
openVeriFLA
open source FPGA logic analyzer

version 2.4

User Manual

Developed by

Laurentiu-Cristian Duca
laurentiu.duca@gmail.com

Table of Contents
1. Introduction..4
2. Concept...4
3. Prerequisites...6
4. Case study: simple counters capture...7

4.1. Using openVeriFLA in a HDL module..7
4.3 The host computer Java application...8

5. Configuration parameters...9
5.1 The host computer application parameters..9
5.2. The FPGA parameters files...9

6. VHDL...10
7. Change log..11

1. Introduction

openVeriFLA is an FPGA logic analyzer. The host computer software is
written in Java, so it is platform independent. The HDL code is written in Verilog and
VHDL, in both languages being fully supported. This project helps in on-board
testing and debugging of the FPGA projects. This is done by real-time capturing and
then graphically displaying the signals transitions that happen inside the FPGA chip.
Having a didactic scope, openVeriFLA is designed & tested on and for small
projects.

openVeriFLA is distributed under the GNU GPL license (the UART sources
have a more generous license – written in the source code). It can be downloaded
from https://opencores.org/project/openverifla. The user manual is released under
CC-BY-SA license.

Keep the sources near you, as these will be referenced in this manual.

2. Concept
The main architecture of the openVeriFLA logic analyzer is shown in the

figure below. The logic analyzer has two sides, the FPGA part and the host computer
one. These communicates via the host computer interface cable to the FPGA board.

The openVeriFLA FPGA modules are implemented in Verilog HDL.
In order to use the logic analyzer, these modules must be implemented in the FPGA
chip along with the user application. The openVeriFLA modules capture the signal
transitions of the monitored lines and send the data capture to the host computer for
graphical visualization and future analyze.

The host computer part of the application is implemented in the Java language.
The java application receives the captured data and saves it on the disk in a file
named capture.v. This file is a behavioural verilog HDL file. An Verilog HDL
simulator with a graphical viewer for the signals is necessary in order to simulate
capture.v and view the captured data.

https://opencores.org/project/openverifla

The interaction between FPGA and the host computer is illustrated in the figure
below. For now, important is the fact that the host may send the run command to the
monitor, in order to start a new capture and send it back.

As shown in this figure, the FPGA side of the logic analyzer is made by three
components. These are:
- the monitor module which handles the data capturing process
- the computer-input and send-capture modules which handle the high level part of
the communication between FPGA and host computer
- the UART modules (not shown here) particular to the host computer-FPGA
interface protocol.

The data captured from the monitorized lines is kept in a memory buffer that
must be available for the openVeriFLA modules. The memory buffer that comes with
openVeriFLA by default is allocated from the FPGA configurable part and is
implemented in memory_of_verifla.v. It can be changed if one wants to, with a
memory buffer that may be allocated from the FPGA block memory. Block memory
may be reserved from the FPGA by using specialized tools like Xilinx IP Core
Generator from Xilinx ISE WebPack.

The memory buffer used for storing data is organized as in the figure below. A
special moment in the process of data capturing is the trigger event. This is the
moment when signals of the monitored lines match a user defined value. Before the
trigger event, the data is stored in a circular FIFO queue named “before trigger
queue”. At the end of the memory buffer it is stored the pointer to the tail of the
circular queue. After the trigger event, the data is stored in a standard FIFO. When
the “after trigger queue” is full, the data capture is sent to the host computer, where
the user will analyze it.

A memory word contains a captured data line and the time that this data line is
constant. There are also reserved words which may specify:
- an empty and not used memory cell (LA_MEM_EMPTY_SLOT)
- the pointer to the tail of the before trigger queue which is stored in the last memory
word.

The memory size and memory word length are parameterizable. The control-
panel of the logic analyzer is the common_internal_verifla.v file. The other
parameters of this file will be explained later.

3. Prerequisites
In order to test openVeriFLA, one will need as hardware a FPGA board and a

PL2303TA USB to TTL serial converter.

Fig. PL2303TA USB to TTL serial converter (image from ebay.com)

Only three pins from the FPGA board, named GND, TX and RX will be
connected to (in order) black, white and green (because is cross-over connection). So,
the TX from the FPGA board is connected to the RX cable wire and vice versa. This
way, the FPGA board is connected to a host computer. The red cable wire (+5V)
remains unconnected.

At the software level, Windows or Linux with Java JDK (or at least Java JRE)
and the FPGA development program (like Xilinx ISE) is needed.

4. Case study: simple counters capture

4.1. Using openVeriFLA in a HDL module
Instantiating the openVeriFLA top module in a HDL module is shown in the

figure below. Please note that cntb and cnta can have arbitrary width.

module counters(cntb,
clk, reset,
//top_of_verifla transceiver
uart_XMIT_dataH, uart_REC_dataH);

input clk, reset;
output [7:0] cntb;
//top_of_verifla transceiver
input uart_REC_dataH;
output uart_XMIT_dataH;

// Simple counters
reg [7:0] cntb, cnta;
always @(posedge clk or posedge reset)
begin

if(reset) begin
cntb = 0;
cnta = 0;

end else begin
if((cnta & 1) && (cntb < 16'hf0))

cntb = cntb+1;
cnta = cnta+1;

end
end

// VeriFLA
top_of_verifla verifla (.clk(clk), .rst_l(!reset), .sys_run(1'b1),

.data_in({cntb, cnta}),
// Transceiver
.uart_XMIT_dataH(uart_XMIT_dataH), .uart_REC_dataH(

uart_REC_dataH));

endmodule
Fig. Instantiating openVeriFLA in the counters module

One must instantiate top_of_verifla module and pass the following signals to
openVeriFLA:
- clk, which is the board clock
- rst_l, which is the top_of_verifla reset signal and is active low
- sys_run, which instructs openVeriFLA whether to immediately start a data capture
or wait for the user run command
- data_in which contains the signals from the counters module that will be captured
- uart_XMIT_dataH which is the openVeriFLA serial transmission line (TX)
- uart_REC_dataH which is the openVeriFLA serial reception line (RX)
The signal transitions are captured on-the-fly by the openVeriFLA modules and then
will be sent to the host computer, where will be prepaired to be graphically displayed.

The FPGA board clk frequency (in Hz) must be written in the inc_of_verifla.v
file before synthesis; this is required by the UART modules.

Note that openVeriFLA samples data @(posedge clk).
Part of the openVeriFLA synthesis report of the Xilinx ISE tools is shown

in the table below (for the counters example).

Xilinx Spartan 3E 1600
Minimum clock period: 9.089 ns
Number of Slices: 2% (394)
Number of Slice Flip Flops: 1% (242)
Number of 4 input LUTs: 2% (677)
Number of bonded IOBs: 4% (12)
Number of GCLKs: 4% (1 of 24)

Table. The FPGA occupied resources

4.3 The host computer Java application
First, the Verifla.java source must be compiled by running compile.sh on Linux

(with bash) or compile.bat on Windows; this will generate the VeriFLA.class. In
order to receive the grabbed data from the FPGA chip, the VeriFLA.class is run on
the host computer. The communication with the openVeriFLA modules is made via
the usb-to-serial interface between the host computer and the FPGA development
board; the VeriFLA class uses the jssc.jar UART library. This way, the signals
capture will be sent to the host computer and saved in a form which can be displayed
graphically.

On Linux, the VeriFLA.class is run with the following command (on Windows,
one must replace sudo ./run.sh with run.bat):

$ sudo ./run.sh VeriFLA verifla_properties_counters.txt
or
$ sudo ./run.sh VeriFLA verifla_properties_counters.txt 1

Fig. How to run the VeriFLA.class

This scripts include in CLASSPATH the path to jssc.jar.
In the first case, VeriFLA waits for data captured to arrive on the UART serial

line, while in the second case, it first sends to the FPGA the command run which
instructs it to start a new capture and send it on the UART serial line.
After the class is run as shown, the openVeriFLA modules are instructed to start a
new capture and after the capture is finished, to send the capture to the host computer.

Now, these modules wait for signal events on the monitorized lines.
The java application gets the capture and builds the capture.v verilog file. After

this, the capture.v can be added and simulated in a verilog simulator (e.g. Xilinx ISE
or Icarus) project. The result is shown in the figures below.

Fig. Simulation of capture.v

The la_trigger_matched shows the moment when the trigger event appeared

and memory_line_id is the index in the captured data memory (used as debug).
In the first figure, the monitor was configured to capture cntb and cnta

whenever a bit of these signal changes. The trigger moment was set such as cntb=2
and cnta=4 (LA_TRIGGER_VALUE=16'h0204, LA_TRIGGER_MASK=16'hffff,
LA_TRACE_MASK=16'hffff).

In the second figure, the monitor was configured
(LA_TRIGGER_VALUE=16'h0200, LA_TRIGGER_MASK=16'hff00,
LA_TRACE_MASK=16'hff00) to capture cntb and cnta only when cntb changes. So
we can store in the same memory higher values of cntb and cnta (for example when
memory_line_id is 20, in the first figure cntb is 8 and cnta is 16 and in the second
figure cntb is 14 and cnta is 29). It must be mentioned the fact that in the second
figure the trigger event appears when cntb=2 and, for this value, it corresponds two
values of cnta (4 and 5) - the last value being kept by openverifla.

In the capture.v simulation, run command was necessary, to reach the $stop
instruction of the capture.v.

5. Configuration parameters

5.1 The host computer application parameters

The java application takes its parameters from a properties file. This file
contains general parameters and application-specific parameters, like the names of
the signals to be captured. An example is the verifla_properties_counters.txt file
which is tuned for the counters example. Each parameter name starts with “LA.”
(here this prefix is trimmed). The important parameters are:
- the UART serial portName and baudRate;
- memWords represents the size of the memory used to store the capture
- data input width and indentical samples bits (clones) must be multiples of 8 and are
stored in dataWordLenBits and clonesWordLenBits
- the index in memory where the trigger event appeared is stored in
triggerMatchMemAddr; it also delimits the before and after trigger queues
- the verilog signals passed to top_of_verifla module are grouped. Each group of
signals is defined by a number of group parameters. First is groupName which should
be the same as the verilog signal name. The groupSize represents the number of the
signal lines in the group and is the same with the size of the verilog signal. Sum of
the groupSize parameter from all groups must be equal to totalSignals. The
groupEndian specifies if the data represented by the group is in big-endian or low-
endian format. Each group has an unique id specified after at the end of the each
parameter.
- timescaleUnit, timescalePrecision used for the verilog timescale line in capture.v
and clockPeriod is the period of the development board clock

5.2. The FPGA parameters files
The clock frequency of openVeriFLA and the UART baudrate must be set in

the inc_of_verifla.v file. This is used by the UART modules to compute the uart_clk.
If the clock frequency of openVeriFLA is lower than 50 Mhz, then the baudrate must
be lower than 115200 (for example 9600).

The control-panel of the logic analyzer is the common_internal_verifla.v file. It
contains the configurable parameters of the logic analyzer.
- LA_MEM_WORDLEN_BITS represents the length in bits of a memory word; it is
made of LA_DATA_INPUT_WORDLEN_BITS (the length in bits of data input) and
LA_IDENTICAL_SAMPLES_BITS (the length in bits of the identical samples
number) which means the number of clock periods that the data remains constant;

- LA_MEM_EMPTY_SLOT is the value that sets every memory line when cleaning
the memory
- LA_TRIGGER_MASK specifies the bits to be considered when checking for the
trigger value; it is used to mask the LA_TRIGGER_VALUE and the capture data
when these two are compared.
- in LA_TRACE_MASK, the signals that are with 0 will be traced only when one or
more signals that are with 1 change;
- LA_TRIGGER_MATCH_MEM_ADDR is the index in memory where the trigger
event appeared;
- when the memory is full or it were captured
LA_MAX_SAMPLES_AFTER_TRIGGER samples, the data capture is sent to the
host computer.
- in order to represent an interval of time slots when the monitored lines are constant,
the parameter LA_MAX_IDENTICAL_SAMPLES is the maximum identical
samples number allowed to be stored in a memory word (it is built on
LA_IDENTICAL_SAMPLES_BITS).

6. VHDL
The verilog sources were translated line by line in vhdl. Every .v file is .vhd in

the vhdl sources. Everything specified in this manual for verilog is valid in the vhdl
implementation.

7. Change log

2.4c
- LA_MEM_CLEAN_BEFORE_RUN has no use now
- mem-clean-at-reset is no longer necessary
- java: assert(totalSignals == dataWordLenBits)

2.3
- LA_TRACE_MASK

2.2.f
- commit 35: hairstyle for vhdl monitor and verilog memory
- commit 34: in java, read all capture as a whole from the serial driver

2.2.e
- bug correction for the case when the repeat count of the last sample is 1
(thank you Al Williams).

2.2.d
- split mon_run command in sys_run and user_run
and clean memory at user_run.
- vhdl code for monitor changed such that at reset we can start with any state (debug)

2.2.c
- clean memory at init (XST compiles it)

2.2.a
- vhdl support
- mon_run_reg in verifla monitor

2.1.g
- instructions regarding the size of BAUDRATE param of UART
- add parameter baudRate to openVeriFLA java properties file
- rename of IDDLE in IDLE states in UART and 3’d07 in 4’d07 for u_rec

2.1.e
- user readable form for single_pulse_of_verifla.v
- LA_MEM_CLEAN_BEFORE_RUN is a parameter now (not a `define)

2.1d
- all openVeriFLA modules and HDL files end with “_of_verifla”

2.1
- LA_INIT_MEM_AT_RESET
- single clock shared by VeriFLA and UART

2.0
- new memory layout
- new UART drivers

	1. Introduction
	2. Concept
	3. Prerequisites
	4. Case study: simple counters capture
	4.1. Using openVeriFLA in a HDL module
	4.3 The host computer Java application

	5. Configuration parameters
	5.1 The host computer application parameters
	5.2. The FPGA parameters files

	6. VHDL
	7. Change log

