

GDB for OR1k

Author: Marko Mlinar
marko.mlinar@opencores.org

Rev. 0.3 Preliminary

June 6, 2001

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary i

Revision History

Rev. Date Author Description
0.1 27/4/01 Marko Mlinar Initial document
0.2 22/5/01 MM Added more descriptions to software operations
0.3 6/6/01 MM Added special command descriptions

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary ii

Contents

Contents .. ii
Introduction..1

1.1 Framework...1
1.2 Simple GDB Session..1

Supported Features...2
2.1 hwatch Command..3
2.2 htrace Commands ..4

2.2.1 htrace info ..4
2.2.2 htrace trigger ...4
2.2.3 htrace qualifier ..4
2.2.4 htrace stop ..5
2.2.5 htrace record ...5
2.2.6 htrace clear records...6
2.2.7 htrace enable ...6
2.2.8 htrace disable ...6
2.2.9 htrace mode ..6
2.2.10 htrace rewind ...7
2.2.11 htrace print..7

2.3 Accessing spr Registers ...7
2.3.1 info spr ...7
2.3.2 spr ...8

2.4 Extended Simulator Support..8
Protocols ..9

2.1 JP1 Protocol ...9
2.2 JP3 Protocol ...10

Software Operation ..11
4.1 Reset and Initialization of Remote Target ...11
4.2 Communication with Target..12
4.3 Hardware Supported Breakpoints and Watchpoints ..12
4.4 Ending Communication...12

Expression BNF ...13

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 1 of 13

1
Introduction

This document describes special support for OR1k in GNU gdb and communication
protocols between GDB (GNU Debugger) and JTAG Test-Access-Port

1.1 Framework
HOST TARGET BOARD/CHIP

GDB OR1k
machine
description

LPx JTAG

Centronics
Cable

OR1k
RISC

Dev. I/F
Debug
I/F

Figure 1: Connection Framework

1.2 Simple GDB Session
Following command sequence start debugging the proc.or32 program, using the
architecture simulator. Simulator stops at function main, then next few instructions are
shown. See gdb user manual for more examples and additional information.

file test.or32
target sim
load test.or32
breakpoint main
run
list

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 2 of 13

2
Supported Features

This section covers debugging features supported by gdb, and describes special commands
in detail. This section assumes C/C++ source language. Other language should use
equivalent operators.

OR1k feature Description Command(s) in
GDB

Comment

processor stop immediately
stops OR1k

^C Fully supported.

full register
and memory
access

 set Fully supported.

l.brk software
breakpoint

breakpoint Fully supported.
At the same time software conditional
breakpoints are supported by GDB.

matches,
watchpoints,
breakpoints

hardware
breakpoint

breakpoint,
hbreak,
watch,
rwatch,
awatch,
hwatch

Hardware breakpoint is fully supported
with hbreak command.
There is limited support for hardware
assisted watchpoints using watch, rwatch,
awatch commands.
OR1k hwatch command allow full
control over hardware watchpoints.
Also HW breakpoints are set to positions
where SW cannot be placed (e.g. flash).

trace trace trace,
htrace

Software trace is supported with trace
command, while htrace fully supports
Debug interface trace.

catchpoints special events,
that cause
breakpoint

 Fully supported.

spr registers spr register
read/write

spr,
info spr

Display/set specified spr register.

OR1k
architecture
simulator

Special
simulator

instructions

sim Connection to OR1k architecture
simulator, which allows many special
diagnostic and profiling functions.

Table 1: List of supported features. Commands in bold represent added instructions.

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 3 of 13

2.1 hwatch Command
Warning: breakpoints, watchpoints and catchpoints have slightly different definition in OR1k architecture
document and in gdb.

This command sets hardware assisted watchpoint, if there is enough matchpoint resources.
See OR1k Architecture document for more info about these.

Command syntax:
hwatch expr

Where expr is expression, using logical operators || and &&. Each condition must consist
of one constant (if not it is evaluated when setting watchpoint) and one special value,
separated by binary operator (==, !=, <, >, <=, >= and bitwise and - &). See appendix
A (watch) on more details about grammar. Each conditional requires one matchpoint
resource.

Special value Description
$LEA Load effective address
$SEA Store effective address
$AEA like ($LEA == a || $SEA == a)
$IFEA Instruction fetch effective address
$LDATA Load data
$SDATA Store data
$ADATA like ($LDATA == a || $SDATA == a)

Table 2: Special Values for Watchpoints

Examples:
hwatch ($LEA == my_var)&&($LDATA < 50)||($SEA ==
my_var)&&($SDATA >= 50)
(program breaks, either when we load value, lesser than 50 from my_var, or we store value
greater than 50 to it)

hwatch ($SEA < foo_array || $SEA >= foo_array_end)&& ($IFEA
>= proc1 && $IFEA < proc2)
(program breaks, if we write outside foo_array in function proc1)

hwatch ($AEA & 0x0FF0000)
(break occurs, when we want to access specified memory region)

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 4 of 13

2.2 htrace Commands
Group of command used to setup hardware trace.

2.2.1 htrace info

Displays info about current trace configuration.

Command syntax:
htrace info

Examples:
htrace info
htrace i

2.2.2 htrace trigger

Sets starting criteria for trace, if there is enough matchpoint resources. See OR1k
Architecture document for more info about these.

Command syntax:
htrace trigger [any|breakpoint|<expr>]

Where expr is expression, using logical operators || and &&. Each condition must consist
of one constant (if not it is evaluated when setting watchpoint) and one special value (Table
2: Special Values for Watchpoints), separated by binary operator (==, !=, <, >, <=, >=
and bitwise and - &). See appendix A (match) on more details about grammar. Each
conditional requires one matchpoint resource.

Examples:
htrace trigger breakpoint
(trace starts when breakpoint occurs)
htrace t $SDATA == 0x0beef
(trace starts when we are storing 0x0beef to memory)
htrace t any
(trace active at start)

2.2.3 htrace qualifier

Sets data acquire criteria for trace, if there is enough matchpoint resources. See OR1k
Architecture document for more info about these. Each time qualifier condition is met and
trace has been started data specified by htrace record is saved.

Command syntax:
htrace qualifier [any|breakpoint|<expr>]

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 5 of 13

Where expr is expression, using logical operators || and &&. Each condition must consist
of one constant (if not it is evaluated when setting watchpoint) and one special value (Table
2: Special Values for Watchpoints), separated by binary operator (==, !=, <, >, <=, >=
and bitwise and - &). See appendix A (match) on more details about grammar. Each
conditional requires one matchpoint resource.

Examples:
htrace qualifier breakpoint
(trace records data when breakpoint occurs)
htrace q $SDATA == 0x0beef
(trace records data when we are storing 0x0beef to memory)
htrace q any
(trace records data, when active)

2.2.4 htrace stop

Sets stoping criteria for trace, if there is enough matchpoint resources. See OR1k
Architecture document for more info about these.

Command syntax:
htrace stop [none|breakpoint|<expr>]

Where expr is expression, using logical operators || and &&. Each condition must consist
of one constant (if not it is evaluated when setting watchpoint) and one special value (Table
2: Special Values for Watchpoints), separated by binary operator (==, !=, <, >, <=, >=
and bitwise and - &). See appendix A (match) on more details about grammar. Each
conditional requires one matchpoint resource.

Examples:
htrace stop none
(trace does not stop)
htrace s $SDATA == 0x0beef
(trace starts when we are storing 0x0beef to memory)

2.2.5 htrace record

Sets record data to be stored into trace buffer, when qualifier occurs. Command failes if
there is not enough matchpoint resources. See OR1k Architecture document for more info
about these.

Command syntax:
htrace record {[PC|LSEA|LDATA|SDATA|READSPR|WRITESPR|INSTR]}*
[when [breakpoint|<expr>]]

First data to be recorded is specified, and after when additional condition is set. expr is
expression, built using logical operators || and &&. Each condition must consist of one

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 6 of 13

constant (if not it is evaluated when setting watchpoint) and one special value (Table 2:
Special Values for Watchpoints), separated by binary operator (==, !=, <, >, <=, >=
and bitwise and - &). See appendix A (match) on more details about grammar. Each
conditional requires one matchpoint resource.

Examples:
htrace record PC SDATA when $SEA == 100
(saves PC and SDATA when store to location 100 occurs)
htrace r when $SEA == 100
(removes previously allocated record)

2.2.6 htrace clear records

Deallocates all matchpoint resources, allocated by htrace record command.

Command syntax:
htrace clear records

Example:
htrace clear records

2.2.7 htrace enable

Enables trace. This command has to be specified in order to start trace.

Command syntax:
htrace enable

Example:
htrace enable

2.2.8 htrace disable

Temporarily disables trace, execute htrace enable command to reenable it.

Command syntax:
htrace disable

Example:
htrace disable

2.2.9 htrace mode

Changes trace mode. If continuous parameter is specified, hardware trace buffer will be
rewritten, otherwise breakpoint will occur.

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 7 of 13

Command syntax:
htrace mode [suspend|continuous]

Example:
htrace mode suspend

2.2.10 htrace rewind

Clears currently recorded trace data. If filename is specified, new trace file is made and any
newly collected data will be written there

Command syntax:
htrace rewind [new_file_name]

Examples:
htrace rewind
(clears trace buffer)
htrace rewind
(does not clear current trace buffer, but starts a new trace)

2.2.11 htrace print

Prints selection of currently collected records from hardware trace buffer.

Command syntax:
htrace print [from [length]]

Example:
htrace print 0 20
(prints first 20 records)
htrace p 10
(prints records starting at record 10, using previous length)
htrace p
(prints next records, using last length)
htrace p -10 10
(prints last ten records)
htrace p 0x1000 -10
(prints ten records before record 0x1000)

2.3 Accessing spr Registers
Group of command for handling spr registers.

2.3.1 info spr

Display contents of specified spr register.

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 8 of 13

Command syntax:
info spr [register_name | group_name [register_name] |]

Examples:
info spr
(display spr groups)
info spr SYS
(display registers in group 0)
info spr SYS UPR
info spr UPR
info spr SYS 1
(all three prints value of UPR register)
info spr 10 0
info spr SPR10_0
(both display first register in group 10)

2.3.2 spr

Modify contents of specified spr register.

Command syntax:
spr [register_name | group_name [register_name] |] value

Examples:
spr SYS PC 0x1234
spr PC 0x1234
(both sets PC to 0x1234)

2.4 Extended Simulator Support
To allow extra simulator capabilities sim command is available.

Command syntax:
sim <simulator command line>

Examples:
sim r
(display contents of all registers)

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 9 of 13

3
Protocols

Two simple proprietary protocols for communications between remote target and gdb are
shown. Both require parallel port, and very low amount of additional hardware. Beside
these two, faster protocol is in preparation, which is to allow much higher transfers, using
EPP parallel port mode (bi-directional mode).

2.1 JP1 Protocol
JP1 protocol is simple JTAG compatible protocol. It does not need any extra hardware,
except voltage adjustment circuitry.

HOST

GDB OR1k
machine
description

LPx

Centronics
Cable

4

1

TARGET BOARD/CHIP

JTAG

OR1k
RISC

Dev. I/F
Debug
I/F

Figure 2: JP1 Protocol

Each JTAG cycle requires 2 parallel port writes and one read (if necessary) from host. First
one lowers the clock and sets the data (RSTn, TMS and TDI). Second write does not
modify the data, but raises the clock. See JTAG specification for more info. Then one bit is
read from CENTRONICS_BUSY signal, using IOCTL.

Port Description Width Direction

(relative to host)
Assigned centronics pin

TCLK Clock 1 Output D0
TRSTn Reset 1 Output D1

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 10 of 13

TMS Mode Select 1 Output D2
TDI Data Input 1 Output D3
TDO Data Output 1 Input BUSY

2.2 JP3 Protocol
Unlike JP1, JP3 requires small amout of extra logic (e.g. PLD) on the board, but is six
times faster.

HOST

GDB OR1k
machine
description

LPx

Centronics
Cable

8
3 PLD

4
1

TARGET BOARD/CHIP

JTAG

OR1k
RISC

Dev. I/F
Debug
I/F

Figure 3: JP3 protocol

This protocol does not directly change signals of JTAG port, but instead sends three pairs
(TMS, TDI) and receives three TDO signals. CLK signal has different meaning: both clock
positive and clock negative edge represents data valid. If bitstream length is not of modulo
3, then zeros are appended to TMS, data is x. This way JTAG stays in RUN_TEST/IDLE
state.
Shortly, PLD circuit should translate JP3 protocol to JP1 for each data.

Port Description Width Direction

(relative to host)
Assigned centronics pin(s)

TCLK Clock 1 Output D0
TRSTn Reset 1 Output D1
TMS Mode

Select
3 Output D2, D4, D6

TDI Data Input 3 Output D3, D5, D7
TDO Data Output 3 Input BUSY, PAPER_ERR,

SELECT

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 11 of 13

4
Software Operation

This section deals with the software operation.

Communication example: Setting SW Breakpoint

It all starts when setting breakpoint in gdb prompt:
(gdb) breakpoint 0x1234
GDB then internally searches for target specific macros, like (INSERT_BREAKPOINT,
TARGET_XCHG_MEMORY, BREAKPOINT_FROM_PC, …) to replace instruction at
address 0x1234 with l.brk. Previous instruction is backed into host buffer. When OR1k
encounters l.brk instruction it halts. GDB meanwhile continuously polls processor status.
Note that processor can be stopped using access to OR1k registers.

GDB (remote) target uses JP1/3 protocol via parallel port driver (e.g. /dev/lp0) and JTAG
I/F to access OR1k registers, as specified in Debug Interface Document and OR1k
architecture document. For each 32b memory or register access we have to send 65 bits
(data, R/W bit and address), 8 bit CRC and some control bits (for JTAG purposes). See the
RISC Development document for details. Using JP3 protocol we don't need to send extra
dummy bits (one transfer requires exactly 24 parallel port writes, and for reading extra 11
reads).

4.1 Reset and Initialization of Remote Target
In order to debug the target, program has to be transferred to a stable environment. Since
after the chip reset the processor is surely in stable and well defined state, it is naturally to
stall processor right after the reset. Imp lementation specific processor info is then read, and
program data is transferred. Right after that remote debugging can start.
More accurately - following steps are taken:

1. set processor reset
2. set processor stall
3. unset processor reset
4. read implementation specific registers and configure gdb (e.g. UPR)
5. set debug specific registers to idle state
6. transfer data (when user executes load command)
7. unstall processor

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 12 of 13

4.2 Communication with Target
It is not smart to do complex operations while processor runs, since we can enter
unpredicted state. During such complex operation (program loading, setting breakpoints,
etc.) processor is stalled. Smaller operations like register or memory read can be made
during normal processor operation1.

4.3 Hardware Supported Breakpoints and Watchpoints
Since debug unit has limited number of matchpoint resources, they should be used wisely.
gdb default operation is first to set HW breakpoints and then SW ones. Hardware
breakpoint can be set explicitly on e.g. some ROM location, using hbreak command.
DVRx and DCRx pairs are programmed to set proper matchpoints. Normal breakpoints use
only one matchpoint, while watchpoints at least two (e.g. data access watchpoint is set on
memory address range, thus yielding conditional: addr >= 0x1000 && addr <= 0x1003).
For each watchpoint chaining is set in DMR1 register to properly connect matchpoint
conditionals. We always tend to use lower indexes first and sometimes mathcpoints must
be reordered to find optimal fit.

4.4 Ending Communication
It is not necessary for gdb to do anything when ending remote session. However,
sometimes processor is connected to viable equipment. If continuing program or
unpredicted state is entered, damage can occur, thus processor stall is attempted2.

1 gdb user must be aware that he is using asynchronous operation.
2 Note that it is not always possible for gdb to properly end communication, e.g. cable to the target is
disconnected.

OpenCores GDB for OR1k 6.6.01

www.opencores.org Rev 0.3 Preliminary 13 of 13

Appendix A
Expression BNF

Since expressions have limited hardware support (we have limited hardware resources), not
every expression can be specified. gdb automatically translates normal expression to fit
hardware resources, so user don not have to worry about it at all - it will report an error, if
expression is too complex to fit into OR1k development scheme, so user can rephrase
expression. gdb can translate all expressions to hardware ones, if that is possible.
Basically our expression grammatics is very similar to gramatics with logical operators ||
and &&, without priorities (e.g. (a || b) && c would be a || b && c). For
example simple calculators accept expressions without priority - e.g. you cannot calculate
(8/5)+(7*6).

BNF of OR1k matchpoint grammatics is:

<watch> ::= <match> | <match> || <watch>
<match> ::= <cond> | <match_o> || <match> | <match> || <match_o> | <match_a> &&|
<match> | <match> && <match_a>
<match_o> ::= <cond> | <cond> || <match_o>
<match_a> ::= <cond> | <cond> && <match_a>
<cond> ::= <ct> <cc> <const> || <const> <cc> <ct
<ct> ::= $LEA | $SEA | $AEA | $IFEA | $LDATA | $SDATA | $ADATA
<cc> ::= < | > | == | != | <= | >= | &
<const> any numeric constant specified, read from register or memory, or obtained from
symbol table

