

DE NAYER Instituut
J. De Nayerlaan 5
B-2860 Sint-Katelijne-Waver
Tel. (015) 31 69 44
Fax. (015) 31 74 53
e-mail: ppe@denayer.wenk.be
 ddr@denayer.wenk.be
 tti@denayer.wenk.be
website: emsys.denayer.wenk.be

Basic Custom OpenRISC system
Software Tutorial

Linux Version 1.00

HOBU-Fund
Project IWT 020079

Title : Embedded systemdesign based upon

Soft- and Hardcore FPGA’s

Projectleader : Ing. Patrick Pelgrims

Projectassistants : Ing. Dries Driessens

Ing. Tom Tierens

Copyright (c) 2003 by Patrick Pelgrims, Tom Tierens and Dries Driessens. This material may be
distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

 Page 2 of 8

Purpose of this tutorial is to help you build a working GNU Toolchain and if you want, to run a
simple Hello World program on an OpenRISC processor.

The only thing you need to build a working GNU toolchain is a PC with a Linux operating system. If
you also want to compile and run a simple “Hello World” program, you need of course a working
OpenRISC processor with a debug unit and preferably a UART to have some output. This tutorial
is designed to work with the Basic Custom OpenRISC embedded system, but it can of course be
used with any OpenRISC based embedded system.

Finally, I would like to mention that this tutorial is partially based on the excellent “OR1K uClinux
and simulator installation guide” of Robert Cragie. The original page can be found at
www.asisi.co.uk/or1k.html.

The flow of setting up software for the OpenRISC is:

1. check gcc. if necessary, get gcc source-code and build correct gcc
2. retreive and build toolchain source-code

You should then be ready to retreive and build software to run on the OpenRISC

I Introduction

 Page 3 of 8

first check which version of gcc you have:
1) open a terminal window and type “locate gcc | grep /bin/”
2) check every gcc by running it with the “–version option”: i.e. ”/usr/bin/gcc –version”
For building a correct OpenRISC GNU toolchain you need gcc 2.95.x or 2.96. If you find these, you
can skip the remainder of this chapter and proceed to chapter III. If not, you have to install the right
gcc.

INSTALL GCC

A. go to “gcc.gnu.org/mirrors.html”, pick a nearby server and download “gcc-2.95.3.tar.gz”
B. in a terminal, go to the location where you saved the gcc-tar file and untar it by typing “tar –xzf

gcc-2.95.3.tar.gz”
C. mount into the directory, by typing “cd gcc-2.95.3”
D. to install, you need supervisor priviledges. If you’re logged in as a normal user, type “su root”

and the supervisor password.
E. Now configure the install script. To avoid confusion the gcc is renamed gcc-295. You can

accomplish this by typing ‘./configure --program-transform-name=”s/\\\\(.*\\\\)/\\\\1-295/” ’
F. To finish, build the gcc by typing “make bootstrap && make install”

II GCC installation

 Page 4 of 8

In this chapter, you will learn how to build a basic GNU Toolchain. This simple toolchain will suffice
to compile and run “Hello World” on the OpenRISC processor.

If you would like to build the complete GNU Toolchain, you can follow the additional instructions in
Robert Cragie’s “OR1K uClinux and simulator installation” guide at www.asisi.co.uk/or1k.html.

Notice: the directories where the binaries will be installed in “/opt/or32-uclinux/”, but you can
replace it by any other directory of your choice.

1) first set the CVSROOT environment variable: “export

CVSROOT=:pserver:cvs@cvs.opencores.org:/home/oc/cvs”
2) then login to the CVS server: “cvs login” and when prompted for a password, enter anything.
3) Before retreiving the OR1K directory (with the source code), go to the directory where you want

to place it.
4) Now you can checkout the source-directories by typing:

- “cvs –z9 co or1k/binutils”
- “cvs –z9 co or1k/gcc-3.2.3”
- “cvs –z9 co or1k/gdb-5.0”
- “cvs –z9 co or1k/jtag”
- “cvs –z9 co or1k/hello-uart”

cvs will retreive all these directories and place them in the “current directory/or1k/...”
5) change to this or1k directory: “cd or1k”
6) and login as superuser: “su” and type in the superuser password
7) setup the right gcc: “CC=gcc-295” and setup the right language if you don’t have an English

linux: “export LANG=eng”

BINUTILS:
8) make a build directory for the binutils: “mkdir b-b” and change to it: “cd b-b”
9) first configure the makefile : “../binutils/configure --target=or32-uclinux --prefix=/opt/or32-

uclinux”
10) then build the binutils by typing : “make all install”

PATH SETTINGS
11) now set the path for the compiled binaries: “export PATH=$PATH:/opt/or32-uclinux/bin”

CROSSCOMPILER
12) make a build directory for the gcc-crosscompiler: “mkdir b-gcc” and change to it “cd b-gcc”
13) now configure the cross-compiler: “../gcc-3.2.3/configure --target=or32-uclinux --

prefix=/opt/or32-uclinux --local-prefix=/opt/or32-uclinux/or32-uclinux --with-gnu-as --with-
gnu-ld --verbose --enable-languages=c”

14) build it: “make all install”
15) now go back up a directory: “cd ..”

GDB 5.0
16) the last build directory to create is one for gdb: “mkdir b-gdb” and change to it “cd b-gdb”
17) configure: “../gdb-5.0/configure --target=or32-uclinux”
18) build: “make all”

III GNU Toolchain installation

 Page 5 of 8

19) copy: “cp gdb/gdb /opt/or32-uclinux/bin/or32-uclinux-gdb”
20) now you can go back to the or1k root directory: “cd ..”

JP1-PROGRAM
This program isn’t a standard part of a GNU Toolchain, but to setup connection with an OpenRISC
processor, it is indispensable.
21) step into the jtag directory: “cd jtag”
22) build the OpenRISC jtag connection software: “make all”

 Page 6 of 8

In this chapter you will learn how to build a sample “Hello World” program for the OpenRISC
processor.

1) There you have to be made some adjustments to two files.

a. To “board.h”: the only lines that have to remain are:
- “# define IN_CLK 10000000”
- “# define STACK_SIZE 0x1000”
- “# define UART_BAUD_RATE 19200” (higher rates might not work)
- “# define UART_BASE 0x90000000”
- the lines with “# define REG8”, “REG16” and “REG32”

b. The “ram.ld” file has to be adjusted:
- “ram : ORIGIN = 0x00002000, LENGTH = 0x00002000”

2) In the “or1k/hello-uart” directory, compile the hello world program by typing “make clean all”
3) go back to the or1k root directory: “cd ..”

IV Hello World

 Page 7 of 8

To make a connetion with the OpenRISC processor, you should first get back into super-user
mode (‘su’) and then go to the jtag directory: “cd jtag”.
To run the program type “./jp1-xilinx 9999” (if you make connection via parallel cable III or IV) or
“./jp1-xess 9999” (if you make connection to the xess board via parallel port)

You should now get the following screen:

If you don’t get this screen, something is wrong.

TROUBLESHOOTING
- problem: you only get “Connected to parallel port at 378”

advice: check the connection with the debug unit.

- problem: ‘Read’ and ‘Expected’ values are always zero
advice: check the OpenRISC reset state

- problem: ‘Read’ and ‘Expected’ values always differ
advice: check the onchip-RAM module

- problem: ‘Read’ and ‘Expected’ values only sometimes differ
advice: check the OR1200 core itself, more specifically check the timing of the ALU registers.

IV JTAG connection

Connected to parallel port at 378
Read npc = 0000000c ppc = 00000024 r1 = 00000005
Expected npc = 4000000c ppc = 40000024 r1 = 00000005
Read npc = 0000000c ppc = 00000024 r1 = 00000008
Expected npc = 4000000c ppc = 40000024 r1 = 00000008
Read npc = 00000024 ppc = 00000020 r1 = 0000000b
Expected npc = 40000024 ppc = 40000020 r1 = 0000000b
Read npc = 00000020 ppc = 0000001c r1 = 00000018
Expected npc = 40000020 ppc = 4000001c r1 = 00000018
Read npc = 0000001c ppc = 00000018 r1 = 00000031
Expected npc = 4000001c ppc = 40000018 r1 = 00000031
Read npc = 00000020 ppc = 0000001c r1 = 00000032
Expected npc = 40000020 ppc = 4000001c r1 = 00000032
Read npc = 00000010 ppc = 0000000c r1 = 00000063
Expected npc = 40000010 ppc = 4000000c r1 = 00000063
Read npc = 00000024 ppc = 00000020 r1 = 00000065
Expected npc = 40000024 ppc = 40000020 r1 = 00000065
Read npc = 0000000c ppc = 00000024 r1 = 000000c9
Expected npc = 4000000c ppc = 40000024 r1 = 000000c9
result = 5eaddead
Dropping root privileges.
JTAG Proxy server started on port 9999
Press CTRL+c to exit.

Must Be Equal

 Page 8 of 8

Finally you’re ready to upload the Hello World program and run it.

1) Connect the serial port of your board to a PC and open a UART-terminal window
2) go to the directory where Hello World has been untarred.
3) Enter “or32-uclinux-gdb hello.or32” to run gdb
4) In gdb type in the following commands:

- “target jtag jtag://localhost:9999”
- “load”
- “set $pc=0x100”
- “c”

You should now see a “Hello World!” appear on the UART terminal window. You can even send
characters. The OpenRISC will return a character one higher. So if you send ‘a’, you get ‘b’ on the
terminal.

V GDB connection

