
Getting started with ORPSoC on the ATLYS

board

Anton Fosselius, Per Lenander

June 1, 2012

1

Contents

1 Introduction 3

2 Hardware 3

3 Installing Software 3
3.1 Xilinx ISE . 3
3.2 Subversion and Git . 4
3.3 ORPSoC . 4
3.4 ork1sim . 4
3.5 OpenRISC toolchain . 5
3.6 SPI Flash . 5
3.7 Board specific library for bare metal 6
3.8 Toolchain Done! . 6

4 Building and Flashing 6
4.1 Bare metal ”hello world” . 7
4.2 Running the ”hello world” on or1ksim 7
4.3 Running the ”hello world” on the FPGA 7
4.4 Building the Linux kernel . 8
4.5 Running the Linux kernel in or1ksim 8
4.6 Running the Linux kernel on the FPGA 8

4.6.1 Bad way . 8
4.6.2 Good way . 9

5 Extra 10
5.1 UART . 10
5.2 Adding a RTL Module . 10
5.3 Bare metal light LEDs in assembly 10
5.4 DDR2 RAM . 11
5.5 Memory Mapping . 12

6 References 12

2

1 Introduction

This document will explain how to set up an development environment in
Ubuntu Linux for ORPSoC on the Atlys development board. It will give detailed
descriptions on where to get the correct software and how to use it.

The document contains various examples on how to configure the hardware
and software to work correctly with the ORPSoC build system, from simply get-
ting a led to blink to compiling a custom Linux kernel to run on the OpenRISC
processor.

2 Hardware

To be able to follow every step of this article you will need the following hard-
ware:

• One Computer with a recent edition of Ubuntu installed (11.10 or later)

• One Atlys FPGA board

• One Computer with Windows XP or later installed

The Windows computer is only used to do SPI Flash with the application
Adept from Digilent. The authors of this document have to their regret not
found any reliable way to do this in Linux. The Xilinx iMPACT programming
tool can be used to program the FPGA itself, but is very unreliable and slow
when programming the SPI Flash.

3 Installing Software

To be able to boot Linux on ORPSoC with the Atlys board, you will have to
install a wide range of tools. This will take some time and lot of disk space
(close to 20GB).

3.1 Xilinx ISE

Note: The trial version of Xilinx ISE does not work because it do not allow
you to generate bitstreams.

The first thing you want to do is to sign up at Xilinx homepage and download
the ISE webpack edition. The ISE webpack file is about 6Gbyte big, it will take
a while to download. When the ISE is installed it will take about 13-15Gbyte
of disk space. Make sure you have enough disk space available!

http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html

Now when the ISE is downloading its time to download a webpack license,
this is also done on the Xilinx homepage. When the ISE download is finished
run the installer as ”sudo” and follow the instructions.

3

3.2 Subversion and Git

To follow this document you need to have both subversion and git installed on
your computer.

sudo apt-get install subversion git

3.3 ORPSoC

Checkout the ORPSoC directory from OpenCores:

git clone git://git.openrisc.net/stefan/orpsocv2

You have to build the PDF file first to be able to read the documentation
for orpsocv2. First cd into the orpsocv2/doc folder and type the following:

./configure
make pdf

You can then read the pdf by running:

evince orpsoc.pdf

3.4 ork1sim

To install the OpenRISC toolchain we first need to install the or1ksim simulator.
First check out the subversion repository to get the latest version.

svn co http://opencores.org/ocsvn/openrisc/openrisc/trunk/or1ksim

Create a build folder and cd into it.

mkdir builddir or1ksim
cd builddir or1ksim

Now build and install the or1ksim with the following commands:

../or1ksim/configure –target=or32-elf –prefix=/opt/or1ksim
make all
make install
export PATH=/opt/or1ksim/bin:$PATH

To test the Simulator you will need to install the OpenRISC toolchain. If
DejaGNU and the OpenRISC GNU tool chain are installed, the build can be
tested as follows.

make check

All tests should pass.

4

3.5 OpenRISC toolchain

Checkout the gnu-src subversion directory:

svn co http://opencores.org/ocsvn/openrisc/openrisc/trunk/gnu-src

We can build uClibc and Linux along with the toolchain. This will download
more then 500mb, it might take a while.

cd gnu-src
git clone git://git.openrisc.net/jonas/uClibc
git clone git://git.openrisc.net/stefan/linux

You will need a bunch of other tools to be able to build everything correctly.

sudo apt-get -y install build-essential make gcc g++ flex bison patch
texinfo libncurses-dev libmpfr-dev libgmp3-dev libmpc-dev libzip-
dev iverilog

Now we got everything! run the following command:

./bld-all.sh –force –prefix /opt/openrisc –or1ksim-dir /opt/or1ksim
–uclibc-dir uClibc –linux-dir linux

Add the following to your .bashrc file located in (/home/USERNAME/.bashrc).
Open .bashrc with a editor and then add the export statement at the end of the
file.

gedit .bashrc

Add this:

export PATH=$PATH:/opt/openrisc/bin

Start a new terminal and type ”or” and double tab. If everything works you
will see a list of or32-elf and or32-linux tools.

3.6 SPI Flash

Note: You can try to use SPI Flash with iMPACT in Linux, for this to work
at all you will have to set the JP11 jumper (next to the USB port). The SPI
Flash will now start but it is SLOW and will most likely fail.

This instructions are for installing Digilent Adept in Windows, no good
solution for Linux have been found.

You need to download and install Digilent Adept and the Digilent plugin.
Adept can be downloaded from:

http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT

The plugin can be downloaded from:

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,768&Prod=DIGILENT-
PLUGIN

5

Run the installs and follow the instructions.
For Linux to recognise the board we have to set some udev rules.
Copy the udev-rules from the xilinx folder to your udev folder.

sudo cp / x i l i n i x /13 .4/ ISE DS/common/ bin / l i n 6 4 / d i g i l e n t /\
d i g i l e n t . adept . runtime 2 .7.4− x86 64/52− d i g i l e n t−usb . r u l e s / e t c /udev/ r u l e s . d/

sudo cp /opt / X i l i nx /13 .4/ ISE DS/common/ bin / l i n 6 4 /\
xusbdfwu . r u l e s / e t c /udev/ r u l e s . d/

sudo / e tc / i n i t . d/udev r e s t a r t

Done!

3.7 Board specific library for bare metal

The or32-elf toolchain needs to know how your board is structured to properly
compile elfs for it. NOTE: These steps are not needed to build Linux applica-
tions, only bare metal. If your board is supported here1 you don’t need to take
these steps, just make sure to call or32-elf-gcc/g++ with the correct flags.

In the gnu-src/newlib-1.18.0/libgloss/or32 folder of the toolchain, find the
ml501.S file. This file contains basic definitions for the board, and will be used
to build libboard.a. Make a copy of the file called atlys.S and edit the copy with
the following changes:

• board mem size is the size of connected RAM. In the case of the atlys, it
should be changed to 0x8000000 (128MB DDR2).

• board clk freq is the clock frequency in hertz. For the atlys, it should be
50000000.

UART settings should already be correct.
Build libboard.a from the file and move it to the path where the OpenRISC

toolchain is installed:

or32−e l f−as −o a t l y s a t l y s . S
or32−e l f−ar −q l ibboard . a a t l y s
sudo mkdir / opt / open r i s c /or32−e l f / l i b / boards / a t l y s
sudo cp l ibboard . a / opt / open r i s c /or32−e l f / l i b / boards / a t l y s /

This process should be similar for other boards, check their specification for
correct memory size and clock speed.

3.8 Toolchain Done!

Now you have a working toolchain! congratulations!

4 Building and Flashing

When building and flashing your FPGA or your flash you will be faced with
some different file types.

1http://opencores.org/openrisc,newlib toolchain

6

• Makefile, this file contains building instructions.

• file.v is a Verilog source code file

• file.vhd is a VHDL source code file

• file.bit is a Xilinx bitstream file, The .bit is used to program the FPGA

• file.mcs is a Intel MCS-86 Hexadecimal Object. The MCS can be loaded
to the flash.

4.1 Bare metal ”hello world”

Writing a hello world for the processor is simple:
FIX: REDO EXAMPLE (NEEDS PRINTF.H)

#inc lude ” p r i n t f . h”

i n t main ()
{

p r i n t f (” He l lo world !\n ”) ;
r e turn 0 ;

}

This file needs the board-specific headers to compile.
Build it with:

or32−e l f−gcc −mboard=a t l y s h e l l o . c −o h e l l o
or32−e l f−objcopy −O binary h e l l o
b in2b ins i zeword h e l l o he l l o−bsw . bin

Note: for the -mboard=atlys flag to work, libboard.a has to have been built
and moved to the correct directory, see section 3.7.

Load the hello-bsw.bin to the simulator or the FPGA as described below.

4.2 Running the ”hello world” on or1ksim

Change your directory to your or1ksim folder and run:

. / sim −f sim . c f g /path/ to /your/ f i l e / h e l l o

Now you will see a lot of funny text and if you look closely you will see a ”hello
world” in the middle of all the output.

4.3 Running the ”hello world” on the FPGA

make orpsoc.mcs BOOTLOADER BIN=hello-bsw.bin

Load the mcs and reset the FPGA.

7

4.4 Building the Linux kernel

To get a linux kernel specific for the OpenRISC platform and the Atlys board,
check out:

git clone git://git.openrisc.net/stefan/linux

Build the kernel by entering:

make atlys defconfig
make ARCH=openrisc menuconfig
make ARCH=openrisc

(The first line loads a default configuration for the atlys board, which can
be overwritten by running the second line. The third line actually builds the
kernel.) Something that can be interesting to change is the modeline sent to the
VGA module on boot. This can be changed in the menuconfig by entering the
Processor type and features menu, and changing the line at the very bottom of
the list.

This will build vmlinux.bin, which will be loaded to the FPGA. To change
what basic programs are loaded with the linux dist, add your own programs to
arch/openrisc/support/initramfs. These must be compiled with the or32-linux
tools.

4.5 Running the Linux kernel in or1ksim

Same procedure as for ordinary elf. Linux will open a telnet interface you can
connect to AT PORT NR?.

4.6 Running the Linux kernel on the FPGA

The OpenRISC processor need the linux image to be in the correct format, so
convert the vmlinux.bin with the bin2binsizeword found in orpsoc/sw/utils:

cd sw/utils
make
./bin2binsizeword /path/to/image/vmlinux.bin /path/to/new/im-
age/vmlinux.bin

4.6.1 Bad way

Put the word size bin in the boards/xilinx/atlys/backend/par/run folder. Then
load it as a ”bootloader” into the mcs file by typing:

make orpsoc.mcs BOOTLOADER BIN=vmlinux.bin

This will program the linux image into the mcs file, which should be about
15MB in size by now. Load this file to the FPGA SPI-flash using iMPACT or
Digilent Adept.

8

4.6.2 Good way

Load a bootloader into the BOOTLOADER BIN section and load the linux
image from flash or from an external memory. We use u-boot for this. Download
it by running:

git clone git://openrisc.net/stefan/u-boot

Then run:

make atlys config
make

To build u-boot.bin for the atlys board (several other orpsoc board configu-
rations exist). Convert it to word size with:

bin2binsizeword u-boot.bin u-boot-wordsize.bin

Load it to flash using the instructions above (BOOTLOADER BIN flag).
Use the mkimage program in the tools directory to build a u-boot compatible

image to boot:

1. Linux image:

tools/mkimage -n ’Linux for OpenRISC’ -A or1k -O linux -T
kernel -C none -a 0 -e 0x100 -d vmlinux.bin uImage

2. Bare metal image:

tools/mkimage -A or1k -T standalone -C none -a 0 -e 0x100 -n
helloWorld -d hello.bin uImage

Connect to the board through a serial terminal (connect to the UART mi-
croUSB port, connect other end to computer USB port). The device will proba-
bly show up as ttyACM0, but check dmesg to verify. Start a serial terminal such
as gtkterm and connect to the board using a baudrate of 115200, 8 data bits, 1
stop bit, no parity. Type help and you should get a list of available commands.

You must have a network connection to a computer with nfs installed (sudo
apt-get install nfs-kernel-server). Export a directory (add a line to /etc/exports)
containing the uImage you want.

On the board (through the u-boot uart interface) set the ipaddr and serverip.
These can be saved to flash with saveenv. Set the bootfile to /the/path/to/y-
our/export/uImage. Type nfs. The image should load (check network connec-
tion if fails) in around 10-20 seconds. Type bootm. Image should boot.

To make it easier to boot, write:

setenv bootcmd nfs 0x100000 192.168.1.10:/export/share/uImage
bootm 100000
saveenv

The only command needed to be run through the uart terminal is boot.
Currently this doesn’t work so good for some reason. Should though...

9

5 Extra

5.1 UART

You can get UART output from the MicroUSB port located beside the USB
port, In Ubuntu it shows as /dev/ttyACM0. use a baudrate of 115200 with 8
databit, 1 stop bit, no parity. GtkTerm is a good tool for reading from the uart.

sudo apt-get install gtkterm

5.2 Adding a RTL Module

A good way to start making your own RTL modules is to first check how the
other RTL modules are structured. The GPIO module is simple and a good
module to start with. Make a copy of the GPIO folder (orpsocv2/boards/xilinx/atlys/rtl/verilog)
with your wanted module name. Now modify the content of the folders to your
needs and make sure to follow all the naming conventions. The folder, the
verilog file and the module must have the same name.

Files that need to be updated:

• atlys/rtl/verilog/orpsoc top/orpsoc top.h

• atlys/rtl/verilog/include/orpsoc-defines.v

• atlys/rtl/verilog/orpsoc testbench.v

• atlys/backend/par/bin/atlys.ucf

• If any wishbone buses are used, many things need to be updated:

– atlys/rtl/verilog/arbiter/(the bus you are adding to).v

– atlys/rtl/verilog/orpsoc top/orpsoc top.h

– atlys/rtl/verilog/include/orpsoc params.h

atlys.ucf only needs to be updated if any IO pins where modified.

5.3 Bare metal light LEDs in assembly

This is an example to test to set the gpio register (through the wishbone bus) on
the board. The LED register on GPIO module lights the LEDs according to the
input. You need to ”cd” to the following directory orpsocv2/boards/xilinx/atlys/sw/bootrom/

name pio . S
l . movhi r3 , 0 x9100 # Set the memory address f o r the LEDs (GPIO module)
l . addi r4 , r0 , 0 x f f # Set r4 to 0 x f f (s e t a l l GPIO to high)

l . sb 0x0 (r3) , r4 # sb = s e t byte , s e t s r e g i s t e r at address r3 with value r4
l . sb 0x1 (r3) , r4 # s e t s the GPIO r e g i s t e r to output

l . j 0
l . nop
l . nop

To compile this, run the following:

10

or32−e l f−as −o pio pio . S
or32−e l f−objcopy −O binary pio

Now, lets do some magic. (the magic of pipes updates the bootrom.v)

b in2v logar ray < pio
b in2v logar ray < pio > bootrom . v

Now you need to rebuild your entire system then flash the FPGA with the new
image. When you have loaded the .mcs file to your flash and restarted your
board, the LEDs should be lit!

All available assembly instructions and their implementation are explained
in the openrisc arch.pdf document.

5.4 DDR2 RAM

The Atlys board contains a DDR2 RAM that allows for simultaneous reads and
writes. The DDR2 RAM contains 6 ports, 3 Read/Write ports 2 Read only and
1 Write only. The Write only port can be combined with a Read only to form
an extra Read/Write port.

11

5.5 Memory Mapping

OpenRISC Reference Platform (ORP) Address Space
Start adr End adr cached Size(Mb) Content
0xf000 0000 0xffff ffff Cached 256 ROM
0xc000 0000 0xefff ffff Cached 768 Reserved
0xb800 0000 0xbfff ffff Uncached 128 Reserved for custom devices
0xa600 0000 0xb7ff ffff Uncached 288 Reserved
0xa500 0000 0xa5ff ffff Uncached 16 Debug 0-15
0xa400 0000 0xa4ff ffff Uncached 16 Digital Camera Controller 0-15
0xa300 0000 0xa3ff ffff Uncached 16 I2C Controller 0-15
0xa200 0000 0xa2ff ffff Uncached 16 TDM Controller 0-15
0xa100 0000 0xa1ff ffff Uncached 16 HDLC Controller 0-15
0xa000 0000 0xa0ff ffff Uncached 16 Real-Time Clock 0-15
0x9f00 0000 0x9fff ffff Uncached 16 Firewire Controller 0-15
0x9e00 0000 0x9eff ffff Uncached 16 IDE Controller 0-15
0x9d00 0000 0x9dff ffff Uncached 16 Audio Controller 0-15
0x9c00 0000 0x9cff ffff Uncached 16 USB Host Controller 0-15
0x9b00 0000 0x9bff ffff Uncached 16 USB Func Controller 0-15
0x9a00 0000 0x9aff ffff Uncached 16 General-Purpose DMA 0-15
0x9900 0000 0x99ff ffff Uncached 16 PCI Controller 0-15
0x9800 0000 0x98ff ffff Uncached 16 IrDA Controller 0-15
0x9700 0000 0x97ff ffff Uncached 16 Graphics Controller 0-15
0x9600 0000 0x96ff ffff Uncached 16 PWM/Timer/Counter Controller 0-15
0x9500 0000 0x95ff ffff Uncached 16 Traffic COP 0-15
0x9400 0000 0x94ff ffff Uncached 16 PS/2 Controller 0-15
0x9300 0000 0x93ff ffff Uncached 16 Memory Controller 0-15
0x9200 0000 0x92ff ffff Uncached 16 Ethernet Controller 0-15
0x9100 0000 0x91ff ffff Uncached 16 General-Purpose I/O 0-15
0x9000 0000 0x90ff ffff Uncached 16 UART16550 Controller 0-15
0x8000 0000 0x8fff ffff Uncached 256 PCI I/O
0x4000 0000 0x7fff ffff Uncached 1024 Reserved
0x0000 0000 0x3fff ffff Cached 1024 RAM

6 References

OpenRISC: http://opencores.org/or1k/Main Page
ORPSoC: http://opencores.org/openrisc,orpsocv2
or1ksim: http://opencores.org/openrisc,or1ksim
Toolchan: http://opencores.org/openrisc,gnu toolchain

12

