HOGESCHOOL VOOR WETENSCHAP & KUNST | DEE NAYER INSTITUUT

llllllllllllll SWAVER

DE NAYER Instituut

J. De Nayerlaan 5

B-2860 Sint-Katelijne-Waver

Tel. (015) 31 69 44

Fax. (015) 31 74 53

e-mail: ppe @denayer.wenk.be
ddr@denayer.wenk.be
tti@denayer.wenk.be

website: emsys.denayer.wenk.be

Basic Custom OpenRISC System
Hardware Tutorial

Altera Version 1.00
HOBU-Fund
Project IWT 020079
Title : Embedded systemdesign based upon
Soft- and Hardcore FPGA’s
Projectleader : Ing. Patrick Pelgrims
Projectassistants : Ing. Dries Driessens

Ing. Tom Tierens

Copyright (c) 2003 by Patrick Pelgrims, Tom Tierens and Dries Driessens. This material may be
distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

I Introduction

Purpose of this tutorial is to help you compose and implement a custom, OpenRISC based,
embedded system in the eastiest way possible. Unexperienced users should be warned that the
OpenRISC processor is quite difficult processor : the lack of a self-configuring embedded system-
package and the more ‘open’ nature of the OpenRISC compared to other opensource processors
like the Leon SPARC is one of the reasons for this.

Before proceeding, check if you have the following software and hardware:

Hardware:
- Linux-PC or Windows-PC
- Development board with Altera FPGA (minimum 8000LEs), UART and 6 available pins.

Software:

- Correctly built OpenRISC-GNU Toolchain

- Altera Quartus Il 3.0 (or Quartus Il Web edition) with service pack 2

- For Windows : WinCVS 1.2 (http://prdownloads.sourceforge.net/cvsqui/WinCvs120.zip)

If you experience problems building the OpenRISC-GNU Toolchain, there is also an OpenRISC
Software tutorial available from our website (http://emsys.denayer.wenk.be).

The flow of implementing a custom, OpenRISC based, embedded system is:
retreive OpenRISC Platform HDL source-code

remove unnecessary components from source-code

adjust RAM module

synthesize and place & route OpenRISC based system

download

test the OpenRISC system

mmoow>

Il Retreive Source Code

The OpenRISC Platform source code is available through a CVS server. To make sure that this
tutorial doesn’t get obsolete, the source code that will be downloaded is the same version that was
used writing this tutorial.

IN WINDOWS:
Windows doesn’t come with a cvs-client, so if you haven’t installed wincvs yet, you need to

download the CVS client WinCVS 1.2 (http://prdownloads.sourceforge.net/cvsgui/WinCvs120.zip).
After downloading, install and open it.

First, configure WinCVS:
= goto menu item ‘Admin’ and click on ‘Preferences’
= ‘CVSROOQOT should be cvs@cvs.opencores.org:/home/oc/cvs
= ‘Authentication” needs to be “passwd file on the cvs server”
» disable “Checkout read-only” at the ‘Globals’ tab.

Page 2 Of 12 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

Figure 1: WinCVS settings

WinCvs Preferences i x|

General | GI:::I::aIsI Parts I Priowy I WinEvsI

— Enter the CWSROOT :

Icvs@cvs.upencures.u:urg:.-"hu:ume.-"u:u:.-"u:vs - I

—Authentication ;

I"passwd" file on the cws server vI

GEAECTRN | _|

|lze version Iu:vs 1.10 [Standard] j

(] I Annuleren | Help |

Next, goto the right location where you want to put the data downloaded from CVS: goto menu item
‘View’, then “browse location”, click ‘change’ and choose your location.

Then you should login: goto menu item ‘Admin’ and click on ‘Login’. When you’re promted for a
password, you can type anything.

Finally you can download the OpenRISC source code. Goto menu item ‘Admin’ and click on
“Command Line...”. Now type “cvs —z9 co —D 1/1/04 or1k/orp/orp_soc/rtl” in the command box.

To finish you just have to logout: goto menu item ‘Admin’ and click on ‘Logout’
IN LINUX:
To begin, open a terminal so you have a prompt.

First, set the correct CVSROOT: type “export
CVSROOQOT=:pserver:cvs@cvs.opencores.org:’home/oc/cvs”

Then go to the directory where you want to place the downloaded OR1K source code.
Next, login by typing “cvs login”. When promted for a password, press enter.
Finally you can download the source code: just type “cvs —z9 co —D 1/1/04 or1k/orp/orp_soc/rtl”

To finish, just log out, by typing “cvs logout”.

Page 3 Of 1 2 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

lll Adjust Source Code

After retreiving the source code, comes the more complex part: adjusting the source code.

Keep in mind that we want to build a “basic custom OpenRISC system”:

- ‘Basic’ because we only use a minimal set of peripherals: a debug-unit (input), onchip-RAM (for
processing) and a UART (for output).

- ‘Custom’ because this tutorial isn’t targeted for one or a few boards specifically. Everything is
kept general so that anybody can implement the OpenRISC on his “Altera FPGA”-board.

- ‘OpenRISC’ because of the processor used.

- System’: because the system we’re building contains all the necessary components of an
embedded system (input, processing and output).

\ 1) Delete unnecessary files

In the “Verilog’ directory remove:

- the following directories: ‘audio’, ‘ethernet’, ‘ethernet.old’, ‘or1200.0ld’, ‘ps2’, ‘ps2.old’, ‘svga’
and ‘uart16550.old’

- the file ‘tdm_slave_if.v'.

\ 2) Adjust ‘xsv_fpga_defines.v’

Disable the ‘define TARGET_VIRTEX’ line by putting ‘//’ before it.

\ 3) Adjust ‘xsv_fpga_top.v’

a. ‘module xsv_foga top’ part:

There are 4 groups of signals that are necessary (So if they’re not present add them):
- 2 global signals (clk, rstn),
- 2 uart signals (uart_stx, uart_srx),
- 7 jtag debug signals (jtag_tvref, jtag_tgnd, jtag_tck, jtag_tms, jtag_trst, jtag_tdi, jtag_tdo),
- and chip enable signals to shut down any unused electronic ICs.
All other signals can be removed.

b. ‘input and output’ list:

For every signal that was used in the module part, you should define if it is either an input or an
output:

- 7 inputs : clk, rstn, tck, tms, tdi, trst, uart_srx

- 4 outputs : tvref, tgnd, tdo, uart_stx

c. ‘internal wires’ list:

The following wires can remain: debug core wires, debug<->risc wires, RISC data & instruction
master wires, “SRAM controller slave i/f” wires (for the onchip RAM), UART16550 wires, UART
external wires, JTAG wires and your custom chip enable wires (so that you can assign vcc or gnd).

Page 4 Of 12 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

d. ‘assign’ part:

In the following part of the ‘xsv_fpga_top.V’ file, first insert an interface for a PLL-module because
the clock speed is too high with most FPGA development boards:
So replace : “assign wb_clk = clk;”
By “clkdiv clkdiv_inst (
.inclk0 (clk),
.c0 (wb_clk));”

Remove “SRAM tri-state data”, “Ethernet tri-state”, “PS/2 Keyboard Tristate”, “Unused interrupts”
and “Unused WISHBONE signals” (except for “assign wb_us_err_o = 1’b0;”)

Also do not forget to remove the “RISC Instruction address for Flash” part.

You can now add the necessary assignments for the chip enable signals and jtag_tvref/jtag_tgnd.
Every assignment looks like “assign signal_to_be assigned = 1’b0;” (or “1’b1;”)

e. ‘instantiations’ part:

Remove the following instantiations: “VGA CRT controller”, “Audio controller”, “Flash controller”,
“Ethernet 10/100 MAC”, “PS/2 Keyboard Controller”, “CPLD TDM".

The following adjustments have to be made into the remaining instantiations:

- change the ‘clk’ of ‘or1200_top’ in the divided clock ‘wb_clk’.

- the last connection ‘pic_ints’ of the ‘or1200_top’ instantiation should be replaced by “20’b0”

- “sram_top sram_top” should be replaced by “onchip_ram_top onchip_ram_top”

- all the external SRAM connections should be removed (// SRAM external’ part of ‘sram_top’)

- in the ‘vart_top’ instantiation the “.int_o (pic_ints[APP_INT_UART])” must be replaced by
“int_o ()”

- in the Traffic cop instantiation, the following changes should be made:
o MASTERS: Wishbone Initiators 0, 1 and 2 must be replaced by stubs (like Initiators 6 and 7)
o SLAVES: Wishbone Targets 1, 2, 3, 4 and 6 must be replaced by stubs (like Targets 7, 8)
o “i4 wb ack o (wb_rdm_ack)" must be “.i4_wb_ack_o (wb_rdm_ack_i)”
o and“i5 wb adr i (wb_rif_adr)’ mustbe “i5 wb _adr i (wb_rim_adr_o)”

| 4) Adjust 'or1200_defines.v’

Several defines should be enabled or disabled:

- Enable “define OR1200 ALTERA_LPM”

- Disable “define OR1200_XILINX RAMB4”

- Enable “define OR1200_NO_DC”, “define OR1200_NO _IC”, “define OR1200_NO_DMMU”
and “define OR1200_NO_IMMU”

- Disable “define OR1200_CLKDIV_2 SUPPORTED”

- Disable “define OR1200_RFRAM_DUALPORT”

- Enable “define OR1200 _RFRAM_GENERIC”

- Disable “define OR1200 DU _TB_IMPLEMENTED”

\ 5) Adjust ‘or1200_pc.v’

Remove the line “.genpc_stop_refetch (1’b0)” completely.

Page 5 Of 12 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

IV Add new components

\ 1) PLL component

Because most FPGA development boards contain clocks that are too high, these have to be
divided so that the OpenRISC can run. You can always run your OpenRISC at a higher frequency,
but usually 10 to 20 MHz is attainable on most FPGA'’s.

To add a PLL component, it first has to be generated using Altera Megawizard. So open Quartus Il.
Go to the menu item ‘Tools’ and then ‘Megawizard plug-in wizard'.

One the first page of the wizard click “Create a new custom megafunction variation” and press
“Next”.

On the second page:

select the correct FPGA family you want to use

as output file, select ‘Verilog HDL’

browse to the location where you want to place the clockdivider and type in a name like in the
example of figure 1.

The only thing needed now is to select the megafunction you want to create: in the left screen
select ‘l/O’ -> ‘ALTPLL’

You can now click ‘Next’

Figure 2: MegaWizard page 2

MegaWizard Plug-In Manager [page 2al ﬂ

w'hich megafunction would you ke o custarnize’? which device family vwill you be ISlraliH vI

ing?
Select a megafunction from the list below L=l

=1-[#] Installed Pluglns Wwhich type of output file do wou want to create?
Altera SOPC Buider AHDL
Al_tera S_DF'C Evilder 2.8 p—
- arithmetic @ Vo
2] ARM-Based Excalibur * Veilog HDL
-8 gates
S8~ _|_'f'ID what narme do you want for the output file? Browse... |
: IF: worl khorphiorp_sochiwenlogholkdivclldiv.y
] ALTDDIO_BIDIR
] ALTDDIO_IN
] ALTDDIO_DOUT : :
7 ALTDOS [Returm to this page for another create operation
A aLTLVDS Mote: To compile a project successfully in the Quartus 1|
ALTPLL sofbware, your design files must be in the project directary or
_ a user librany pou zpecify in the User Libraries page of the
1] ALTPLL_RECOMFIG Settings dialog box [Sszignments men).
] ALTREMOTE_UUFDATE

W
[-83 memony compiler our current user library directaries are:

-8 storage f-hgdesignshor T k_memif_ocmchitiverilogh -
- @8 IP MegaStore I-hadesignssiorTk_memif_ocmchrthwerilagh
I:hgdeszignzor k_memif_ocmchibwenloghclkodi

:\gdesignshar k_memif_ocmchrthweriloghclkdi
I:hgdezignz'or T k_memif_ocmchiwenloghdbg_interfaces
-\ gdesignsharl k_memif_ocmehithwerloghdbg_interface’,
fhgdesignshorl k. memif ocmchitlvwenloghmem ify

||

Cahicel | <Back| Mext » | Fitirzhy |

Page 6 Of 12 HOGESCHOO[VOORM’[TEVSCHAP&KUNSI’DE NAYERII!S'I'ITUUT

On the first page of the ALTPLL wizard:
- Check whether the correct FPGA family is selected.

- Correct the input frequency

- You can disable ‘areset’ and ‘pfdena’

- You can then click ‘Next’

Figure 3: First ALTPLL page

MegaWizard Plug-In Manager - ALTPLL [page 1 of 15]

clkdiv

nckd

incikD) frequency: 50.000 hHz
Operation hiode: Hommal

0 (2 X S
Ceo [o [o [000 [som

s
2

cn,

locked

(

Able to implement in Fast or Enhanced PLL Jump to page for: IGeneraVM odes *

which device family will you b using?
which PLL type will you be using?

" Use FastPLL

" Uss Enhanced PLL

(% Select the PLL type automatically

‘hat iz the frequency of the inclack input™

™ Create an 'pllena’ input to selectively enable the PLL

[~ Create an 'areset’ input to asynchronously reset the PLL

[~ Cisate an ‘pfdena’ input ta selectively enable the phass/fieq, deltector

Stratiz =

[E0.000 MHz

- Dperation modh

Howe will the PLL outputs be generated?
& Use the feedback path inside the PLL
& In Nomal Mode
© InZem Delay Buffer Made

" With no compensation

" Create an 'thin' inpuit for an external feedback (Extemnal Feedback Mode)

Which output clock will be compensated for?

Cancel | <Eack| Mest » | Finish |

On the second page, you can disable the ‘locked’ output option. Now you can proceed directly to

page 5 (clock c0).

On page 5, you can either select an output frequency or a multiplication/division factor. After

creating the correct clock frequency, you can press ‘Finish’.

Figure 4: Create a Quartus Il project

MegaWizard Plug-In Manager - ALTPLL [page 5 of 15]

clkdiv

inclko

inclk(frequency: 50.000 MHz
Operation hode: Mormal

[t JRatia] Ph (o] T = OC ()
[eo [1 [as0 [oo [ana]

c0 - Core Dutput Clock Jump to page for.

¥ Use this clack

CglClock

|

-

Requested settings

Able ta implement in Fast or Enhanced PLL

Actual seltings

" Enter autput clack frequency: J10.000

|tz =]
* Enter output clock parameters:

Clock multiplication factor 1 j c
IE—: <« Copy

Clack division factor

|1 0.000000

Clock phage shift
Clock time shift [nsec)
Clack duty cycle (%]

More Details >> |

[Create a clock enable input

o= o =l
0.00 ﬂ 0.00

w2

L0 € cCz C3

™ Miror these settings o C4 C5
extemal clock el
[Required for FLLTT_EUTar ED E1 EZ2 E3
FLLT 2 DU Toutput pins]
Cancel | < Back | Next | Finish |

Page 7 of 12

HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

Because this PLL component is ready-as-it-is to be included, it now only has to be included in the
top-file of the Quartus project in a later stadium.

| 2) onchip RAM component

Now comes an important step: writing the onchip RAM component. A completely new component
has to be written. The module consists of:

- a‘module’ part

- a ‘parameter’ part

- an ‘input & output’ part

- a‘wire’ part

- an ‘assignment’ part

- ‘read and write acknowledge processes’ part

- ‘altsyncram instantiation’ part

When taking in account timing and protocol of Wishbone bus and synchronous onchip RAM, the
onchip RAM module eventually must look like (16kB or 131072 bits onchip RAM version):

Page 8 Of 1 2 HOGESCHOOLVOOR WETENSCHAP & KUNST [DE NAYER INST! ITUU‘I‘]

It's best to add this file to the source directory so that it can be easily added to the Quartus project.

Page 9 of 12

V Synthesis, place & route, generating the bitstream

1)
2)

Start Quartus Il (Start 2 programs 2 Altera 2 Quartus Il 3.0)

Create a new quartus project (File = new project wizard) (figure 1)

Figure 5: Create a Quartus Il project

New Project Wizard: Directory, Name, and Top-Lev | il

Wwihat iz the working directony for thiz project? Thiz directory will contain design files and
other related files azsociated with this project. If you tupe a directory name that does not
ewigt, Quartuz || can create it for you,

Ic:\qdesigns\or‘l khquartuzh |

What is the name of this project? If pou wish, you can use the name of the project's
top-level design entity.

Inr‘l k _l

What is the name of the top-level design entity in your project? The Quartus |1 zoftware will
automatically create Compiler and Simulator settings for the top-lewvel entity vow specify

in thiz wizard. After you create a project, you can add more top-level entitiez and create
Compiler and Simulatar zettings for them with commands on the Aszignments menu.

I:-:sv_fpga_tapl _l

Back I Mexst I Finizh Annuleren

3)

8)

Select a directory as a working directory. It’s best to put it in a seperate directory than the
source code. Then choose a projectname. The top level entity is ‘xsv_fpga_top’ if you haven’t
changed this name in the ‘xsv_fpga_top.v’ file. You can now click ‘next’

Now you have to select the source files. When using Quartus Il 3.0, the order in which the files
are added isn’t important. Just add all the ‘debug-unit’-, ‘openrisc’- and ‘uart’-files (except for
timescale.v). Also add of course the topfile of the PLL component and the onchip RAM. In the
root of the source-files, add the ‘xsv_fpga_top.v’, ‘xsv_fpga_defines.v’ and ‘tc_top.v’. After
adding all these files, don’t press ‘next’.

You now have to include the library pathnames. Therefor click “User Library Pathnames...”.
Now add all the directories where the source files reside. Press ‘OK’ and ‘Next’ to proceed.

Select ‘none’ as design entry synthesis tool and click ‘next’.

Select your component’s target family, and select ‘yes’ to select the component itself directly.
Click on ‘next’

Select your target component, click on ‘next’

Page 1 0 Of 12 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

9) Press on ‘finish’ to complete the project setup.

10)Now you have to assign the pins of the FPGA to the top-file ports. There are two ways to do

this:

a) Graphical: In the menu ‘assignments’, click “assign pins”. You will then get a list with all the
physical FPGA pins. To assign a pin to a signal, select the physical pin and type the
signalname in the “Pin name” box. To add the pin, press ‘Add’. Continue this process until
all pins have been assigned.

Figure 6: graphically assigning pins

Assign Pins El

Select a device pin and the type of aszignment yau wish to make. You can also make pin azzignments in the Azzignment Editar and the

Floorplan Editor. You can reserve unused ping on a device-wide basiz with the Unused Pinz tab in the Device & Pin Options dialog box.

T'ou muzt perform a emart compilation on the design before routing SignalProbe signals.

Chanagez apply ta Compiler settings ‘orlk'

Available Pinz & Existing Azsignments:
Mu... | M ame: | 1/0 Bank: | 140 Standard: | Type: | SignalProbe Source Mame | Enabled | Statug | EI::I
G27 2 LWTTL Raow 140.... (it L
G2a 2 LWTTL Row /0, O
K21 2 L¥TTL Row1/0.... i}
K22 2 LWTTL Raow40.... uli}
H26 2 LWTTL Row /0, O
HfE 2 L¥TTL Row /0. (Ife x
4 | b

[~ Show 'ho conhect’ ping [~ Show cuent and potential SignalProbe pins

— A zzignment
Fin name: I J SignalProbe source:; I J

140 standard: |LVTTL

[~ SignalProbe enable

-

Clock: I

[~ Reserve pin [even if it does nat exist in the design fil];

IAS input tri-ztated

Add

j Registers: I

[Delete | Enable &l SianalProbe B auting |

Dizable &l SignalFrobe Fauting |

0K I Cancel |

b) Text: Close the Quartus project by clicking “close project” in the ‘File’ menu. With a text
editor open the “<projectname>.csf” file in the project directory. Now to assign pins, add the
following line in the “CHIP(projectname)” part: “<signal-name> : LOCATION =
Pin_<location>;” After assigning all signals, you can save and go back to the Quartus

project.

11)Start the compilation “processing - start compilation” to synthesise and place & route the
design and create the bitstream.

12)In the “message”-window, look for the message indicating the achieved clock speed. It should
be higher then the divided clock. Otherwise, adjust the division factor of the PLL component

and re-compile.

Page 11 of 12

HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

VI Download and test the OpenRISC

1) Open the Quartus programmer (Tools - Programmer)
a) Make sure you connected your download cable correctly (e.g. byteblaster,...), make sure
your board is powered on

b) If you haven’t configured the Quartus programmer yet, push the ‘Hardware...” button to
configure your hardware setup. First “Add Hardware” and select the correct download cable.
Then select the hardware in the list and press “Select Hardware”.

c) After the hardware configuration, push on the “auto detect” button (binocular icon). This will
initialise the device-chain and display it.

d) Remove the device that has to be programmed, and add the generated target file
“<projectname>.sof” to the chain by pushing on the button “add file” (upper map icon). After
the file has been added, make sure the order of the different devices is still correct.

e) Make sure to mark the program/configure box of your device in the “Program/configure”-
column (figure 7)

Figure 7: Quartus programmer

Hardware. . | |B.'r'tEB|a$tEf” [LPTT] Mode: |JTAG j Progress: 0%

File

Security

Device Checksum |Jzercode

Q0956FA4 FFFFFFFF

e BREGE X % ¢ E|

f) Press on the “start” button (play icon) to download your design into the device.

Congratulations, you have now succesfully generated an OpenRISC based embedded system and
downloaded it to an FPGA. To test your system by running software on the processor, follow the
instructions of the software tutorial that you can find on our website (http://emsys.denayer.wenk.be).

Page 1 2 Of 12 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

