
OR1K startup code
A small internal program to handle startup of the
OR1K family of RISC processors

Brought to You By ORSoC / OpenCores

http://www.opencores.org/
http://www.orsoc.se/

OR1K startup code

Legal Notices and Disclaimers

Copyright Notice
This ebook is Copyright © 2009 ORSoC

General Disclaimer
The Publisher has strived to be as accurate and complete as possible in the creation of this
ebook, notwithstanding the fact that he does not warrant or represent at any time that the
contents within are accurate due to the rapidly changing nature of information.

The Publisher will not be responsible for any losses or damages of any kind incurred by the
reader whether directly or indirectly arising from the use of the information found in this
ebook.

This ebook is not intended for use as a source of legal, business, accounting, financial, or
medical advice. All readers are advised to seek services of competent professionals in the
legal, business, accounting, finance, and medical fields.

No guarantees of any kind are made. Reader assumes responsibility for use of the
information contained herein. The Publisher reserves the right to make changes without
notice. The Publisher assumes no responsibility or liability whatsoever on the behalf of the
reader of this report.

Distribution Rights
The Publisher grants you the following rights for re-distribution of this ebook.

[YES] Can be given away.
[YES] Can be packaged.
[YES] Can be offered as a bonus.
[NO] Can be edited completely and your name put on it.
[YES] Can be used as web content.
[NO] Can be broken down into smaller articles.
[NO] Can be added to an e-course or auto-responder as content.
[NO] Can be submitted to article directories (even YOURS) IF at least half is rewritten!
[NO] Can be added to paid membership sites.
[NO] Can be added to an ebook/PDF as content.
[NO] Can be offered through auction sites.
[NO] Can sell Resale Rights.
[NO] Can sell Master Resale Rights.
[NO] Can sell Private Label Rights.

Back toTOC Copyright © 2009 ORSoC Page 2 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Table of Contents

Chapter 1 Description _______________________________ 4

Chapter 2 OR1K Startup IP ___________________________ 5
Top level signals __ 5

Target independent implementation _________________________________ 5

ACTEL ProASIC3 implementation ___________________________________ 5

Chapter 3 Companion modified SPI IP __________________ 6

Chapter 3 Startup program __________________________ 7
Program flow: __ 7

Application program data ___ 7

Recommended Resources ____________________________ 8

Appendix A Program code ___________________________ 9

Back to TOC Copyright © 2009 ORSoC Page 3 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Chapter 1 Description
On the OR1K family of processors the reset address is by default 0x100. On some
implementations this can be changed to an arbitrary address. Since memory address 0x0
and upwards is RAM this invokes a challenge.

Some systems may have non volatile memory in the form of SPI FLASH. Dependant on
controller this type of memory might not be accessible to ordinary read and write
operations but rather through an SPI controller.

This IP do not take care of the start address, that must be the responsibility of wishbone
arbiter or internal OR1K setup. If the system directs the instruction fetch to this module at
startup the following will happen

1. required internal registers will be set

2. an optional loop will write configure data to memory addresses defined in SPI
FLASH

3. application code and data will be copied from external SPI FLASH to memory
location 0x0 and upwards

4. program execution will start at address 0x100

This IP is written in Verilog RTL and can be targeted to the following target technologies:

• Generic target independent design

• ACTEL ProASIC3

Typical setup with IPs included in OR1K_startup marked with *:

Back to TOC Copyright © 2009 ORSoC Page 4 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Chapter 2 OR1K Startup IP
This IP is wishbone B3 compatible. It is a wishbone slave with 32 bit data bus.

Top level signals
The following signals are present on the top module:

Wishbone signal Width Direction

wb_dat_o [31:0] Output

wb_dat_i [31:0] Input

wb_adr_i [6:2] Input

wb_stb_i Input

wb_cyc_i Input

wb_ack_o Output

wb_clk Input

wb_rst Input

The Startup IP is functionally an embedded ROM (or pre configured RAM).

Target independent implementation
The target independent design is in file called "OR1K_startup_generic.v".

Implementation is done with flip-flops on output wb_dat_o. Memory content is
implemented as case statement. Function will be implemented as ordinary logic.

This design can be used for any target technology family.

The base address to the SPI core can be changed with use of define SPI_BASE_MSB. Set
the define to the upper 16 bits of the base address.

Example: SPI has base adress 0xB000_0000.

+define+SPI_BASE_MSB+B000

FPGA resources

ACTEL PROAsic3 155 slices

ALTERA Cyclone III 64 combinatorial functions, 33 registers

ACTEL ProASIC3 implementation
The ACTEL ProASIC3 family of FPGA has built in 1 kbit FLASH which can be used for the
OR1K startup program.

The Verilog file to be used is called "OR1K_startup_ACTEL.v". The design also includes
file flash.v which is generated from ACTEL Libero smartgen and can be found in

"\syn\flash\smartgen\flash"

Also included in directory syn is a Libero project to ease future updates of FLASH content.
To be able to simulate design the user must compile ACTEL file proasic3.v which included
simulation support for internal FLASH.

When configuring ACTEL devices be sure to include file "flash.ufc" to define FLASH
content.

Back to TOC Copyright © 2009 ORSoC Page 5 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

FPGA resources

ACTEL PROAsic3 50 slices, 1kbit FLASH

Back to TOC Copyright © 2009 ORSoC Page 6 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Chapter 3 Companion modified SPI IP
The SPI controller to be used with the startup program is the “SPI controller core”
available from OpenCores.org. This IP can be found on the following URL

http://www.opencores.org/?do=project&who=spi

This controller acts as a wishbone slave. A number of configuration registers is used for the
setup of the behavior of the SPI communications. In this case the configuration is known in
advanced. It is therefor possible to replace some of these registers with configuration
patterns. A modified version of the SPI controller is included in this project to handle this.

The following modifications are done in the SPI controller for this project

Define/parameter value comment

Module name Spi changed to
spi_flash

To be able to include original design together
with this modified version

Char register set to 32 bit define

Reset value of char
register

0x03000000 This is the command to initiate burst read at
address 0x0

Ctrl register bit LSB
replaced with define

undefined Operation is MSB

Ctrl register bit TX_NEG
replaced with define

defined if defined mosi_pad_o is changed on falling
edge of sclk_pad_o

Ctrl register bit RX_NEG
replaced with define

undefined if defined miso_pad_i is changed on falling
edge of sclk_pad_o

Ctrl ASS removed Automatic slave select deselected

SPI clk divider register
changed to parameter

This value is wishbone clock frequency
dependent and can be changed per instance.
SPI clock divider set to length 4

SPI interrupt function removed

wishbone err_o function removed

FPGA resources

ACTEL PROAsic3 393 slices

ALTERA Cyclone III 206 combinatorial functions, 83 registers

Back to TOC Copyright © 2009 ORSoC Page 7 / 11

http://www.opencores.org/?do=project&who=spi
http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Chapter 3 Startup program
The start up programs is a very small application that is supposed to be implemented
either as preconfigured RAM, built-in ROM or as combinatorial gates. It relies on a in
system SPI controller.

Program flow:
1. Register init

R0 = 0x0
R1 = 0x0
R4 = SPI_BASE
R5 = SPI_CONTROL_VALUE

2. activate slave select[0]

3. Read first 32 bit word, end of program pointer
R2 = read()

4. Loop1, peripheral configuration
inc(R1)
R8 = read()
R3 = read()
(R8) = R3
branch if not(R8=0x0) Loop1

5. Loop2, application copy
R3 = read()
inc(R1)
(R1) = R3
branch if not(R1=R2) Loop2

6. inactivate slave select[0]

7. R6 = 0x100
jump R6

Application program data
Application must contain the following for proper startup

1. address 0x0 must contain last address of application as a 32 bit number, aligned to
32 bit address
.long end_of_app

2. consecutive addresses starting at 0x4 should contain configuration address +
configuration data as two 32 bit words. Must end with configuration address equal
to 0x0
.long config_adr1
.long config_data1
.long config_adr2
.long config_data2
…
.long 0x0
.long dummy_data

Back to TOC Copyright © 2009 ORSoC Page 8 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Chapter 4 Optional use as SD FLASH controller
If the SPI controller is defined to have two slave select signals this controller could also be
used as a SD FLASH card controller.

In the verilog directory a ready made module instantiation file is included. This file,
"OR1K_startup_module_inst.v", includes the following

1. OR1K_startup module instantiation

2. SPI module instantiation

3. input and output multiplexer for SPI signals

In your top level Verilog RTL include the following:

`include "OR1K_startup_module_inst.v"

Back to TOC Copyright © 2009 ORSoC Page 9 / 11

http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Recommended Resources
ORSoC – http://www.orsoc.se

ORSoC is a fabless ASIC design & manufacturing services company, providing RTL to
ASIC design services and silicon fabrication service. ORSoC are specialists building
complex system based on the OpenRISC processor platform.

Open Source IP – http://www.opencores.org

Your number one source for open source IP and other FPGA/ASIC related information.

Back to TOC Copyright © 2009 ORSoC Page 10 / 11

http://www.opencores.org/
http://www.orsoc.se/
http://www.orsoc.se/
http://www.opencores.org/

OR1K startup code

Appendix A Program code
/* Register usage

R0 = 0
R1 = pointer to destination
R2 = nr of words to be copied
R3 = data
R4 = pointer to SPI core
R5 = spi control word
R6 = jump adr
R7 = nr of control words
r8 = adr pointer */

.equ spi_base,0xb0000000 ;

.equ spi_ctrl,0x0520 ;

.equ read_cmd, 0x03000000 ;

.global start ;

.text

start: l.movhi r0,0x0 ;
l.ori r1,r0,0x0 ; # R1 = 0x0
l.movhi r4,hi(spi_base) ; # R4 = spi base
l.ori r5,r0,lo(spi_ctrl) ; # R5 = spi control

set slave select active
l.ori r3,r0,0x1 ; # R3 = 0x1

initiate SPI FLASH READ
l.jal read ;
l.sw 0x18(r4),r3 ; # ss[0] active

l.jal read ; # read
l.sw 0x0(r4),r0 ; # set TX to zero
l.or r2,r3,r3 ; # R2 = nr of words

loop1: l.jal read ; # read adr pointer
l.addi r1,r1,0x8 ;
l.jal read ; # read data
l.or r8,r3,r3 ; # copy adr pointer to r8
l.sfeq r8,r0 ;
l.bnf loop1 ;
l.sw 0x0(r8),r3 ; # write control data

loop2: l.jal read ;
l.addi r1,r1,0x4 ;
l.sw 0x0(r1),r3 ; # write to RAM
l.sfeq r1,r2 ;
l.bnf loop2 ;
l.ori r6,r0,0x100 ;
l.jr r6 ; # jump to 0x100
l.sw 0x18(r4),r0 ; # set slave select inactive

read: l.sw 0x10(r4),r5 ; # write spi control
w4busy: l.lwz r3,0x10(r4) ;

l.sfeqi r3,lo(spi_ctrl) ;
l.bf w4busy ;
l.nop ;
l.jr r9 ;
l.lwz r3,0x0(r4) ; # R3 = RX

Back to TOC Copyright © 2009 ORSoC Page 11 / 11

http://www.orsoc.se/
http://www.opencores.org/

	Chapter 1 Description
	Chapter 2 OR1K Startup IP
	Top level signals
	Target independent implementation
	ACTEL ProASIC3 implementation

	Chapter 3 Companion modified SPI IP
	Chapter 3 Startup program
	Program flow:
	Application program data

	Chapter 4 Optional use as SD FLASH controller
	Recommended Resources
	Appendix A Program code

