

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

1

CONTENTS

CHAPTER 1 OVERVIEW .. 2

1.1. REQUIRED BACKGROUND ... 2

1.2. SYSTEM REQUIREMENTS .. 3

1.3. ALTERA SOC FPGA ... 4

1.4. SOURCE CODE .. 5

CHAPTER 2 QUARTUS PROJECT .. 6

2.1. MY_FIRST_HPS-FPGA_BASE QUARUTS PROJECT ... 6

2.2. CREATE A QUARTUS PROJECT ... 8

2.3. COMPILE AND PROGRAMMING .. 11

CHAPTER 3 C PROJECT ... 12

3.1. HPS HEADER FILE.. 12

3.2. MAP PIO_LED ADDRESS .. 13

3.3. LED CONTROL ... 14

3.4. MAIN PROGRAM ... 15

3.5. MAKEFILE AND COMPILE .. 16

3.6. EXECUTE THE DEMO .. 17

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

2

Chapter 1

Overview

This tutorial introduces to SoC FPGA Beginners how to use the HPS/ARM to communicate with

FPGA. The “My First HPS-FPGA” project demonstrates the implementation details. This project

includes one Quartus project and one ARM C Project which demonstrates how HPS/ARM program

controls the ten LEDs connected to FPGA.

Before reading this tutorial, developers need to read the documents below：

 DE0-Nano-SoC_Getting_Started_Guide.pdf

 My_First_Fpga.pdf

 My_First_HPS.pdf

For tutorial purpose, this document asks developers to create a HPS enabled Quartus project based

on the project named my_first_hps-fpga_base. However, for the development of a formal HPS

enabled project, developers are expected to create a Quartus project based on the

DE0-Nano-SoC-GHRD (Golden Hardware Reference Design) project, which is included in the

SYSTEM CD.

11..11.. RReeqquuiirreedd BBaacckkggrroouunndd

This tutorial pre-assumed the developers have the following background knowledge:

 FPGA RTL Design

 Basic Quartus II operation skill

 Basic RTL coding skill

 Basic Qsys operation skill

 Knowledge about Altera Memory-Mapped Interface

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

3

 C Program Design

 Basic Altera SoC EDS(Embedded Design Suite) operation skill

 Basic C coding and compiling skill

 Skill to Create a Linux Boot SD-Card for DE0-Nano-SoC with a given image file

 Skill to boot Linux from SD-Card on DE0-Nano-SoC

 Skill to cope files into Linux file system on DE0-Nano-SoC

 Basic Linux command operation skill

11..22.. SSyysstteemm RReeqquuiirreemmeennttss

Before starting this tutorial, please note that the following items are required to complete the

demonstration project:

 Altera DE0-Nano-SoC FPGA board, includes

 Mini USB Cable for UART terminal

 Micros SD-Card, at 4GB

 Micros SD-Card Card Reader

 A x86 PC

 Windows 7 Installed

 One USB Port

 Quartus II 14.1 or Later Installed

 Altera SoC EDS 14.1 or Later Installed

 Win32 Disk Imager Installed

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

4

11..33.. AAlltteerraa SSooCC FFPPGGAA

In Altera SoC FPGA, the HPS logic and FPGA fabric are connected through the AXI (Advanced

eXtensible Interface) bridge. For HPS logic to communicate with FPGA fabric, Altera system

integration tool Qsys should be used for the system design to add Altera HPS component. From the

AXI master port of the HPS component, HPS can access those Qsys components whose

memory-mapped slave ports are connected to the master port.

The HPS contains the following HPS-FPGA AXI bridges:

 FPGA-to-HPS Bridge

 HPS-to-FPGA Bridge

 Lightweight HPS-to-FPGA Bridge

Figure 1-1 shows a block diagram of the AXI bridges in the context of the FPGA fabric and the L3

interconnect to the HPS. Each master (M) and slave (S) interface is shown with its data width(s).

The clock domain for each interconnect is noted in parentheses.

Figure 1-1 AXI Bridge Block Diagram

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

5

The HPS-to-FPGA bridge is mastered by the level 3 (L3) main switch and the lightweight

HPS-to-FPGA bridge is mastered by the L3 slave peripheral switch. In the Quartus, HPS-to-FPGA

bridge is used for ARM/HSP to control the LEDs which is connected to FPGA.

The FPGA-to-HPS bridge masters the L3 main switch, allowing any master implemented in the

FPGA fabric to access most slaves in the HPS. For example, the FPGA-to-HPS bridge can access

the accelerator coherency.

All three bridges contains global programmer view GPV register. The GPV register control the

behavior of the bridge. It is able to access to the GPV registers of all three bridges through the

lightweight HPS-to-FPGA bridge.

11..44.. SSoouurrccee CCooddee

The demonstration source codes include a Quartus project and a C project. They are located in the

folder:

CD-ROM\Demonstration\SOC_FPGA\my_first_hps-fpga

The Quartus Project is located in the sub-folder “fpga-rtl” and the C project is located in the

sub-folder “hps-c”. In this tutorial, developer are expected to establish these projects from a new

one..

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

6

Chapter 2

Quartus Project

This chapter introduces how the MY First HSP-FPGA Quartus project is created based on the

my_first_hps-fpga_base Quartus project. Base on this Quarturs project, a PIO component for

controlling LED is added, a connection between the slave port of the PIO component and the master

port of HPS component is established.

22..11.. mmyy__ffiirrsstt__hhppss--ffppggaa__bbaassee QQuuaarruuttss PPrroojjeecctt

my_first_hps-fpga_base Quartus project is located in the DE0-Nano-SoC System CD folder:

CD-ROM\Demonstration\SOC_FPGA\my_first_hps-fpga_base

This Quartus project includes all required pin declearing for both HPS and FPGA. Note, the pin

declaration of HPS needs to specify pin direction and IO standard. Pin location is not required for

the pin declaration of HPS. The golden project also includes basic Qsys system which already

includes a HPS component. The HPS component has been well-configured according to hardware

design of DE0-Nano-SoC HPS.

Developers can open the Qsys system by opening the Quartus project, and clicking the menu item

“ToolsQsys” in Quartus II. When Qsys tool is launched, it will ask user to select a target Qsys

system file. In this case, please select the Qsys file “soc_system.qsys”. Figure 2-1 shows the

content of soc_system.qsys Qsys system. It contains hps_0 HPS component.

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

7

Figure 2-1 hps_0 HSP Component in Qsys System

Figure 2-2 shows the lightweight HPS-to-FPGA AXI Master port of the HPS component.

Developers can connect this port to any memory-mapped slave port of components which developer

wish to access from HPS/ARM.

Figure 2-2 AXI Master Port of HPS component

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

8

22..22.. CCrreeaattee aa QQuuaarrttuuss PPrroojjeecctt

This section will show how to add a PIO component in Qsys and how to connect the PIO

component to the HPS component. The PIO component is used to control the ten red LEDs

connected to FPGA. First, please copy the my_first_hps-fpga_base Quartus project to local disk.

Open the project and open the Qsys system file “soc_system.qsys”.

In the Library dialog of Qsys tool, enter ‘pio’ search key as shown in Figure 2-3. When “PIO

(Parallel I/O)” appears, select it. Then, click “Add…” to add the PIO component to the system.

Figure 2-3 Find and Add PIO Component

When PIO dialog appears, please change Width to 8, make sure “Output” Direction is selected,

and change the Output Port Reset Value to 0xff as shown in Figure 2-4.

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

9

Figure 2-4 Configure PIO Component

When the PIO component is added into the system, please connect the h2f_lw_axi_master AXI

master port to the s1 slave port of the PIO component as shown in Figure 2-5. By the way, please

change PIO component name to pio_led, change the Clock Input to clk_0, export the Conduit

signal as pio_led_external_connection, and connect the Reset Input to system reset. Note, the

Base address of pio_led PIO component is very important. The ARM program will access the

component according to this base address. In this demonstration, the base address is fixed at

0x0000_0000. The ARM program developer should remember this base address or use a given

Linux shell batch file to extract the address information to a header file hps_0.h. The detail

procedure will be described in the next chapter.

Figure 2-5 Create Connection Between HPS and PIO component

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

10

In the Qsys tool, click menu item “GenerateHDL Example…” can find the new interface signal

pio_led_external_connection_export for the added pio_led PIO component as shown in Figure

2-6. Developer can click ‘Copy’ to copy the content to a clipboard, then paste the

pio_led_external_connection_export signal to Quartus top and connect it to the LEDR port as

shown in Figure 2-7. Before closing the Qsys tool, please remember to click the menu item

“GenerateGenerate…” to generate source code for the system.

Figure 2-6 pio_led Interface of System

Figure 2-7 Initialize .pio_led_external_commection_export in u0 soc_system

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

11

22..33.. CCoommppiillee aanndd PPrrooggrraammmmiinngg

Now, developers can start the compile process by clicking the menu item “ProcessingStart

Compilation”. When the compilation process is completed successfully, soc_system.sof is

generated. Developers can use this file to configure FPGA by Quartus Programming through the

DE0-Nano-SoC on-board USB-Blaster II.

Because .tcl files of SDRAM DDR3 controller for HPS had been executed in

my_frist_hps-fpga_base Quartus project, so developers can skip these projects. If developers’

Quartus project is not developed based on the my_frist_hps-fpga_base Quartus project, please

remember to execute the .tcl files, as show in Figure 2-8, before executing ‘Start Compilation’. The

TCL Scripts dialog can be launched by clicking the menu item “ToolsTCL Scripts…”.

<qsys_system_name>_parameters.tcl and <qsys_system_name>_pin_assignments.tcl tcl files

should be executed, where <qsys_system_name> is the name of your Qsys system. Run this script

to assign constrains tor the SDRAM DDR3 component.

Figure 2-8 TCL file for SDRAM DDR3 of HPS

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

12

Chapter 3

C Project

This chapter introduces how to design an ARM C program to control the pio_led PIO controller.

Altera SoC EDS is used to compile the C project. For ARM program to control the pio_led PIO

component, pio_led address is required. The Linux built-in driver ‘/dev/mem’ and mmap

system-call are used to map the physical base address of pie_led component to a virtual address

which can be directly accessed by Linux application software.

33..11.. HHPPSS HHeeaaddeerr FFiillee

pio_led component information is required for ARM C program as the program will attempt to control the

component. This section describes how to use a given Linux shell batch file to extract the Qsys HPS

information to a header file which will be included in the C program later.

The batch file mentioned above is called as generate_hps_qsys_header.sh. It is located in the same

folder as my_first_hps-fpga Quartus project. To generate the header file, launch Altera SoC EDS

command shell, go to the Quartus project folder, and execute generate_hps_qsys_header.sh by

typing ‘./generate_hps_qys_header.sh”. Then, press ENTER key,a header file hps_0.h will be

generated. In the header file, the pio_led base address is represented by a constant

PIO_LED_BASE as show in Figure 3-1. The pio_led width is represented by a constant

PIO_LED_DATA_WIDTH. These two constants will be used in the C program demonstration code.

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

13

Figure 3-1 pio_led information defined in hps_0.h

33..22.. MMaapp ppiioo__lleedd AAddddrreessss

This section will describe how to map the pio_led physical address into a virtual address which is

accessible by an application software. Figure 3-2 shows the C program to derive the virtual address

of pio_led base address. First, open system-call is used to open memory device driver “/dev/mem”,

and then the mmap system-call is used to map HPS physical address into a virtual address

represented by the void pointer variable virtual_base. Then, the virtual address of pio_led can be

calculated by adding the below two offset addresses to virtual_base.

 Offset address of Lightweight HPS-to-FPGA AXI bus relative to HPS base address

 Offset address of Pio_led relative to Lightweight HPS-to-FPGA AXI bus

The first offset address is 0xff200000 which is defined as a constant ALT_LWFPGASLVS_OFST in

the header hps.h. The hps.h is a header of Altera SoC EDS. It is located in the folder:

Quartus Installed Folder\embedded\ip\altera\hps\altera_hps\hwlib\include\socal

The second offset address is 0x00000000 which is defined as PIO_LED_BASE in the hps_0.h

header file which is generated in above section.

The virtual address of pio_led is represented by a void pointer variable h2p_lw_led_addr.

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

14

Application program can directly use the pointer variable to access the registers in the controller of

pio_led.

Figure 3-2 pio_led information defined in hps_0.h

33..33.. LLEEDD CCoonnttrrooll

C programmers need to understand the Register Map of the PIO core for pio_led before they can

control it. Figure 3-3 shows the Register Map for the PIO Core. Each register is 32-bit width. For

detail information, please refer to the datasheet of PIO Core. For led control, we just need to write

output value to the offset 0 register. Because the led on DE0-Nano-SoC is high active, writing a

value 0x00000000 to the offset 0 register will turn off all of the eight green LEDs. Writing a value

0x000000ff to the offset 0 register will turn on all of eight green LEDs. In C program, writing a

value 0x000000ff to the offset 0 register of pio_led can be implemented as:

*(uint32_t *) h2p_lw_led_addr= 0x000000ff;

The state will assign the void pointer to a uint32_t pointer, so C compiler knows write a 32-bit value

0x000000ff to the virtual address h2p_lw_led_addr.

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

15

Figure 3-3 Register Map of PIO Core

33..44.. MMaaiinn PPrrooggrraamm

In the main program, the LED is controlled to perform LED light sifting operation as shown in

Figure 3-4 . When finishing 60 times of shift cycle, the program will be terminated.

Figure 3-4 C Program for LED Shift Operation

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

16

33..55.. MMaakkeeffiillee aanndd ccoommppiillee

Figure 3-5 shows the content of Makefile for this C project. Because the program will include the

hps.h provided by Altera SoC EDS, so the Makefile should include the following path:

“${SOCEDS_DEST_ROOT}/ip/altera/hps/altera_hps/hwlib/include”

In the makefile, ARM cross-compile also be specified.

Figure 3-5 Makefile content

To compile the project, type “make” as shown in Figure 3-6. Then, type “ls” to check the

generated ARM execution file “my_first_hps-fpga”.

Figure 3-6 ARM C Project Compilation

http://www.terasic.com/
www.terasic.com

DE0-Nano-SoC My First HPS

FPGA

 www.terasic.com

May 18, 2015

17

33..66.. EExxeeccuuttee tthhee DDeemmoo

To execute the demo, please boot the Linux from the SD-card in DE0-Nano-SoC. Copy the

execution file “my_first_hps-fpga” to the Linux directory, and type “chmod +x my_first_hps-fpga”

to add execution attribute to the execute file. Use Quartus Programmer to configure FPGA with the

soc_system.sof generated in previous chapter. Then, type “./my_first_hps-fpga” to launch the ARM

program. The LED on DE0-Nano-SoC will be expected to perform 60 times of LED light shift

operation, and then the program is terminated.

For details about booting the Linux from SD-card, please refer to the document:

DE0-Nano-SoC _Getting_Started_Guide.pdf

For details about copying files to Linux directory, please refer to the document:

My_First_HPS.pdf

http://www.terasic.com/
www.terasic.com

