXB_REFCLK pins directly to GND. See Note 9.                                                                                                                                                                                                                                                                                                                                                              |  |  |
| GXB_TX_L[0:11][p,n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output | High speed positive (p) or negative (n) differential transmitter channels. Specific to the left (L) side of the device.                                                                         | Leave all unused GXB_TX pins floating.                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| REFCLK[0:3]L_[p,n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input  | High speed positive (p) and negative (n) differential reference clock, specific to the left (L) side of the device.                                                                             | These pins may be AC-coupled or DC-coupled when used. For the HCSL I/O standard, it only supports DC coupling. Connect all unused REFCLK pins directly to GND. See Note 9.                                                                                                                                                                                                                                                                                                   |  |  |

### Altera provides these guidelines only as recommendations. It is the responsibility of the designer to apply simulation results to the design to verify proper device functionality.

1) These pin connection guidelines are based on the Cyclone V GX, GT, and E device variants.

2) Capacitance values for the power supply should be selected after considering the amount of power they need to supply over the frequency of operation of the part plane should be calculated based on current draw and voltage droop requirements of the device/supply. The power plane should then be decoupled using the appropriate structure of the device/supply. decouple higher than 100 MHz because "Equivalent Series Inductance" of the mounting of the packages. Proper board design techniques such as interplane capacit frequency decoupling. The Power Delivery Network (PDN) tool serves as an excellent decoupling analysis tool. For more details, refer to the

Power Delivery Network (PDN) Tool for Cyclone V Devices.

3) Use the Cyclone V Early Power Estimator to determine the current requirements for VCC and other power supplies.

4) These supplies may share power planes across multiple Cyclone V devices.

5) Example 1 and Figure 1 illustrate power supply sharing guidelines for the Cyclone V GX device. Example 2 and Figure 2 illustrate power supply sharing guidelines for the Cyclone V GT device. Example 3 and Figure 3 illustrate power supply sharing guidelines for the Cyclone V E device.

6) Power pins should not share breakout vias from the BGA. Each ball on the BGA needs to have its own dedicated breakout via. VCC must not share breakout vias. 7) Low Noise Switching Regulator - defined as a switching regulator circuit encapsulated in a thin surface mount package containing the switch controller, power FETs, inductor, and other support components. The switching frequency is usually between 800kHz and 1MHz and has fast transient response. The switching frequency range is not an Altera requirement. However, Altera does require the Line Regulation and Load Regulation meet the following specifications:

Line Regulation < 0.4%

Load Regulation < 1.2%

8) The number of modular I/O banks on Cyclone V devices depends on the device density. For the indexes available for a specific device, please refer to the I/O Bank section in the Cyclone V device handbook. 9) For AC-coupled links, the AC-coupling capacitor can be placed anywhere along the channel. PCIe protocol requires the AC-coupling capacitor to be placed on the transmitter side of the interface that permits adapters to be plugged and unplugged.

10) If none of the transceivers are used on one side of the device, then the transceiver power pins on that side may be tied to GND except for the VCCH\_GXBL power pin. The VCCH\_GXBL pin must always be powered.

11) For item [#] Please refer to the device pin table for the pin-out mapping.

| ticular circuit being decoupled. A target impedance for the power |
|-------------------------------------------------------------------|
| priate number of capacitors. On-board capacitors do not           |
| tance with low inductance should be considered for higher         |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules different enders a compile the design and compile the design. from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook. Pin Type (1st Cyclone V HPS **Pin Description Connection Guidelines** and 2nd Pin Name

| Pin Name          | Function)          |                                                                                                                                                                                                                                                                     |                                                                  |
|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Dedicated Configu | iration/JTAG Pins  |                                                                                                                                                                                                                                                                     |                                                                  |
| HPS_TDI           | Input              | JTAG test Data input pin for instructions as well as test and programming Data. Data is shifted in on the rising edge of the TCK pin.                                                                                                                               | Connec<br>VCCPD                                                  |
|                   |                    | This pin has an internal 25-k $\Omega$ pull-up resistor that is always active.                                                                                                                                                                                      | To disa<br>using a                                               |
| HPS_TMS           | Input              | JTAG test mode Select input pin that provides the control signal to determine the transitions of the test access port (TAP) controller state machine.                                                                                                               | Connec<br>VCCPE<br>To disa                                       |
|                   |                    | The TMS pin is evaluated on the rising edge of the TCK pin. Therefore, you must set up the TMS pin before the rising edge of the TCK pin. Transitions in the state machine occur on the falling edge of the TCK after the signal is applied to the TMS pin.         | using a                                                          |
|                   |                    | This pin has an internal 25-k $\Omega$ pull-up resistor that is always active.                                                                                                                                                                                      |                                                                  |
| HPS_TRST          | Input              | Active-low input to asynchronously reset the boundary-scan circuit. This pin has an internal 25-kΩ pull-up that is always active.                                                                                                                                   | Connec<br>VCCPE                                                  |
| HPS_TCK           | Input              | JTAG test clock input pin that clock input to the boundary-scan testing (BST) circuitry. Some operations occur at the rising edge, while others occur at the falling edge.<br>It is expected that the clock input waveform have a nominal 50% duty cycle.           | Connec                                                           |
|                   |                    | This pin has an internal 25-kΩ pull-down that is always active.                                                                                                                                                                                                     |                                                                  |
| HPS_TDO           | Output             | JTAG test Data output pin for instructions as well as test and programming Data. Data is shifted out on the falling edge of the TCK pin. This pin is tri-stated if the Data is not being shifted out of the device.                                                 | To disa<br>In case<br>a 3.3 V<br>input bu<br>to 3.3 V<br>current |
| HPS_nRST          | I/O, bidirectional | Warm reset to the HPS block. Active low input affects the system reset domains which allows debugging to operate. This pin has an internal 25-<br>k $\Omega$ pull-up resistor that is always active.                                                                | Connec<br>VCCRS                                                  |
| HPS_nPOR          | I/O, Input         | Cold reset to the HPS block. Active low input that will reset all HPS logics that can be reset. Places the HPS in a default state sufficient for software to boot. This pin has an internal 25-kΩ pull-up resistor that is always active.                           | Connec<br>VCCRS                                                  |
| HPS_PORSEL        | I/O, Input         | Dedicated input that selects between a standard POR or a fast POR delay for HPS block. A logic low selects a standard POR delay setting and a logic high selects a fast POR delay setting. This pin has an internal 25-kΩ pull-down resistor that is always active. | Connec                                                           |
| Clock Pins        | 1                  |                                                                                                                                                                                                                                                                     | 1                                                                |
| HPS_CLK1          | Input, Clock       | Dedicated clock input pin that drives the main PLL. This provides clocks to the MPU, L3/L4 sub-systems, debug sub-system and the Flash controllers. It can also be programmed to drive the peripheral and SDRAM PLLs.                                               | Connec<br>the cloc<br>the vali<br>Datash<br>operatio             |

hect this pin through a  $1-k\Omega - 10-k\Omega$  pull-up resistor to PD\_HPS in the dedicated I/O bank which the JTAG pin resides. isable the JTAG circuitry, connect the TDI pin to VCCPD\_HPS a 1-kΩ resistor.

nect this pin through a  $1-k\Omega - 10-k\Omega$  - pull-up resistor to the PD\_HPS in the dedicated I/O bank which the JTAG pin resides. isable the JTAG circuitry, connect the TMS pin to VCCPD\_HPS a 1-kΩ resistor.

nect this pin through a  $1-k\Omega - 10-k\Omega$  pull-up resistor to the PD\_HPS in the dedicated I/O bank which the JTAG pin resides.

nect this pin through a 1-k $\Omega$  - 10-k $\Omega$  pull-down resistor to GND.

sable the JTAG circuitry, leave the HPS\_TDO pin unconnected. ses where the HPS\_TDO pin uses VCCPD\_HPS = 2.5 V to drive V JTAG interface, there may be leakage current in the HPS\_TDI buffer of the interfacing devices. An external pull-up resistor tied 3 V on the HPS\_TDI pin may be used to eliminate the leakage ent if needed.

nect this pin through a  $1-k\Omega - 10-k\Omega$  pull-up resistor to RSTCLK\_HPS.

hect this pin through a  $1-k\Omega - 10-k\Omega$  pull-up resistor to RSTCLK\_HPS.

nect this pin directly to VCCRSTCLK\_HPS or GND.

nect a single-ended clock source to this pin. The I/O standard of lock source must be compatible with VCCRSTCLK\_HPS. Refer to alid frequency range of the clock source in Cyclone V Device sheet. The input clock must be present at this pin for HPS ation.

|                           |                                       | levice density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the de                                                                                                                                                          |                                                                                         |
|---------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Cyclone V HPS<br>Pin Name | Pin Type (1st<br>and 2nd<br>Function) | Pin Description                                                                                                                                                                                                                                                                                   |                                                                                         |
| HPS_CLK2                  | Input, Clock                          | Dedicated clock input pin that can be programmed to drive the peripheral and SDRAM PLLs.                                                                                                                                                                                                          | Conne<br>the clo<br>the va<br>Datash<br>use thi<br>uncon<br>progra<br>reserv<br>as an   |
| Supply Pins (See No       | tes 4 through 7)                      |                                                                                                                                                                                                                                                                                                   |                                                                                         |
| VCC_HPS                   | Power                                 | VCC_HPS supplies power to the HPS core.                                                                                                                                                                                                                                                           | Conne<br>poweri<br>may be<br>Use th<br>require<br>Decou<br>require                      |
| VCCIO[#]_HPS              | Power                                 | These are I/O supply voltage pins for I/O banks. Each bank can support a different voltage level from 1.2V to 3.3V. Supported I/O standards are LVTTL/ LVCMOS (3.3, 3.0, 2.5, 1.8, 1.5, 1.2V), SSTL(135,125,18,15, 2 Class-I/II), HSTL(18,15,12 Class-I/II), HSUL12, LVDS, LVPECL, and PCI/PCI-X. | Conne<br>3.3V p<br>specifi<br>as VC0<br>same r<br>and if t<br>VCCIC<br>Decou<br>require |
| VCCPLL_HPS                | Power                                 | VCCPLL_HPS supplies power to the HPS core PLLs.                                                                                                                                                                                                                                                   | Conne<br>throug<br>VCC_4<br>be sou<br>and VC<br>2.5V.<br>Decou<br>require               |
| VCCRSTCLK_HPS             | Power                                 | VCCRSTCLK_HPS supplies power to HPS clock and reset pins.                                                                                                                                                                                                                                         | Conne<br>When<br>VCCIC<br>regulat<br>these p<br>VCCPI<br>Decou<br>require               |

ding to I/O assignment and placement rules. The rules differ nandbook.

### **Connection Guidelines**

nnect a single-ended clock source to this pin. The I/O standard of clock source must be compatible with VCCRSTCLK\_HPS. Refer to valid frequency range of the clock source in Cyclone V Device asheet. This is an optional HPS clock input pin. When you do not this pin, Altera recommends tying it to GND or leaving it onnected. If this pin is unconnected, use the Quartus II software grammable options to internally bias this pin. This pin can be erved as an input tri-state with the weak pull-up resistor enabled, or an output driving GND.

nect all VCC\_HPS pins to a 1.1V low noise switching regulator. If ering down of the FPGA fabric is not required, VCC\_HPS pins be sourced from the same regulator as VCC.

the Cyclone V Early Power Estimator to determine the current irements for VCC\_HPS and other power supplies. oupling for these pins depends on the design decoupling irements of the specific board. See Notes 2, 3, 4, and 6.

nnect these pins to a 1.2V, 1.25V, 1.35V, 1.5V, 1.8V, 2.5V, 3.0V, or / power supply, depending on the I/O standard required by the cified bank. When these pins have the same voltage requirements /CCPD\_HPS and VCCRSTCLK\_HPS, they may be tied to the ne regulator. If powering down of the FPGA fabric is not required if these pins have the same voltage requirement as VCCIO, CIO\_HPS pins may be sourced from the same regulator as VCCIO. coupling for these pins depends on the design decoupling uirements of the specific board. See Notes 2, 3, 4, and 8.

nect these pins to a 2.5V low noise switching power supply ugh a proper isolation filter. This power rail may be shared with the C\_AUX\_SHARED pin. With a proper isolation filter, these pins may ourced from the same regulator as VCCIO\_HPS, VCCPD\_HPS, VCCRSTCLK\_HPS when each of these power supplies require

oupling for these pins depends on the design decoupling irrements of the specific board. See Notes 2, 3, 4, and 7.

nect these pins to either a 1.8V, 2.5V, 3.0V, or 3.3V power supply. en these pins have the same voltage requirements as CIO\_HPS and VCCPD\_HPS, they may be tied to the same ulator. If powering down of the FPGA fabric is not required and if he pins have the same voltage requirement as VCCIO and CPD, they may be tied to the same regulator. oupling for these pins depends on the design decoupling uirements of the specific board. See Notes 2, 3, and 4.

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

| Cyclone V HPS<br>Pin Name | Pin Type (1st<br>and 2nd<br>Function) | Pin Description                                                                                                                                                                                                                                                                              | Connection Guidelines                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC_AUX_SHARED            | Power                                 | Auxiliary supply.                                                                                                                                                                                                                                                                            | VCC_AUX_SHARED must always be powered up at 2.5V for the HPS operation.<br>If powering down of the FPGA fabric is not required, connect this pin to VCC_AUX through a proper isolation filter. See Notes 2,3,4, and 7.                                                                                                                                                                              |
| VCCPD[#]_HPS              | Power                                 | Dedicated power pins.                                                                                                                                                                                                                                                                        | The VCCPD_HPS pins require 2.5V, 3.0V or 3.3V. When these pins have the same voltage requirements as VCCRSTCLK_HPS and VCCIO_HPS, they may be tied to the same regulator. The voltage on VCCPD_HPS is dependent on the VCCIO_HPS voltage. If powering down of the FPGA fabric is not required and if these pins have the same voltage requirement as VCCPD, they may be tied to the same regulator. |
|                           |                                       |                                                                                                                                                                                                                                                                                              | When VCCIO_HPS is 3.3V, VCCPD_HPS must be 3.3V.<br>When VCCIO_HPS is 3.0V, VCCPD_HPS must be 3.0V.<br>When VCCIO_HPS is 2.5V or less, VCCPD_HPS must be 2.5V.<br>Decoupling for these pins depends on the design decoupling                                                                                                                                                                         |
|                           |                                       |                                                                                                                                                                                                                                                                                              | requirements of the specific board. See Notes 2, 3, 4, and 8.                                                                                                                                                                                                                                                                                                                                       |
| VREFB[#]N0_HPS            | Power                                 | Input reference voltage for each I/O bank. If a bank uses a voltage referenced I/O standard for input operation, then these pins are used as the voltage-reference pins for the bank.                                                                                                        | If the VREF pins are not used, you should connect them to either the VCCIO in the bank in which the pin resides or GND.                                                                                                                                                                                                                                                                             |
| Hard Memory PHY Pil       |                                       |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     |
| HPS_DQ[#]                 | I/O, bidirectional                    | Optional data signal for use in external memory interfacing. Use caution when making pin assignments if you plan on migrating to a different memory interface that has a different HPS_DQ bus width. Analyze the available HPS_DQ pins across all pertinent HPS_DQS columns in the pin list. | If hard memory PHY is used, connection to memory device DQ pin<br>must start from [B,T]_DQ_0 pin. For details, refer to the specific device<br>pinout file.<br>Connect unused pins as defined in the Quartus II software.                                                                                                                                                                           |
| HPS_DQS_[#]               | I/O, bidirectional                    | Optional data strobe signal for use in external memory interfacing. These pins drive to dedicated HPS_DQS phase shift circuitry. The shifted DQS signal can also drive to internal logic.                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                 |
| HPS_DQS#_[#]              | I/O, bidirectional                    | Optional complementary data strobe signal for use in external memory interfacing. These pins drive to dedicated HPS_DQS phase shift circuitry.                                                                                                                                               | If hard memory PHY is used, connection to memory device DQSn pin<br>must start from [B,T]_DQS#_0 pin. For details, refer to the specific<br>device pinout file.<br>Connect unused pins as defined in the Quartus II software.                                                                                                                                                                       |
| HPS_DM_[#]                | I/O, Output                           | Optional write data mask, edge-aligned to HPS_DQ during write.                                                                                                                                                                                                                               | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_WE#                   | I/O, Output                           | Write-Enable input for DDR2 andDDR3 SDRAM.                                                                                                                                                                                                                                                   | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_CAS#                  | I/O, Output                           | Column address strobe for DDR2 and DDR3 SDRAM.                                                                                                                                                                                                                                               | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_RAS#                  | I/O, Output                           | Row address strobe for DDR2 and DDR3 SDRAM.                                                                                                                                                                                                                                                  | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_RESET#                | I/O, Output                           | Active low reset signal.                                                                                                                                                                                                                                                                     | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_CK                    | I/O, Output                           | Output clock for external memory devices.                                                                                                                                                                                                                                                    | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_CK#                   | I/O, Output                           | Output clock for external memory devices, inverted CK.                                                                                                                                                                                                                                       | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_CKE_[#]               | I/O, Output                           | Active high clock Enable.                                                                                                                                                                                                                                                                    | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_BA_[#]                | I/O, Output                           | Bank address input for DDR2 and DDR3 SDRAM.                                                                                                                                                                                                                                                  | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_A_[#]                 | I/O, Output                           | Address input for DDR2 and DDR3 SDRAM.                                                                                                                                                                                                                                                       | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_CA_[#]                | I/O, Output                           | Command and address inputs for LPDDR and LPDDR2 SDRAM.                                                                                                                                                                                                                                       | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_CS#_[#]               | I/O, Output                           | Active low chip Select.                                                                                                                                                                                                                                                                      | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |
| HPS_ODT_[#]               | I/O, Output                           | On-die termination signal enables and disables termination resistance internal to the external memory.                                                                                                                                                                                       | Connect unused pins as defined in the Quartus II software.                                                                                                                                                                                                                                                                                                                                          |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules different enders a compile the design and compile the design. from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook. Pin Type (1st Cyclone V HPS **Pin Description** and 2nd **Connection Guidelines** Pin Name Function) Reference Pins Reference pins for I/O banks. The HPS\_RZQ\_0 pins shares the same HPS\_VCCIO with the I/O bank where it is located. The external precision HPS RZQ 0 I/O, Input When the Cyclone V SoC device does not use these dedicated input resistor must be connected to the designated pin within the bank. If not required, these pins are regular I/O pins. pins for the external precision resistor or as I/O pins, Altera recommends connecting these pins to GND. When these pins are used for the OCT calibration, the HPS RZQ 0 pin is connected to GND through an external 100- $\Omega$  or 240- $\Omega$ reference resistor depending on the desired OCT impedance. For the OCT impedance options for the desired OCT scheme, refer to the Cyclone V device handbook, I/O Features in Cyclone V Devices Chapter. General Purpose Input Pins HPS\_GPI# Input General purpose inputs signals in the SDRAM bank These pins use the same VCCIO\_HPS as the other HPS SDRAM pins. Connect unused pins as defined in the Quartus II software. Peripheral Pins (See Note 12) Power-up Function 3 Function 2 Function 1 Function 0 RGMII0 TX CLK 1/0 RGMII0 Transmit clock General Purpose IO Bit 0 lf unu RGMII0\_TXD0 RGMII0 Transmit Data Bit 0 USB1 Data Bit 0 I/O General Purpose IO Bit 1 If unu RGMII0\_TXD1 I/O RGMII0 Transmit Data Bit 1 USB1 Data Bit 1 General Purpose IO Bit 2 lf unu RGMII0\_TXD2 I/O RGMII0 Transmit Data Bit 2 USB1 Data Bit 2 General Purpose IO Bit 3 lf unu RGMII0\_TXD3 I/O RGMII0 Transmit Data Bit 3 USB1 Data Bit 3 General Purpose IO Bit 4 lf unu RGMII0 RXD0 RGMII0 Receive Data Bit 0 I/O USB1 Data Bit 4 General Purpose IO Bit 5 lf unu RGMII0\_MDIO RGMII0 Management Data IO USB1 Data Bit 5 I2C2 Serial Data General Purpose IO Bit 6 I/O If unu RGMII0\_MDC I/O RGMII0 Management Data Clock USB1 Data Bit 6 I2C2 Serial Clock General Purpose IO Bit 7 lf unu RGMIIO\_RX\_CTL I/O RGMII0 Receive Control USB1 Data Bit 7 General Purpose IO Bit 8 If unu RGMII0\_TX\_CTL I/O **RGMII0 Transmit Control** General Purpose IO Bit 9 lf unu RGMII0\_RX\_CLK I/O RGMII0 Receive Clock USB1 Clock General Purpose IO Bit 10 lf unu RGMII0\_RXD1 I/O RGMII0 Receive Data Bit 1 USB1 Stop Data General Purpose IO Bit 11 lf unu RGMII0 RXD2 I/O RGMII0 Receive Data Bit 2 USB1 Direction General Purpose IO Bit 12 lf unu RGMII0\_RXD3 RGMII0 Receive Data Bit 3 USB1 Next Data General Purpose IO Bit 13 I/O lf unu NAND\_ALE I/O NAND Address Latch Enable RGMII1 Transmit clock **QSPI Slave Select 3** General Purpose IO Bit 14 lf unu NAND\_CE RGMII1 Transmit Data Bit 0 USB1 Data Bit 0 I/O NAND Chip Enable General Purpose IO Bit 15 lf unu NAND\_CLE I/O NAND Command Latch Enable RGMII1 Transmit Data Bit 1 USB1 Data Bit 1 General Purpose IO Bit 16 lf unu NAND RE I/O NAND Read Enable RGMII1 Transmit Data Bit 2 USB1 Data Bit 2 General Purpose IO Bit 17 lf unu

| used, program it in Quartus as an input with a weak pull-up. |  |
|--------------------------------------------------------------|--|
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |
| used, program it in Quartus as an input with a weak pull-up. |  |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

| Cyclone V HPS<br>Pin Name<br>NAND_RB | Pin Type (1st<br>and 2nd<br>Function) |                                                                                               | Pin Description     |                              |                     |                           |                                                 |  |  |  |  |  |
|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|------------------------------|---------------------|---------------------------|-------------------------------------------------|--|--|--|--|--|
|                                      | I/O                                   |                                                                                               | NAND Ready/Busy     | RGMII1 Transmit Data Bit 3   | USB1 Data Bit 3     | General Purpose IO Bit 18 | lf used<br>kΩ - 10<br>which t<br>an inpu        |  |  |  |  |  |
| NAND_DQ0                             | I/O                                   |                                                                                               | NAND Data Bit 0     | RGMII1 Receive Data Bit 0    |                     | General Purpose IO Bit 19 | lf unus                                         |  |  |  |  |  |
| NAND_DQ1                             | I/O                                   |                                                                                               | NAND Data Bit 1     | RGMII1 Management Data IO    | I2C3 Serial Data    | General Purpose IO Bit 20 | lf unus                                         |  |  |  |  |  |
| NAND_DQ2                             | I/O                                   |                                                                                               | NAND Data Bit 2     | RGMII1 Management Data clock | I2C3 Serial clock   | General Purpose IO Bit 21 | If unus                                         |  |  |  |  |  |
| NAND_DQ3                             | I/O                                   |                                                                                               | NAND Data Bit 3     | RGMII1 Receive control       | USB1 Data Bit 4     | General Purpose IO Bit 22 | lf unus                                         |  |  |  |  |  |
| NAND_DQ4                             | I/O                                   |                                                                                               | NAND Data Bit 4     | RGMII1 Transmit control      | USB1 Data Bit 5     | General Purpose IO Bit 23 | lf unus                                         |  |  |  |  |  |
| NAND_DQ5                             | I/O                                   |                                                                                               | NAND Data Bit 5     | RGMII1 Receive clock         | USB1 Data Bit 6     | General Purpose IO Bit 24 | If unus                                         |  |  |  |  |  |
| NAND_DQ6                             | I/O                                   |                                                                                               | NAND Data Bit 6     | RGMII1 Receive Data Bit 1    | USB1 Data Bit 7     | General Purpose IO Bit 25 | lf unus                                         |  |  |  |  |  |
| NAND_DQ7                             | I/O                                   |                                                                                               | NAND Data Bit 7     | RGMII1 Receive Data Bit 2    |                     | General Purpose IO Bit 26 | If unus                                         |  |  |  |  |  |
| NAND_WP                              | I/O                                   |                                                                                               | NAND Write Protect  | RGMII1 Receive Data Bit 3    | QSPI Slave Select 2 | General Purpose IO Bit 27 | lf unus                                         |  |  |  |  |  |
| NAND_WE                              | I/O                                   | BOOTSEL2<br>During a cold<br>reset this<br>signal is<br>sampled as a<br>boot select<br>input. | NAND Write Enable   | QSPI Slave Select 1          |                     | General Purpose IO Bit 28 | Conne<br>select<br>Config<br>Select<br>interfac |  |  |  |  |  |
| QSPI_IO0                             | I/O                                   |                                                                                               | QSPI Data IO Bit 0  |                              | USB 1 Clock         | General Purpose IO Bit 29 | lf unus                                         |  |  |  |  |  |
| QSPI_IO1                             | I/O                                   |                                                                                               | QSPI Data IO Bit 1  |                              | USB1 Stop Data      | General Purpose IO Bit 30 | If unus                                         |  |  |  |  |  |
| QSPI_IO2                             | I/O                                   |                                                                                               | QSPI Data IO Bit 2  |                              | USB1 Direction      | General Purpose IO Bit 31 | lf unus                                         |  |  |  |  |  |
| QSPI_IO3                             | I/O                                   |                                                                                               | QSPI Data IO Bit 3  |                              | USB1 Next Data      | General Purpose IO Bit 32 | lf unus                                         |  |  |  |  |  |
| QSPI_SS0                             | I/O                                   | BOOTSEL1<br>During a cold<br>reset this<br>signal is<br>sampled as a<br>boot select<br>input. | QSPI Slave Select 0 |                              |                     | General Purpose IO Bit 33 | Conne<br>select<br>Config<br>Select<br>interfac |  |  |  |  |  |
| QSPI_CLK                             | I/O                                   |                                                                                               | QSPI Clock          |                              |                     | General Purpose IO Bit 34 | When<br>used, o<br>SoC F<br>For oth<br>If unus  |  |  |  |  |  |
| QSPI_SS1                             | I/O                                   | 1                                                                                             | QSPI Slave Select 1 |                              |                     | General Purpose IO Bit 35 | If unus                                         |  |  |  |  |  |

### **Connection Guidelines**

ed as the NAND Ready/Busy input, connect this pin through a 1-10-k $\Omega$  pull-up resistor to VCCPD\_HPS in the dedicated I/O bank the NAND\_RB pin resides. If unused, program it in Quartus as apput with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up. used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

nect a pull-up or pull-down resistor such as  $4.7 \cdot k\Omega - 10 \cdot k\Omega$  to ct the desired boot select values. Refer to the Booting and figuration appendix in the Cyclone V Device Handbook for Boot ect values. This resistor will not interfere with the slow speed face signals that could share this pin.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

nect a pull-up or pull-down resistor such as  $4.7 \cdot k\Omega - 10 \cdot k\Omega$  to ct the desired boot select values. Refer to the Booting and figuration appendix in the Cyclone V Device Handbook for Boot ct values. This resistor will not interfere with the slow speed face signals that could share this pin.

en configured as the QSPI Clock and if single memory topology is d, connect a 50  $\Omega$  series termination resistor near this Cyclone V FPGA device pin.

other topologies use a 25  $\Omega$  resistor.

used, program it in Quartus as an input with a weak pull-up.

used, program it in Quartus as an input with a weak pull-up.

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

| Cyclone V HPS<br>Pin Name | Pin Type (1st<br>and 2nd<br>Function) |                                                                                               |                           | Pin Description           | Connection Guidelines |                           |                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDMMC_CMD                 | I/O                                   |                                                                                               | SDMMC Command Line        | USB0 Data Bit 0           |                       | General Purpose IO Bit 36 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_PWREN               | I/O                                   |                                                                                               | SDMMC Power Enable        | USB0 Data Bit 1           |                       | General Purpose IO Bit 37 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D0                  | I/O                                   |                                                                                               | SDMMC Data Bit 0          | USB0 Data Bit 2           |                       | General Purpose IO Bit 38 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D1                  | I/O                                   |                                                                                               | SDMMC Data Bit 1          | USB0 Data Bit 3           |                       | General Purpose IO Bit 39 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D4                  | I/O                                   |                                                                                               | SDMMC Data Bit 4          | USB0 Data Bit 4           |                       | General Purpose IO Bit 40 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D5                  | I/O                                   |                                                                                               | SDMMC Data Bit 5          | USB0 Data Bit 5           |                       | General Purpose IO Bit 41 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D6                  | I/O                                   |                                                                                               | SDMMC Data Bit 6          | USB0 Data Bit 6           |                       | General Purpose IO Bit 42 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D7                  | I/O                                   |                                                                                               | SDMMC Data Bit 7          | USB0 Data Bit 7           |                       | General Purpose IO Bit 43 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_FB_CLK_IN           | I/O                                   |                                                                                               | SDMMC Clock in            | USB0 Clock                |                       | General Purpose IO Bit 44 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_CCLK_OUT            | I/O                                   |                                                                                               | SDMMC Clock out           | USB0 Stop Data            |                       | General Purpose IO Bit 45 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D2                  | I/O                                   |                                                                                               | SDMMC Data Bit 2          | USB0 Direction            |                       | General Purpose IO Bit 46 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SDMMC_D3                  | I/O                                   |                                                                                               | SDMMC Data Bit 3          | USB0 Next Data            |                       | General Purpose IO Bit 47 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_CLK                 | I/O                                   |                                                                                               | Trace Clock               |                           |                       | General Purpose IO Bit 48 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D0                  | I/O                                   |                                                                                               | Trace Data Bit 0          | SPIS0 Clock               | UART0 Receive Data    | General Purpose IO Bit 49 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D1                  | I/O                                   |                                                                                               | Trace Data Bit 1          | SPIS0 Master Out Slave In | UART0 Transmit        | General Purpose IO Bit 50 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D2                  | I/O                                   |                                                                                               | Trace Data Bit 2          | SPIS0 Master In Slave Out | I2C1 Serial Data      | General Purpose IO Bit 51 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D3                  | I/O                                   |                                                                                               | Trace Data Bit 3          | SPIS0 Slave Select 0      | I2C1 Serial clock     | General Purpose IO Bit 52 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D4                  | I/O                                   |                                                                                               | Trace Data Bit 4          | SPIS1 Clock               | CAN1 Receive          | General Purpose IO Bit 53 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D5                  | I/O                                   |                                                                                               | Trace Data Bit 5          | SPIS1 Master Out Slave In | CAN1 Transmit         | General Purpose IO Bit 54 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D6                  | I/O                                   |                                                                                               | Trace Data Bit 6          | SPIS1 Slave Select Input  | I2C0 Serial Data      | General Purpose IO Bit 55 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| TRACE_D7                  | I/O                                   |                                                                                               | Trace Data Bit 7          | SPIS1 Master In Slave Out | I2C0 Serial clock     | General Purpose IO Bit 56 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SPIM0_CLK                 | 1/O                                   |                                                                                               | SPIM0 Clock               | I2C1 Serial Data          | UART 0 Clear to Send  | General Purpose IO Bit 57 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SPIM0_MOSI                | I/O                                   |                                                                                               | SPIM0 Master Out Slave In | I2C1 Serial clock         | UART0 Request to Send | General Purpose IO Bit 58 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SPIM0_MISO                | I/O                                   |                                                                                               | SPIM0 Master In Slave Out | CAN1 Receive              | UART1 Clear to Send   | General Purpose IO Bit 59 | If unused, program it in Quartus as an input with a weak pull-up.                                                                                                                                                                                                                                                                           |
| SPIM0_SS0                 | I/O                                   | BOOTSEL0<br>During a cold<br>reset this<br>signal is<br>sampled as a<br>boot select<br>input. | SPIM0 Slave Select 0      | CAN1 Transmit             | UART1 Request to Send | General Purpose IO Bit 60 | Connect a pull-up or pull-down resistor such as $4.7 \cdot k\Omega - 10 \cdot k\Omega$ to select the desired boot select values. Refer to the Booting and Configuration appendix in the Cyclone V Device Handbook for Boot Select values. This resistor will not interfere with the slow speed interface signals that could share this pin. |

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules different end of the second from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook. Pin Type (1st Cyclone V HPS and 2nd Pin Description **Connection Guidelines** Pin Name Function) UART0\_RX I/O UART0 Receive CAN0 Receive SPIM0 Slave Select 1 General Purpose IO Bit 61 If unused, program it in Quartus as an input with a weak pull-up. UART0\_TX CLOCKSEL1 UART0 Transmit CAN0 Transmit SPIM1 Slave Select 1 General Purpose IO Bit 62 Connect a pull-up or pull-down resistor such as  $4.7 \cdot k\Omega - 10 \cdot k\Omega$  to I/O During a cold select the desired clock select values. Refer to the Booting and reset this Configuration appendix in the Cyclone V Device Handbook for Clock signal is Select values. This resistor will not interfere with the slow speed sampled as a interface signals that could share this pin. clock select input. I2C0\_SDA I/O I2C0 Serial Data UART1 Receive SPIM1 Clock General Purpose IO Bit 63 f unused, program it in Quartus as an input with a weak pull-up. I2C0\_SCL I/O I2C0 Serial Clock UART1 Transmit SPIM1 Master Out Slave In General Purpose IO Bit 64 If unused, program it in Quartus as an input with a weak pull-up. CAN0\_RX I/O CAN0 Receive UART0 Receive SPIM1 Master In Slave Out General Purpose IO Bit 65 If unused, program it in Quartus as an input with a weak pull-up.

Altera recommends that you create a Quartus® II design, enter your device I/O assignments, and compile the design. The Quartus II software will check your pin connections according to I/O assignment and placement rules. The rules different end of the design of the design of the design of the design. from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook. Pin Type (1st **Cyclone V HPS Pin Description** and 2nd **Connection Guidelines** Pin Name Function) CAN0 TX /0 CLOCKSEL0 CAN0 Transmit UART0 Transmit SPIM1 Slave Select 0 General Purpose IO Bit 66 Connect a pull-up or pull-down resistor such as  $4.7 \text{-} \text{k}\Omega - 10 \text{-} \text{k}\Omega$  to During a cold select the desired clock select values. Refer to the Booting and reset this Configuration appendix in the Cyclone V Device Handbook for Clock signal is Select values. This resistor will not interfere with the slow speed sampled as a interface signals that could share this pin. clock select input.

### Altera provides these guidelines only as recommendations. It is the responsibility of the designer to apply simulation results to the design to verify proper device functionality.

1) These pin connection guidelines are based on the Cyclone V SX, ST, and SE device variants.

2) Capacitance values for the power supply should be selected after considering the amount of power they need to supply over the frequency of operation of the particular circuit being decoupled. A target impedance for the power plane should be calculated based on current draw and voltage droop requirements of the device/supply. The power plane should then be decoupled using the appropriate number of capacitors. On-board capacitors do not decouple higher than 100 MHz because "Equivalent Series Inductance" of the mounting of the packages. Proper board design techniques such as interplane capacitance with low inductance should be considered for higher frequency decoupling. The Power Delivery Network (PDN) tool serves as an excellent decoupling analysis tool. For more details, refer to the

### Power Delivery Network (PDN) Tool for Cyclone V Devices.

3) Use the Cyclone V Early Power Estimator to determine the current requirements for VCC and other power supplies.

4) These supplies may share power planes across multiple Cyclone V devices.

5) Example 4, Figure 4, Example 5, and Figure 5 illustrate power supply sharing guidelines for the Cyclone V SX device. Example 6, Figure 6, Example 7, and Figure 7 illustrate power supply sharing guidelines for the Cyclone V ST device. Example 8, Figure 8, Example 9, and Figure 9 illustrate power supply sharing guidelines for the Cyclone V SE device.

6) Power pins should not share breakout vias from the BGA. Each ball on the BGA needs to have its own dedicated breakout via. VCC must not share breakout vias.

7) Low Noise Switching Regulator - defined as a switching regulator circuit encapsulated in a thin surface mount package containing the switch controller, power FETs, inductor, and other support components. The switching frequency is usually between 800kHz and 1MHz and has fast transient response. The switching frequency range is not an Altera requirement. However, Altera does require the Line Regulation and Load Regulation meet the following specifications: Line Regulation < 0.4%

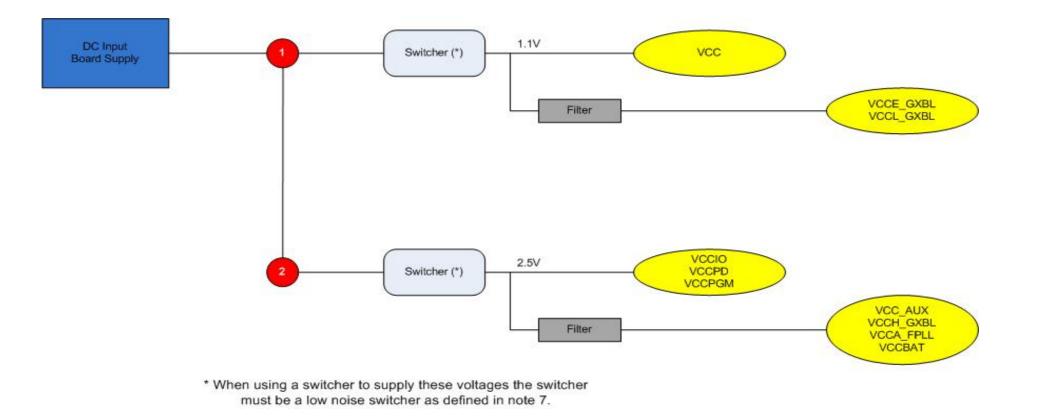
Load Regulation < 1.2%

8) The number of modular I/O banks on Cyclone V devices depends on the device density. For the indexes available for a specific device, please refer to the I/O Bank section in the Cyclone V device handbook. 9) For AC-coupled links, the AC-coupling capacitor can be placed anywhere along the channel. PCIe protocol requires the AC-coupling capacitor to be placed on the transmitter side of the interface that permits adapters to be plugged and unplugged.

10) If none of the transceivers are used on one side of the device, then the transceiver power pins on that side may be tied to GND except for the VCCH GXBL power pin. The VCCH GXBL pin must always be powered. 11) For item [#] Please refer to the device pin table for the pin-out mapping.

12) The peripheral pins are programmable through pin multiplexors. Each pin may have up to four functions. Configuration of each pin is done during HPS configuration.

|                        | Example Requiring 2 Power Regulators |                      |                     |                 |                      |                                                                                                                                                                                                        |   |       |  |  |  |
|------------------------|--------------------------------------|----------------------|---------------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|--|--|--|
| Power<br>Pin Name      | Regulator<br>Count                   | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                  |   |       |  |  |  |
| VCC                    |                                      |                      |                     |                 | Share                | May be able to share VCCL_GXBL and VCCE_GXBL with VCC with proper isolation filters. VCC,                                                                                                              |   |       |  |  |  |
| VCCL_GXBL<br>VCCE_GXBL | 1                                    | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | VCCL_GXBL, and VCCE_GXBL should be placed at power layers nearest to the Cyclone V device.                                                                                                             |   |       |  |  |  |
| VCCIO                  |                                      |                      |                     |                 |                      | If all of these supplies require the same voltage level, and when the regulator selected satisfies the                                                                                                 |   |       |  |  |  |
| VCCPD                  |                                      |                      |                     |                 | _                    | power specifications then these supplies may all be tied in common. However, for any other voltage                                                                                                     |   |       |  |  |  |
| VCCPGM                 |                                      | Varies               |                     |                 | Share<br>if 2.5V     | level, you will require many regulators as there are variations of supplies in your specific design.<br>Use the EPE tool to assist in determining the power required for your specific design.         |   |       |  |  |  |
| VCC_AUX                | 2                                    |                      | ± 5%                | Switcher (*)    |                      | VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to                                                                                                                |   |       |  |  |  |
| VCCA_FPLL              |                                      | 2.5                  |                     |                 |                      | share VCC_AUX, VCCH_GXBL, VCCBAT, and VCCA_FPLL with the same regulator as VCCIO,                                                                                                                      |   |       |  |  |  |
| VCCH_GXBL              |                                      | 2.0                  |                     |                 | Isolate              | VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter.<br>Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If |   |       |  |  |  |
| VCCBAT                 |                                      | Varies               |                     |                 |                      | l.                                                                                                                                                                                                     | 1 | · · · |  |  |  |


Example 1. Cyclone V GX Power Supply Sharing Guidelines

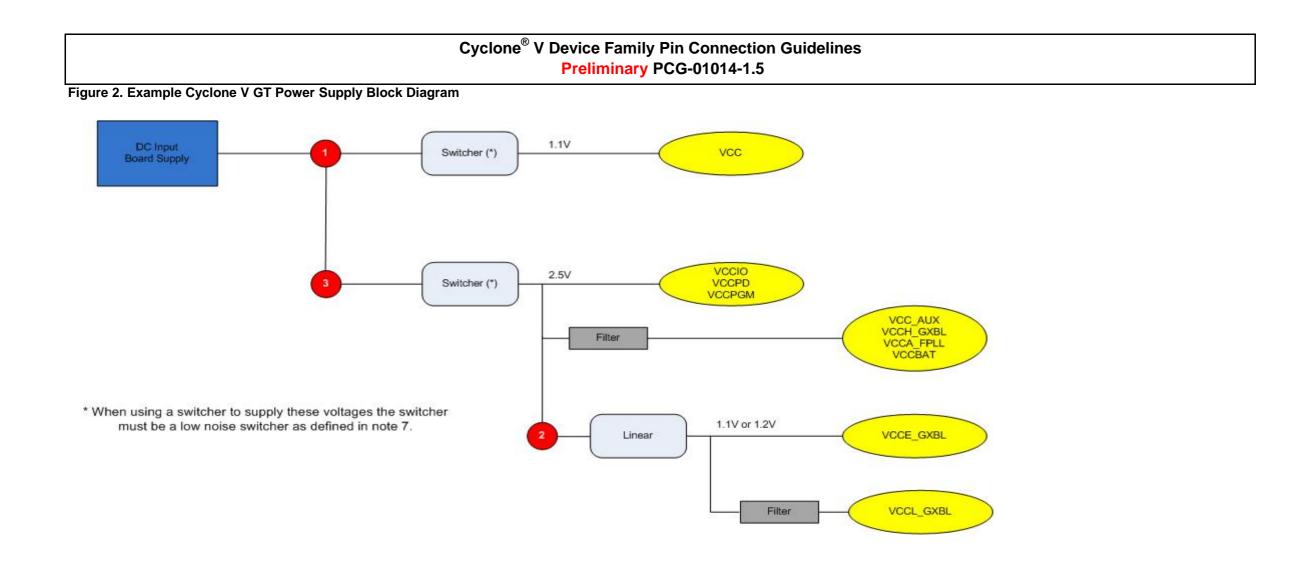
\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V GX device is provided in Figure 1.

Figure 1. Example Cyclone V GX Power Supply Block Diagram




| Example 2. Cyclone                |                    | 1177 3               |                     | E               | Example Requir                                                                                                                                                                                                                                                                                                                                                                | ing 3 Power Regulators                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|--------------------|----------------------|---------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power<br>Pin Name                 | Regulator<br>Count | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing                                                                                                                                                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                 |
| VCC                               | 1                  | 1.1                  | ± 30mV              | Switcher (*)    | Isolate                                                                                                                                                                                                                                                                                                                                                                       | VCC should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                                                 |
| VCCE_GXBL                         | 2                  | 2 1.1 or 1.2 ± 30    | ± 30mV              | Linear          | Share                                                                                                                                                                                                                                                                                                                                                                         | Altera recommends increasing VCCE_GXBL and VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G and PCI Express Gen 2 transmit jitter specification.                                                                                                                                                                                                                |
| VCCL_GXBL                         |                    | 1.1 01 1.2           | 2 00111             | Lindar          | Isolate                                                                                                                                                                                                                                                                                                                                                                       | May be able to share VCCL_GXBL with VCCE_GXBL with proper isolation filters.<br>VCCE_GXBL and VCCL_GXBL should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                             |
| VCCIO<br>VCCPD<br>VCCPGM          | -                  | Varies               |                     |                 | Share<br>if 2.5V                                                                                                                                                                                                                                                                                                                                                              | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. |
| VCC_AUX<br>VCCA_FPLL<br>VCCH_GXBL | 3                  | 3 ± 5%<br>2.5        | Switcher (*)        | Isolate         | VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to share VCC_AUX, VCCH_GXBL, VCCBAT, and VCCA_FPLL with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If |                                                                                                                                                                                                                                                                                                                                                                                                       |
| VCCBAT                            |                    | Varies               |                     |                 |                                                                                                                                                                                                                                                                                                                                                                               | you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.                                                                                                                                                                                                                                                                        |

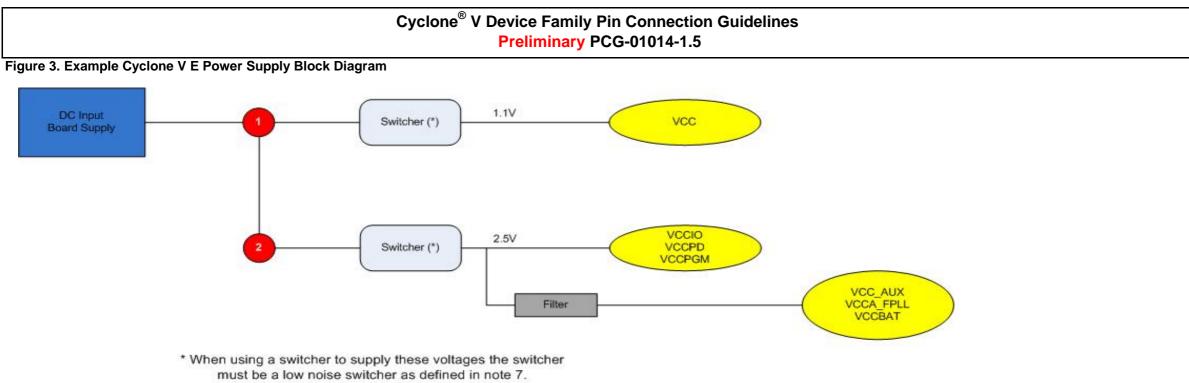
Example 2. Cyclone V GT Power Supply Sharing Guidelines

\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V GT device is provided in Figure 2.




Example 3. Cyclone V E Power Supply Sharing Guidelines

|                                | Example Requiring 2 Power Regulators |           |           |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|--------------------------------|--------------------------------------|-----------|-----------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Power                          | Regulator                            | Voltage   | Supply    | Power        | Regulator        | Notes                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Pin Name                       | Count                                | Level (V) | Tolerance | Source       | Sharing          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| VCC                            | 1                                    | 1.1       | ± 30mV    | Switcher (*) | Share            | VCC should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| VCCIO<br>VCCPD<br>VCCPGM       | -                                    | Varies    |           | Switcher (*) | Share<br>if 2.5V | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.                    |  |  |  |  |  |
| VCC_AUX<br>VCCA_FPLL<br>VCCBAT | 2                                    | 2.5       | ± 5%      |              | Isolate          | May be able to share VCC_AUX, VCCBAT, and VCCA_FPLL with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet. |  |  |  |  |  |
|                                |                                      | Varies    |           |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

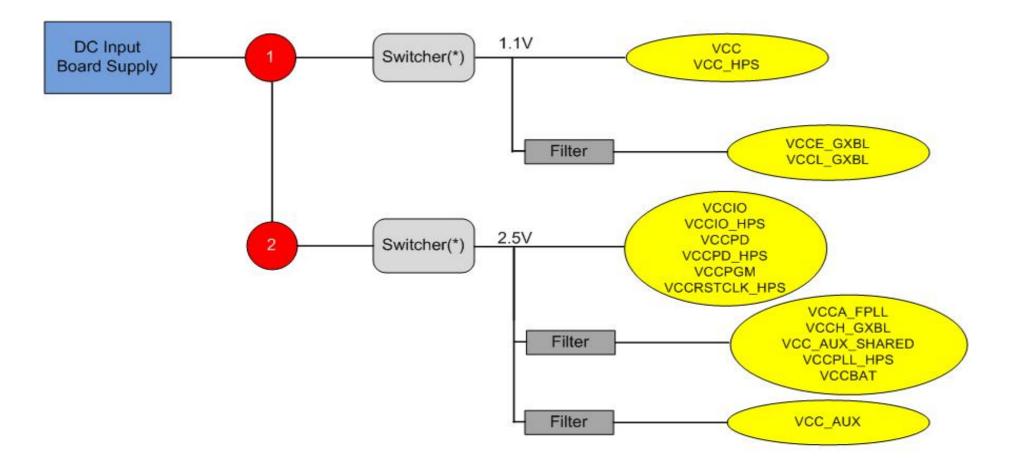
\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V E device is provided in Figure 3.



|                                                                         |                    |                      | E                   | xample Requi    | ring 2 Power R       | egulators (FPGA & HPS share power)                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------|--------------------|----------------------|---------------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power<br>Pin Name                                                       | Regulator<br>Count | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                                                                                                                                                                                                                  |
| VCC<br>VCC_HPS                                                          |                    |                      | 20                  |                 | Share                | May be able to share VCCL_GXBL and VCCE_GXBL with VCC and VCC_HPS with proper isolation filters. VCC, VCC_HPS, VCCL_GXBL, and VCCE_GXBL should be placed at power layers nearest to                                                                                                                                                                                                                    |
| VCCE_GXBL<br>VCCL_GXBL                                                  | 1                  | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | the Cyclone V device.                                                                                                                                                                                                                                                                                                                                                                                  |
| VCCIO_HPS<br>VCCIO_HPS<br>VCCPD<br>VCCPD_HPS<br>VCCPGM<br>VCCRSTCLK_HPS | 2                  | Varies               |                     |                 | Share<br>if 2.5V     | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications, then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. |
| VCC_AUX_SHARED<br>VCCA_FPLL<br>VCCH_GXBL<br>VCCPLL_HPS                  |                    | 2.5                  | ± 5%                | Switcher (*)    | Isolate              | VCC_AUX_SHARED must always be powered up for the HPS operation. VCCA_FPLL, VCCH_GXBL<br>and VCCPLL_HPS must always be powered up for the PLL operation. May be able to share<br>VCC_AUX_SHARED, VCCA_FPLL, VCCH_GXBL, VCCPLL_HPS and VCCBAT with the same<br>regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all                                                        |
| VCCBAT                                                                  |                    | Varies               |                     |                 |                      | power rails require 2.5V, but only with proper isolation filters. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.                                                                                                 |
| VCC_AUX                                                                 |                    | 2.5                  |                     |                 | Isolate              | VCC_AUX must always be powered up for the PLL operation. May be able to share VCC_AUX with the same regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices.                                           |


Example 4. Cyclone V SX Power Supply Sharing Guidelines

\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

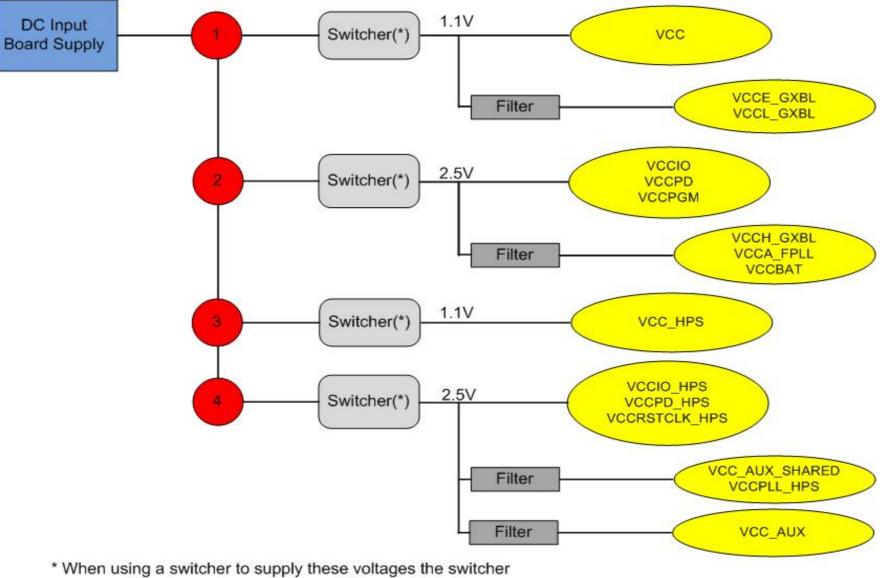
Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SX device is provided in Figure 4.

Figure 4. Example Cyclone V SX Power Supply Block Diagram (FPGA & HPS share power)



\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in Note 7.

### Example 5. Cyclone V SX Power Supply Sharing Guidelines


|                                         | Example Requiring 4 Power Regulators (FPGA & HPS do not share power) |                      |                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------|----------------------|---------------------|-----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| Power<br>Pin Name                       | Regulator<br>Count                                                   | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |  |  |  |
| VCC                                     |                                                                      |                      |                     |                 | Share                | May be able to share VCCL_GXBL and VCCE_GXBL with VCC with proper isolation filters. VCC,                                                                                                                                                                                                                                                                                                             |                                                                                                             |  |  |  |
| VCCE_GXBL<br>VCCL_GXBL                  | 1                                                                    | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | VCCL_GXBL, and VCCE_GXBL should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                            |                                                                                                             |  |  |  |
| VCCIO<br>VCCPD                          | -                                                                    |                      |                     |                 |                      | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage                                                                                                                                                                                             |                                                                                                             |  |  |  |
| VCCPGM                                  |                                                                      | Varies               |                     |                 | Share<br>if 2.5V     | level, you will require many regulators as there are variations of supplies in your specific design.<br>Use the EPE tool to assist in determining the power required for your specific design.                                                                                                                                                                                                        |                                                                                                             |  |  |  |
| VCCH_GXBL<br>VCCA_FPLL                  | 2                                                                    | 2.5                  | ± 5%                | Switcher (*)    | Isolate              | VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to share VCCH_GXBL, VCCA_FPLL and VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design                |                                                                                                             |  |  |  |
| VCCBAT                                  | -                                                                    | Varies               |                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                       | security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet. |  |  |  |
| VCC_HPS                                 | 3                                                                    | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC_HPS should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                           |                                                                                                             |  |  |  |
| VCCIO_HPS<br>VCCPD_HPS<br>VCCRSTCLK_HPS | -                                                                    | Varies               |                     |                 | Share if 2.5V        | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. |                                                                                                             |  |  |  |
| VCCPLL_HPS<br>VCC_AUX_SHARED            | 4                                                                    | 2.5                  | ± 5%                | Switcher (*)    | Isolate              | VCC_AUX_SHARED must always be powered up for the HPS operation. VCCPLL_HPS must always be powered up for the PLL operation. May be able to share VCCPLL_HPS and VCC_AUX_SHARED with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.                                                                         |                                                                                                             |  |  |  |
| VCC_AUX                                 |                                                                      | 2.5                  |                     |                 | Isolate              | VCC_AUX must always be powered up for the PLL operation. May be able to share the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.                                                                                                                                                                               |                                                                                                             |  |  |  |

\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

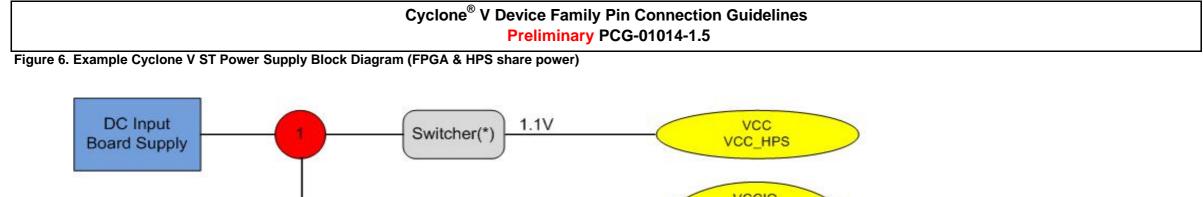
Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SX device is provided in Figure 5.

Figure 5. Example Cyclone V SX Power Supply Block Diagram (FPGA & HPS do not share power)



must be a low noise switcher as defined in Note 7.


|                                                                     |                    |                      | E                   | kample Requi    | ring 3 Power R       | egulators (FPGA & HPS share power)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------|--------------------|----------------------|---------------------|-----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power<br>Pin Name                                                   | Regulator<br>Count | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VCC<br>VCC_HPS                                                      | 1                  | 1.1                  | ± 30mV              | Switcher (*)    | Share                | VCC and VCC_HPS should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VCCE_GXBL                                                           |                    |                      |                     |                 | Share                | Altera recommends increasing VCCE_GXBL and VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G and PCI Express Gen 2 transmit jitter specification.                                                                                                                                                                                                                                                                                                                                                                              |
| VCCL_GXBL                                                           | 2                  | 1.1 or 1.2           | ± 30mV              | Linear          | Isolate              | May be able to share VCCL_GXBL with VCCE_GXBL with proper isolation filters.<br>VCCE_GXBL and VCCL_GXBL should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                                                                                                           |
| VCCIO<br>VCCIO_HPS<br>VCCPD<br>VCCPD_HPS<br>VCCPGM<br>VCCRSTCLK_HPS |                    | Varies               |                     |                 | Share<br>if 2.5V     | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.                                                                                                                                                               |
| VCC_AUX_SHARED<br>VCCH_GXBL<br>VCCA_FPLL<br>VCCPLL_HPS<br>VCCBAT    | 3                  | 2.5                  | ± 5%                | Switcher (*)    | Isolate              | VCC_AUX_SHARED must always be powered up for the HPS operation. VCCA_FPLL, VCCH_GXBL<br>and VCCPLL_HPS must always be powered up for the PLL operation. May be able to share<br>VCC_AUX_SHARED, VCCH_GXBL, VCCA_FPLL, VCCPLL_HPS and VCCBAT with the same<br>regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all<br>power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities<br>this supply may be shared with multiple Cyclone V devices. If you use the design security feature, |
|                                                                     |                    | Varies               | r.                  |                 |                      | VCCBAT should be powered by battery with voltage range as listed in the device datasheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VCC_AUX                                                             |                    | 2.5                  |                     |                 | Isolate              | VCC_AUX must always be powered up for the PLL operation. May be able to share VCC_AUX with the same regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices.                                                                                                                                                                                                        |


### Example 6. Cyclone V ST Power Supply Sharing Guidelines

\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

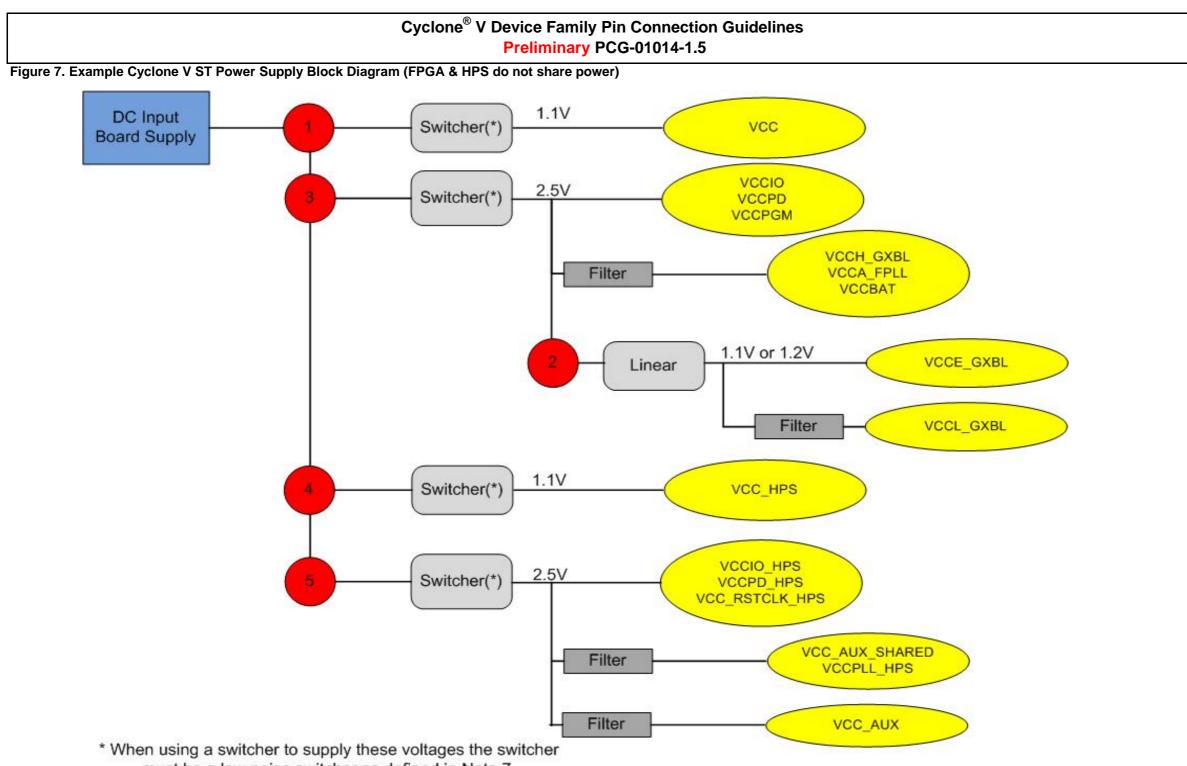
Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V ST device is provided in Figure 6.





must be a low noise switcher as defined in Note 7.


| Power<br>Pin Name | Regulator<br>Count | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                                                                                                                                                  |
|-------------------|--------------------|----------------------|---------------------|-----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC               | 1                  | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | VCC should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                  |
| VCCE_GXBL         |                    |                      |                     |                 | Share                | Altera recommends increasing VCCE_GXBL and VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G and PCI Express Gen 2 transmit jitter specification.                                                                                                                                                 |
| VCCL_GXBL         | 2                  | 1.1 or 1.2           | ± 30mV              | Linear          | Isolate              | May be able to share VCCL_GXBL with VCCE_GXBL with proper isolation filters.<br>VCCE_GXBL and VCCL_GXBL should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                              |
| VCCIO             |                    |                      |                     |                 |                      | If all of these supplies require the same voltage level, and when the regulator selected satisfies the                                                                                                                                                                                                                                 |
| VCCPD<br>VCCPGM   | -                  | Varies               |                     |                 | Share<br>if 2.5V     | power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.                                         |
| VCCH_GXBL         | 3                  | 2.5                  | ± 5%                | Switcher (*)    |                      | VCCH_GXBL and VCCA_FPLL must always be powered up for PLL operation. May be able to share VCCH_GXBL, VCCA_FPLL and VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM                                                                                                                                                          |
| VCCA_FPLL         |                    |                      |                     |                 | Isolate              | when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.                       |
| VCCBAT            |                    | Varies               |                     |                 |                      |                                                                                                                                                                                                                                                                                                                                        |
| VCC_HPS           | 4                  | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC_HPS shoul<br>be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                          |
| VCCIO_HPS         | -                  |                      |                     |                 |                      | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage                                                                                                                              |
| VCCRSTCLK_HPS     | -                  | Varies               |                     |                 | Share if 2.5V        | level, you will require many regulators as there are variations of supplies in your specific design.<br>Use the EPE tool to assist in determining the power required for your specific design.                                                                                                                                         |
| VCC_AUX_SHARED    |                    |                      |                     |                 |                      | VCC_AUX_SHARED must always be powered up for the HPS operation. VCCPLL_HPS must always be powered up for the PLL operation. May be able to share VCC_AUX_SHARED and VCCPLL_HPS                                                                                                                                                         |
| VCCPLL_HPS        | 5                  |                      | ± 5%                | Switcher (*)    | Isolate              | with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.                                                                                                                                                                                         |
| VCC_AUX           |                    | 2.5                  |                     |                 | Isolate              | VCC_AUX must always be powered up for the PLL operation. May be able to share VCC_AUX with th same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. |

Example 7. Cyclone V ST Power Supply Sharing Guidelines

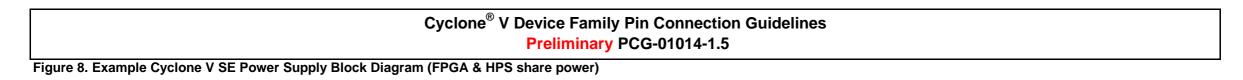
\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

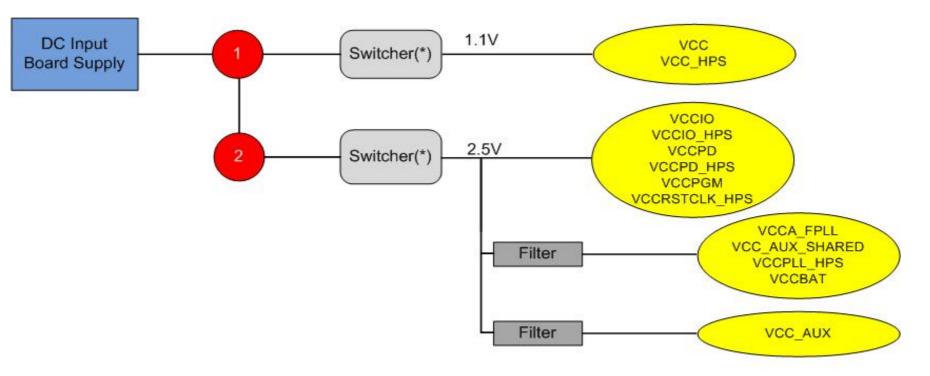
Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V ST device is provided in Figure 7.



must be a low noise switcher as defined in Note 7.


|                                                                     | Example Requiring 2 Power Regulators (FPGA & HPS share power) |                      |                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------|----------------------|---------------------|-----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Power<br>Pin Name                                                   | Regulator<br>Count                                            | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| VCC<br>VCC_HPS                                                      | 1                                                             | 1.1                  | ± 30mV              | Switcher (*)    | Share                | VCC and VCC_HPS should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                                     |  |  |  |
| VCCIO<br>VCCIO_HPS<br>VCCPD<br>VCCPD_HPS<br>VCCPGM<br>VCCRSTCLK HPS |                                                               | Varies               |                     |                 | Share<br>if 2.5V     | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. |  |  |  |
| VCC_AUX_SHARED<br>VCCA_FPLL<br>VCCPLL_HPS                           | 2                                                             | 2.5                  | ± 5%                | Switcher (*)    | Isolate              | VCC_AUX_SHARED must always be powered up for the HPS operation. May be able to share<br>VCC_AUX_SHARED, VCCA_FPLL, VCCPLL_HPS and VCCBAT with the same regulator as VCCIO,<br>VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all power rails require                                                                                                                                      |  |  |  |
| VCCBAT                                                              |                                                               | Varies               |                     |                 |                      | 2.5V, but only with proper isolation filters. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.                                                                                                                    |  |  |  |
| VCC_AUX                                                             |                                                               | 2.5                  |                     |                 | Isolate              | VCC_AUX must always be powered up for the PLL operation. May be able to share VCC_AUX with the same regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices.                                          |  |  |  |


Example 8. Cyclone V SE Power Supply Sharing Guidelines

\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

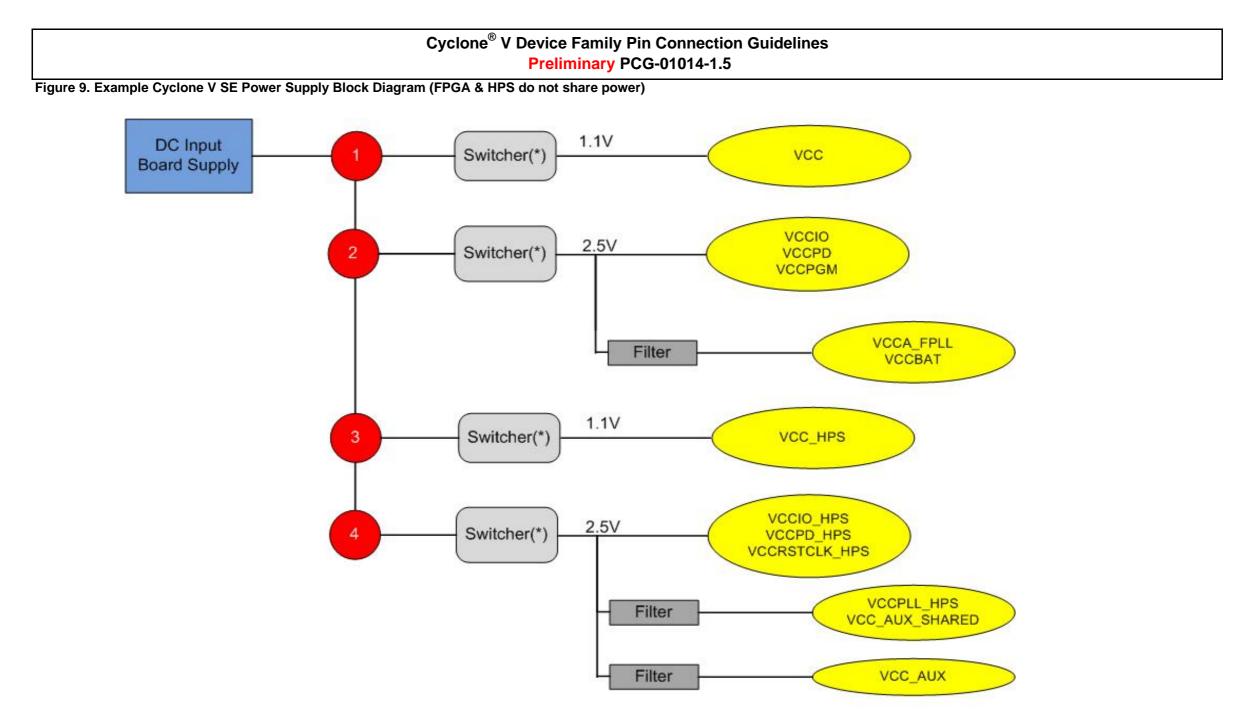
Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SE device is provided in Figure 8.





\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in Note 7.


|                                         |                    |                      | Exam                | ple Requiring   | g 4 Power Regu       | lators (FPGA & HPS do not share power)                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|--------------------|----------------------|---------------------|-----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power<br>Pin Name                       | Regulator<br>Count | Voltage<br>Level (V) | Supply<br>Tolerance | Power<br>Source | Regulator<br>Sharing | Notes                                                                                                                                                                                                                                                                                                                                                                                                 |
| VCC                                     | 1                  | 1.1                  | ± 30mV              | Switcher (*)    | Share                | VCC should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                                                                                                                 |
| VCCIO<br>VCCPD<br>VCCPGM                |                    | Varies               |                     |                 | Share<br>if 2.5V     | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. |
| VCCA_FPLL                               | 2                  | 2.5                  | ± 5%                | Switcher (*)    |                      | VCCA_FPLL must always be powered up for PLL operation May be able to share VCCA_FPLL and                                                                                                                                                                                                                                                                                                              |
| VCCBAT                                  |                    | Varies               | ± 5 %               |                 |                      | VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.                           |
| VCC_HPS                                 | 3                  | 1.1                  | ± 30mV              | Switcher (*)    | Isolate              | Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC_HPS should be placed at power layers nearest to the Cyclone V device.                                                                                                                                                                                                                                           |
| VCCIO_HPS<br>VCCPD_HPS<br>VCCRSTCLK_HPS |                    | Varies               |                     |                 | Share if 2.5V        | If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. |
| VCCPLL_HPS<br>VCC_AUX_SHARED            | 4                  | 2.5                  | ± 5%                | Switcher (*)    | Isolate              | VCC_AUX_SHARED must always be powered up for the HPS operation. VCCPLL_HPS must always be powered up for the PLL operation. May be able to share VCCPLL_HPS and VCC_AUX_SHARED with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.                                                                         |
| VCC_AUX                                 |                    |                      |                     |                 | Isolate              | VCC_AUX must always be powered up for the PLL operation. May be able to share the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.                                                                                                                                                                               |

### Example 9. Cyclone V SE Power Supply Sharing Guidelines

\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SE device is provided in Figure 9.



\* When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in Note 7.

| Cyclone <sup>®</sup> V Device Family Pin Connection Guidelines<br>Preliminary PCG-01014-1.5<br>Paviaion History |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Revision                                                                                                        | Revision History Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |  |  |  |  |  |  |
| 1.0                                                                                                             | Initial Release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date<br>11/25/2011 |  |  |  |  |  |  |
| 1.1                                                                                                             | Updated VCCA_FPLL and VCCH_GXBL power-up requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3/29/2012          |  |  |  |  |  |  |
| 1.2                                                                                                             | Added power supply sharing guidelines for Cyclone V GT and E devices, updated the pull-down requirement for unused transceiver receivers and REFCLK pins, and updated the INIT_DONE pin connection guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/13/2012          |  |  |  |  |  |  |
| 1.3                                                                                                             | Updated the power sharing guidelines for Cyclone V GT devices and updated the VCCE_GXBL, VCCL_GXBL, and nPERST[L0,L1] connection guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/16/2012         |  |  |  |  |  |  |
| 1.4                                                                                                             | <ol> <li>Added HPS Pin Connection Guidelines.</li> <li>Added power supply sharing guidelines for Cyclone V SX, ST, and SE devices.</li> <li>Added [B,T]_DQS_[#], [B,T]_DQS#_[#], and [B,T]_DQ_[#] pins.</li> <li>Updated pin description and connection guidelines for the VREF pin.</li> <li>Updated connection guidelines for the RREF pin.</li> <li>Updated pin description for the DIFFIO_TX pin.</li> </ol>                                                                                                                                                                                                                                                                                                                                                        | 11/19/2012         |  |  |  |  |  |  |
| 1.5                                                                                                             | <ol> <li>Updated Connection Guidelines for HPS_CLK1 and HPS_CLK2 with 'VCCRSTCLK_HPS'.</li> <li>Updated Pin Description for DIFFIO_TX_[B,T,R][#:#]p, DIFFIO_TX_[B,T,R][#:#]n with 'transmitter'.</li> <li>Updated Connection Guidelines where 'If powering down the FPGA fabric is required, tie this pin to 2.5V' is removed and "See Notes 2,3,4, and 7." is added</li> <li>Updated Pin Description for NAND_DQ0, NAND_DQ3 and NAND_DQ5 with 'Receive'.</li> <li>Updated Pin Description for TRACE_D3 with 'Slave'.</li> <li>Updated Note 7) with 'The switching frequency range is not an Altera requirement. However, Altera does require the Line Regulation and Load Regulation meet the following specifications:'</li> <li>Added VREFB[#]N0_HPS pin.</li> </ol> | 1/22/2013          |  |  |  |  |  |  |