
OpenCores PCI IP Core Design document 28.1.2002

PCI IP Core
Design document

Authors: Miha Dolenc & Tadej Markovic
mihad@opencores.org

tadej@opencores.org

Rev. 0.1
January 28, 2002

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 ii

This Page is Intentionally Blank

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 iii

Revision History

Rev. Date Author Description
0.0 13/11/01 Miha Dolenc

Tadej Markovic
First Draft

0.1 24/01/02 Miha Dolenc
Tadej Markovic

Testbench description added

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 iv

Contents
INTRODUCTION .. 1

1.1 PCI IP CORE INTRODUCTION ... 1
1.2 PCI IP CORE FEATURES ... 1
1.3 PCI IP CORE DIRECTORY STRUCTURE ... 2

PCI BRIDGE CORE .. 6
2.1 OVERVIEW.. 6
2.2 CORE FILE HIERARCHY .. 7

2.2.1 Core Module Hierarchy .. 9
2.3 DESCRIPTION OF CORE MODULES .. 13

2.3.1 Description of general core submodules... 13
2.3.2 Description of PCI I/O submodules .. 13

2.3.2.1 pci_io_mux submodule ..13
2.3.2.2 cur_out_reg submodule ..14
2.3.2.3 pci_in_reg submodule ..14
2.3.2.4 pci_rst_int submodule ..14
2.3.2.5 pci_parity_check submodule ..16

2.3.3 Description of WB slave Unit submodules.. 18
2.3.3.1 wb_slave.v..18
2.3.3.2 wb_addr_mux.v..22
2.3.3.3 wbw_wbr_fifos.v..22
2.3.3.4 delayed_write_reg.v ...24
2.3.3.5 conf_cyc_addr_dec.v..24
2.3.3.6 pci_master32_sm_if.v ..24
2.3.3.7 pci_master32_sm.v...26

2.3.4 Description of PCI target Unit submodules.. 29
2.3.4.1 pci_target32_sm.v & pci_target32_interface.v...29
2.3.4.2 pciw_pcir_fifos.v..35
2.3.4.3 wb_master.v ...36

2.3.5 Description of Configuration space submodules .. 37
2.4 CHANGEABLE CORE CONSTANTS ... 44

2.4.1 Fifo size constants... 44
2.4.2 Fifo RAM instantiation Constants... 45
2.4.3 PCI I/O Pads constants... 46
2.4.4 HOST / GUEST implementation selection .. 46
2.4.5 Image implementation constants... 46
2.4.6 Optional Read-Only Configuration image implementation .. 46
2.4.7 PCI images’ implementation constants... 47
2.4.8 WISHBONE images’ implementation constants ... 48
2.4.9 WISHBONE Slave specific constants.. 49
2.4.10 PCI specific constants .. 49
2.4.11 WISHBONE Master specific constants .. 50

2.5 CHANGEABLE CONSTANTS DEPENDENCIES ... 50
2.6 UNCHANGEABLE CORE CONSTANTS... 52

2.6.1 Fifo constants.. 52

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 v

2.6.2 WISHBONE Slave constants ... 52
2.6.3 Configuration registers’ address constants .. 52
2.6.4 66Mhz Capable bit constant.. 53

PCI BRIDGE TESTBENCH ... 54
3.1 OVERVIEW.. 54
3.2 TESTBENCH FILE HIERARCHY .. 54

3.2.1 Testbench Module Hierarchy.. 55
3.3 DESCRIPTION OF TESTBENCH MODULES... 56

3.3.1 Description of PCI submodules .. 56
3.3.1.1 pci_bus_monitor submodule...56
3.3.1.2 pci_blue_arbiter submodule ...56
3.3.1.3 pci_behavioral_device submodule..56
3.3.1.4 pci_behavioral_iack_target submodule ..57
3.3.1.5 pci_unsupported_commands_master submodule ...57

3.3.2 Description of WB submodules ... 57
3.3.2.1 wb_bus_monitor submodule...57
3.3.2.2 wb_master_behavioral submodule ...57
3.3.2.3 wb_slave_behavioral submodule..58

3.4 DESCRIPTION OF TESTCASES .. 58
3.4.1 Description of WBU Testcases.. 58

3.4.1.1 Testcases for Configuration..59
3.4.1.2 Testcases for IMAGEs Tests ..60
3.4.1.3 Testcases for Verification...64

3.4.2 Description of PCIU Testcases ... 68
3.4.2.1 Testcases for Configuration..68
3.4.2.2 Testcases for IMAGEs Tests ..70
3.4.2.3 Testcases for Verification...73

3.5 TESTBENCH CONSTANTS .. 74
3.5.1 Changeable Testbench Constants ... 75
3.5.2 Unchangeable Testbench Constants ... 76

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 1

1
Introduction

1.1 PCI IP Core Introduction

The PCI IP core (PCI bridge) provides an interface between the WISHBONE SoC bus
and the PCI local bus. It consists of two independent units, one handling transactions
originating on the PCI bus, the other one handling transactions originating on the
WISHBONE bus.

The core has been designed to offer as much flexibility as possible to all kinds of
applications.

The chapter 2 describes file hierarchy, description of modules, core design considerations
and constants regarding the PCI IP Core.

The chapter 3 describes file hierarchy, description of modules, testbench design
considerations, description of testcases and constants regarding the Testbench.

1.2 PCI IP Core Features

The following lists the main features of the PCI IP core:

• 32-bit PCI interface

• Fully PCI 2.2 compliant (with 66 MHz PCI specification)

• Separated initiator and target functional blocks

• Supported initiator commands and functions:
• Memory Read, Memory Write

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 2

• Memory Read Multiple (MRM)

• Memory Read Line (MRL)

• I/O Read, I/O Write

• Configuration Read, Configuration Write

• Bus Parking

• Interrupt Acknowledge

• Host Bridging

• Supported target commands and functions:
• Type 0 Configuration Space Header

(Type 0 is used to configure agents on the same bus segment)

(Type 1 is used to configure across PCI-to-PCI bridges) Parity Generation (PAR),
Parity Error Detection (PERR# and SERR#)

• Memory Read, Memory Write

• Memory Read Multiple (MRM)

• Memory Read Line (MRL)

• Memory Write and Invalidate (MWI)

• I/O Read, I/O Write

• Configuration Read, Configuration Write

• Target Abort, Target Retry, Target Disconnect

• Fast Back-to-Back Capable response

• Full Command/Status registers

• WISHBONE SoC Interconnection Rev. B compliant interface on processor side
(master with Target PCI and slave with Initiator PCI interface)

• Configurable on-chip FIFOs

1.3 PCI IP Core Directory Structure

Following picture shows the structure of directories of the PCI IP Core.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 3

pci

verilog

crt

rtl

syn

exc

out

ucf

bit

sdf

verilog

apps

bench

doc

lib

verilog

rtl

sim

sw

syn

driver

fb

gate

logs

scr

verilog

rtl_sim

log

out

run

bin

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 4

There are three major parts of the Verilog code in the pci directory. First one is the code
for the PCI Bridge. The Verilog files are in the pci\rtl\verilog subdirectory. The second
one is the code for the PCI Testbench. This files are used together with files for the PCI
Bridge. There are also some exceptions, but those will be mentioned later. The Verilog
files are in the pci\bench\verilog subdirectory. The third one is the code for the
application, which is PCI Crt Controller. This files are used together with files for the
PCI Bridge. There are also some exceptions, but those will be mentioned later. The
Verilog files are in the pci\apps\crt\rtl\verilog subdirectory.

The documentation is in the subdirectory pci\doc. Documentation consists of PCI Bridge
White Paper, PCI Bridge Product Preview, PCI IP Core Specification and PCI IP Core
Design document.

Library files of the device specific subelements are in the subdirectory pci\lib. This
device specific elements are Memory Blocks, Global Buffers and I/O Buffers. I/O
Buffers used in FPGA are written in generic Verilog code and are put into FPGA IOB
cells with constraint file. This files must be changed with device specific IOB cells when
the design is used in ASIC. Memory Blocks and Global Buffers are device specific in
both, FPGA and ASIC.

pci\sim subdirectory is used for running simulation – testbench. The rtl_sim subdirectory
is used for RTL (functional) simulation of the core. There are a few directories included
here:

• bin – includes various scripts needed for running Ncsim simulator

• run – the directory from which the simulation is ran. It provides a script for
starting the simulation and a script for cleaning all the results produced by
previous simulation runs

• log – Ncvlog, Ncelab and Ncsim log files are stored here for review. There is also
a script provided for extracting errors from this logs.

• out – simulation output directory – simulation stores all the results into this
directory (dump files for viewing with Signalscan, testbench text output etc.)

The gate_sim directory is used the same way as rtl_sim, except simulation is run with
the netlist provided from synthesis tool.

Generated files from synthesis tools, like gate level Verilog and log files, are stored in the
pci\syn subdirectory and its subdirectories.

Regarding the application, there are other subdirectories under pci\apps directory. User
constraint file for pre-synthesis is in the pci\apps\crt\syn\exc subdirectory. This is used
for preserving some of the hierarchy to meet PCI timing constraints in FPGA. User
constraint file after synthesis and before implementation is in the pci\apps\crt\syn\ucf
subdirectory. This is used for pin locations, pin types and timing constraints. Generated
bit file from FPGA synthesis tool is stored in the pci\apps\crt\syn\out\bit subdirectory.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 5

This is used for FPGA programming. Generated sdf file from FPGA synthesis tool is
stored in the pci\apps\crt\syn\out\sdf subdirectory. This file contains all timing delays.
Sdf file back annotated to Verilog is stored in the pci\apps\crt\syn\out\verilog
subdirectory. This file is used for timing simulation.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 6

2
PCI Bridge Core

2.1 Overview

The PCI bridge consists of two units: the PCI target unit and the WISHBONE slave unit.
Each holds its own set of functions to support bridging operations from WISHBONE to
PCI and from PCI to WISHBONE. The WISHBONE slave unit acts as a slave on the
WISHBONE side of the bridge and initiates transactions as a master on the PCI bus. The
PCI target unit acts as a target on the PCI side of the bridge and as a master on its
WISHBONE side. Both units operate independently of each other.

The PCI interface is PCI Specification 2.2 compliant, whereas the WISHBONE is SoC
Interconnection Specification Rev. B compliant. The WISHBONE implementation carries
out a 32-bit bus operation and does not support other bus widths.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 7

2.2 Core File Hierarchy

The hierarchy of modules in the PCI Bridge core is shown here with file tree. Each file
here implements one module in a hierarchy RTL source files of the PCI Bridge core are
in the pci\rtl\verilog subdirectory.

top.v
 pci_bridge32.v
 . wb_slave_unit.v
 . . wb_slave.v
 . . wbw_wbr_fifos.v
 . . . pci_tpram.v *
 . . . wbw_fifo_control.v
 . . . wbr_fifo_control.v
 . . wb_addr_mux.v
 . . . decoder.v **
 . . delayed_sync.v *
 . . . synchronizer_flop.v **
 . . delayed_write_reg.v
 . . conf_cyc_addr_dec.v
 . . pci_master32_sm_if.v
 . . pci_master32_sm.v
 . . . frame_crit.v
 . . . frame_load_crit.v
 . . . irdy_out_crit.v
 . . . mas_ad_load_crit.v
 . . . mas_ch_state_crit.v
 . . . mas_ad_en_crit.v
 . . . cbe_en_crit
 . . . frame_en_crit.v
 . pci_target_unit.v
 . . wb_master.v
 . . pciw_pcir_fifos.v
 . . . pci_tpram.v *
 . . . pciw_fifo_control.v
 . . . fifo_control.v
 . . delayed_sync.v *

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 8

 . . . synchronizer_flop.v **
 . . pci_target32_interface.v
 . . . pci_decoder.v **
 . . pci_target32_sm.v
 . . . pci_target32_clk_en.v
 . . . pci_target32_trdy_crit.v
 . . . pci_target32_stop_crit.v
 . . . pci_target32_devs_crit.v
 . conf_space.v
 . . synchronizer_flop.v **
 . . sync_module.v**
 . . . synchronizer_flop.v **
 . pci_io_mux.v
 . . pci_io_mux_ad_en_crit.v **
 . . pci_io_mux_ad_load_crit.v **
 . . out_reg.v **
 . cur_out_reg.v
 . pci_in_reg.v
 . pci_parity_check.v
 . . par_crit.v
 . . perr_crit.v
 . . perr_en_crit.v
 . . serr_crti.v
 . . serr_en_crit.v
 . pci_rst_int.v
 bufif0 ***

* Files are used within more than one module: pci_tpram.v is used within
wbw_wbr_fifos.v and pciw_pcir_fifos.v files, delayed_sync.v is used within
wb_slave_unit.v and pci_target_unit.v files.

** Files are used within one module more than once: synchronizer_flop.v is used
within delayed_sync.v for 5 times and within conf_space.v for several times as
sync_module.v etc., decoder.v is used within wb_addr_mux.v for as much times as there
is the number of WB images, pci_decoder.v is used within pci_target32_interface.v for
as much times as there is the number of PCI images, pci_io_mux_ad_en_crit.v and
pci_io_mux_ad_load_crit.v are used within pci_io_mux.v for 4 times each, out_reg.v is
used within pci_io_mux.v for 47 times (for AD, CBE and Control signals).
*** Instantiation bufif0 is a generic tri-state buffer with active low output enable’ and
is used within top.v for 47 times (for AD, CBE and Control signals). This is Verilog

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 9

generic primitive and it works fine in FPGA implementation (I/O pads are defined in
constraint files). For an ASIC implementation, user must edit top.v file to instantiate PCI
I/O pads before synthesys.

2.2.1 Core Module Hierarchy

Module hierarchy is shown in detail in the following four pictures. First picture explains
how the following three pictures should be viewed as a whole. Dashed line means a
boundary between two pictures. Fourth picture shows connections between modules in
the PCI target Unit (PCIU). Third picture shows connections between modules in the WB
slave Unit (WBU) and the Configuration space connections. Second picture shows
connections between modules in the PCI Input/Output interface (I/O).

The name of each module is upper-case name of the respective file. Description of
modules and their connections is in the chapter Description of Core Modules.

I/O picture WBU
picture

PCIU
picture

Figure 2-1: First picture - Distribution of modules hierarchy into three pictures

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 10

top.v
pci_bridge32.v

bufif0

out_reg.v

pci_io_mux_ad_en_crit.v

pci_io_mux_ad_load_crit.v

pci_io_mux.v

out_reg.v

out_reg.v

pci_parity_check.v

pci_in_reg.v

cur_out_reg.v

pci_rst_int.v

M
U

X

MUX

FLIP-FLOPS

par_crit.v

perr_crit.vperr_en_crit.v

serr_crit.vserr_en_crit.v

FLIP-FLOPS

bufif0

bufif0

out_reg.v

Figure 2-2: Second picture - Module hierarchy of PCI I/O interconnection

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 11

top.v

pci_bridge32.v

wb_slave_unit.v

conf_space.v

wb_addr_mux.v

MUX

wb_slave.v
delayed_write_reg.v

conf_cyc_addr_dec.v

pci_master32_sm_if.v

pci_master32_sm.v

frame_load_crit.v

frame_crit.v

mas_ad_load_crit.v

mas_ch_state_crit.v

mas_ad_en_crit.v

cbe_en_crit.v

irdy_out_crit.v

frame_en_crit.v

decoder.v

decoder.v

wbw_wbr_fifos.v

wbw_fifo_control.v

wbr_fifo_control.v

pci_tpram.v

delayed_sync.v

sync._flop.v

sync._flop.v

FLIP-FLOPS

S1

S3

S2

S1
S3

S2

REGISTERS

D
EM

U
X

D
EM

U
X

R DATA R / W DATA

host
guest

host
guest

host

host

guest

guestsync._flop.vsync_module.v

Figure 2-3: Third picture - Module hierarchy of WB slave Unit and Configuration space

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 12

top.v

pci_bridge32.v

pci_target32_interface.v

pci_target32_devs_crit.v

pci_target32_clk_en.v

pci_target32_trdy_crit.v

pci_target32_stop_crit.v

pci_decoder.v

pci_target_unit.v

pci_target32_sm.v

S1
S3

S2

sync._flop.v

sync._flop.v

delayed_sync.v

wb_master.v

S1
S3

S2

pci_decoder.v

M
U

X

pciw_pcir_fifos.v

pciw_fifo_control.v

fifo_control.v

pci_tpram.v

Figure 2-4: Fourth picture - Module hierarchy of PCI target Unit

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 13

2.3 Description of Core Modules

2.3.1 Description of general core submodules

The module top.v consists only of module pci_bridge32.v and Verilog instances bufif0
for PCI Input and Output buffers.

The module pci_bridge32.v consists of all major submodules and is, like the module
top.v, without any logic. It includes some Verilog pre-compiler directives for connections
with Configuration space, depending on the HOST or GUEST implementation of the
core. If PCI bridge is implemented as HOST, then read/write connection is provided for
WB slave Unit (accesses from WB bus) and read-only connection is provided for PCI
target Unit (accesses from PCI bus). If PCI bridge is implemented as GUEST bridge, then
read/write connection is provided for PCI target Unit and read-only connection for WB
slave Unit.

2.3.2 Description of PCI I/O submodules

PCI I/O modules are shown on the Figure 2-2: Second picture - Module hierarchy of PCI
I/O interconnection.

There are two sets of signals connected to PCI bus through I/O modules. One set of
signals is from WB slave Unit and the other set of signals is from PCI target Unit. All
output signals, connected to PCI bus, from WB slave and PCI target Unit, also have
output enable signals.

2.3.2.1 pci_io_mux submodule

The module pci_io_mux.v is used for multiplexing output signals from WB slave and
PCI target Unit before registering them in corresponding output Flip-Flops. The signal
used as a select multiplexer signal is registered AD output enable from PCI target Unit,
tar_ad_en_reg_in (from cur_out_reg.v). This way the PCI master in the WB slave Unit
can use the PCI output signals when Target is not operating. This is done to implement
bus parking capability.

All output signals and their appropriate output enable signals are registered. Each output
Flip-Flop and corresponding output enable Flip-Flop are implemented in out_reg.v file.
In addition to data input, each of these Flip-Flops has an asynchronous reset and clock
enable ports. AD output Flip-Flops are shared between Master and Target state machines,
other outputs are controlled exclusively. Outputs from this Flip-Flops are driven into
bufif0 instances (for PCI I/O pins) in the top level module.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 14

Loading (clock enable) of AD output Flip-Flops is in part calculated in pci_io_mux.v,
while timing critical calculation is done in a pci_io_mux_ad_load_crit.v. There are four
of these sub-modules instantiated, one for each byte, to reduce fan-out. Preserve
hierarchy constraint can be selected on these modules, to prevent logic optimization in
them and thus satisfy PCI input timing constraints.

Somewhat similar module and functionality is provided for AD output enable Flip-Flops
driving. It is implemented in pci_io_mux_ad_en_crit.v.

2.3.2.2 cur_out_reg submodule

The opeartion of cur_out_reg.v submodule is the same as pci_io_mux.v, so it consists of
multiplexer and flip-flops and the same input signals. It is used for back-up information
of signals driven on the PCI bus for WB slave and PCI target Units. This had to be done
for FPGA implementation where IOB Flip-Flops are used – they can only have a fanout
of 1, so register replication has to be done in order to use this information. This is also
OK for ASIC implementation, since providing low fanout on output flip-flops reduces
delay on output ports and maybe prevents buffer insertions.

2.3.2.3 pci_in_reg submodule

The module pci_in_reg.v is used for registering the input PCI bus signals. Registered
inputs are used wherever and as much as possible, since stringent PCI bus input timing
constraints don't allow free usage of unregistered inputs. Newertheless, PCI bus control
signals must be used unregistered in some cases because of PCI bus protocol (eg: Master
must deassert FRAME# on the same clock it detects STOP# asserted or Target must
deassert DEVSEL#, STOP# and TRDY# on the same clock it detects FRAME#
deasserted and IRDY# asserted).

2.3.2.4 pci_rst_int submodule

The module pci_rst_int.v is used for basic logic for reset and interrupt pins.

If PCI bridge is implemented as HOST bridge, then RST_I input from WB bus is
recognized as a main asynchronous reset source. The module connects it to PCI core's
internal reset signal and PCI bus RST signal. Soft Reset bit in configuration space also
causes a reset on PCI bus, but does not have any effect on PCI Core's internal logic. Reset
signal RST_O to WB bus is always inactive in this case. Some special design
considerations must be taken into account when using Software Reset – PCI Core doesn't
take care of Device Initialization time as specified in PCI Local Bus Specification v. 2.2.
Software must take care of this by waiting the ammount of time required by the PCI
Specification before starting any transactions on the PCI bus. This wouldn't influence PCI
Core's logic, but could cause errors to occur or make PCI subsystem unstable. Refer to
PCI Local Bus Specification v. 2.2., chapter 4.3.2. Special design considerations are also

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 15

in order for power up reset which comes from RST_I signal on WB bus. This reset must
be implemented in compliance with PCI Local Bus Specification!

If PCI Core is implemented as GUEST bridge, then RST input from PCI bus is
recognized as a main asynchronous reset source. The module connects it to PCI core's
internal reset signal and WB bus RST_O signal. Soft Reset bit in configuration space
also causes a reset on WB bus, but does not have any effect on PCI Core's internal logic.
When using Soft Reset bit, designer must take into consideration its application's reset
implementation, to provide valid reset sequnce. For PCI bus reset operation, which is
propagated to WB bus, refer to PCI Local Bus Specification v. 2.2., chapter 4.3.2.

If PCI Core is implemented as HOST bridge, then its INTA# PCI pin is configured as an
input pin (output is always tri-stated). Its negated, synchronized to WB clock domain
and passed to WB bus through INT_O pin, if interrupt propagation is enabled. (interrupt
propagation enable bit of interrupt control register in conf_space.v). Some software
considerations come into account here – since interrupt is synchronized, it induces a
certain latency to pass through the bridge. When software clears an interrupt request at its
source, it should not immediately start accepting new interrupts. There are two
possibilities:

• Interrupt is cleared with a write to the source of interrupt:
Writes through the bridge are posted, therefore software cannot know and must
not assume a time when this write will finish on PCI bus. A common thing a
software would do would be to perform a write transaction to the source and
immediately after that perform a read transaction. This would cause a write
transaction to finish on PCI bus before read transaction can. When read
transaction is finished on WB bus, software knows for sure, that all writes posted
before a read are finished (except in case of an error). This should mean the
source of interrupt was cleared, and WB agent can start accepting new interrupt
requests.

• Interrupt is cleared with a read from the source of interrupt:
When this read is finished, interrupt request should already be cleared – except in
case of a source that also induces latency to clearing the interrupt. Software
should take that into the account and wait appropriate number of cycles before
accepting new requests.

If PCI Core is implemented as GUEST bridge, then its INTA# PCI pin is configured as
an output pin. INT_I from WB bus is negated, synchronized to PCI clock domain and
passed to PCI bus through INTA# pin, if interrupt propagation is enabled. (interrupt
propagation enable bit of interrupt control register in conf_space.v). Some software
considerations come into account here – since interrupt is synchronized, it induces a
certain latency to pass through the bridge. When software clears an interrupt request at its
source, it should not immediately start accepting new interrupts. There are two
possibilities:

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 16

• Interrupt is cleared with a write to the source of interrupt:
Writes through the bridge are posted, therefore software cannot know and must
not assume a time when this write will finish on WB bus. A common thing a
software would do would be to perform a write transaction to the source and
immediately after that perform a read transaction. This would cause a write
transaction to finish on WB bus before read transaction can. When read
transaction is finished on PCI bus, software knows for sure, that all writes posted
before a read are finished (except in case of an error). This should mean the
source of interrupt was cleared, and PCI agent can start accepting new interrupt
requests.

• Interrupt is cleared with a read from the source of interrupt:
When this read is finished, interrupt request should already be cleared – except in
case of a source that also induces latency to clearing the interrupt. Software
should take that into the account and wait appropriate number of cycles before
accepting new requests.

Since PCI Core can also cause interrupt requests, pci_rst_int.v module handles passing
those to appropriate output pins too. For HOST bridge implementation interrupts will be
passed to INT_O pin on WB bus, for GUEST bridge implementation they will be passed
to INTA# pin on PCI bus. Some internal synchronization is possible (depending on the
source of interrupt), so software should make sure not to accept new interrupt requsts
from the bridge for at least five cycles after interrupt status is cleared.

2.3.2.5 pci_parity_check submodule

The module pci_parity_check.v is used for generating/checking parity on PCI bus during
address and data phases.

The module is implemented in such a way, that no special signals are needed from PCI
Master or Target state machines. Its operation is based primarily on monitoring Master
and Target output enable and PCI input signals.

When Master state machine is driving AD bus, parity calculation is based on AD and
CBE outputs it provides. Appropriate parity value is driven to PCI bus on PAR pin one
clock after corresponding AD and CBE values. PERR# signal is sampled on next clock.
If it is sampled asserted, Parity Error Detected signal is generated and Master Parity Error
is signaled, if Parity Error Response is enabled in configuration space. PCI Master reads
are decoded using its FRAME and IRDY output enable signals. If those signals are
enabled and AD bus is not, then Master Read is in progress. Operation now switches
from generating value on PAR signal and monitoring PERR# signal, to monitoring PAR
signal and generating PERR# signal. Valid parity is calculated from CBE signals
provided by PCI Master state machine and AD signals provided by external Target. AD
signals are monitored only on cycles on which TRDY# is sampled asserted. Value on
PAR signal received on next clock cycle is xor –ed with parity calculated from CBE and

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 17

AD signals immediately. Result must be 0, otherwise Detected Parity Error is signalled.
If Parity Error Response in Configuration space is enabled also, when this event occurs,
then PERR# is asserted for one clock cycle and Master Data Parity Error signal is
asserted to set appropriate status bits in Configuration space.

Reads from PCI bus through Target state machine are decoded with Target control
signals and AD bus output enables. When Target state machine is driving control signals
and AD bus, this means a read through Target is in progress. Appropriate parity value is
calculated from Target – provided AD value and external Master-provided CBE value. It
is then driven to PCI bus on PAR pin one clock after corresponding AD values. PERR#
signal is sampled on next clock. If it is sampled asserted, Parity Error Detected signal is
asserted to set appropriate bit in Configuration space. PCI Target writes are decoded
using Target's TRDY output enable signal. If this signal is enabled and AD bus is not,
then Target Write is in progress. Operation now switches from generating value on PAR
signal and monitoring PERR# signal, to monitoring PAR signal and generating PERR#
signal. Valid parity is calculated from external Master-provided CBE and AD signals.
AD signals are monitored only on cycles on which IRDY# is sampled asserted. Value on
PAR signal received on next clock cycle is xor –ed with parity calculated from CBE and
AD signals. Result must be 0, otherwise Detected Parity Error is signalled. If Parity Error
Response in Configuration space is enabled also, when this event occurs, then PERR# is
asserted for one clock cycle.

Parity is also calculated on every Master initiated address phase – value is driven on PAR
pin one clock cycle after the address phase.

Parity is also checked on any external Master's address phase. If invalid parity is
detected, Parity Error Response and System Error Enable bits are set in configuration
space, then SERR# is asserted for one clock cycle and Signaled System Error is signaled
to Configuration space to set appropriate status bit. Detected Parity Error is also signaled
to Configuration space in such an event, regardles of the state of Parity Error Response
and System Error Enable bits. Parity error checking during external Masters' address
phases is done same way as in writes through Target state machine, except in place of
Target control signals, FRAME# input is monitored to decode address phase.

A few small submodules are included into pci_parity_check.v. They are provided only
because PCI timing constraints are hard to meet in FPGA implementation. “Preserve
hierarchy” option can be selected over these modules in FPGA synthesis tool to prevent
optimization of paths that include timing critical inputs. This kind of practice reduced
logic levels on those inputs. Modules provided because of timing issues are:

• par_crit.v – provides output to PAR output Flip-Flop. Signal is generated directly
from some timing critical PCI input signals during target operation.

• perr_crit.v – module feeding PERR output Flip-Flop.

• perr_en_crit.v – module feeding PERR output enable Flip-Flop.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 18

• serr_en_crit.v – module feeding SERR output enable Flip-Flop

• serr_crit.v – module feeding SERR output Flip-Flop

2.3.3 Description of WB slave Unit submodules

wb_slave_unit.v is used for connecting lower level modules that implement unit’s
functionality. It also provides all connections needed between Configuration space and
lower level modules (see Figure 2-3: Third picture - Module hierarchy of WB slave Unit
and Configuration space).

2.3.3.1 wb_slave.v

Module implements WISHBONE slave state machine, which monitors and responds to
cycles generated by external WB masters. It includes all logic needed for passing requests
from WB bus to PCI bus or Configuration space. During WB write requests, logic checks
whether or not all conditions for a write are satisfied. There are a few different ways
writes are processed:

• WB state machine starts processing a write, when CYC_I, STB_I and WE_I WB
signals are all active (1). WB address (ADR_I) passes through decoders
implemented in wb_addr_mux.v. Decoders compare input address with addresses
stored in Configuration space and generate hit signals. WB slave state machine
samples those signals at the rising edge of CLK_I while leaving IDLE or one of
DECODE states. Hit signals are used in START state to decide where to go or
what to do next. If not hit signal is sampled active, state machine doesn’t respond
and returns to IDLE state.

• Configuration Writes – configuration write starts, when decoder hit0 is active
and lower twelve addresses don’t match with Configuration Cycle data register
offset. Configuration writes are accepted only as single writes to DWORD aligned
addresses. If any of addresses [1:0] are non-zero or CAB_I signal is active during
configuration write, WB slave state machine responds with an error and returns to
idle state. WB slave state machine signals to Configuration space when write to
register is to be done also (write enable signal to configuration space). In case of
GUEST implementation of the bridge, configuration writes have no effect on
Configuration space registers. A special case applies here – when bridge is
defined as a GUEST and configuration image is not implemented, WB slave state
machine does not respond to configuration writes at all, because decoder for
Configuration space accesses is not implemented.

• Configuration Cycle Writes – this kind of writes is possible only in HOST
bridge implementation. It is initiated when decoder hit0 is active and lower twelve
addresses match with Configuration Cycle data register offset. State machine

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 19

handles these as Delayed Writes, so some additional restrictions apply. New
Configuration Cycle Write Request can be accepted only if bridge has no other
pending Delayed Transaction to be processed. That means no other Delayed
Read/Write Request/Completion is pending. Pending Requests/Completions are
signaled to WB slave from delayed_sync.v included in wb_slave_unit.v. All of
this conditions are sampled at the same time hits from decoders are sampled. If
there is no Configuration Cycle Write Delayed Completion pending (signaled
from delayed_sync.v), then WB slave state machine responds with retry on WB
bus and returns to idle state. If Completion is pending, WB slave state machine
will end a cycle with error or acknowledge, depending on a kind of termination
received on PCI bus and return to IDLE state. If neither Request or Completion is
pending, then state machine signals Delayed Write Request to delayed_sync.v,
providing appropriate PCI bus command (Configuration Write) and address
decoded by module in conf_cyc_addr_dec.v.

• Image Writes – Image write is initiated when following conditions are satisfied:
o WB Write Fifo (in wbw_wbr_fifos.v) is not almost full nor full

o Delayed Read or Write Requests are not pending

o One of hits from decoders is active, except hit0

Image Write has two possible forms – I/O write or Memory Write. WB slave state
machine decodes a form of Image Write by sampling map bits coming from
Configuration space the same way hits from decoders are sampled. Each hit has
its corresponding map bit. If map bit is 1, then I/O write is assumed, otherwise
memory write is assumed. In case of I/O write, CAB_I signal is not allowed to be
asserted (only single I/O writes possible) and SEL_I, ADR_I[1:0] combination
must be valid (PCI IP Core Specification, Chapter 3.2.3). If CAB_I is asserted
or invalid address/select combination is detected, WB slave state machine will not
accept a write, respond with error and return to IDLE state. In case of memory
write, ADR_I[1:0] must be zero, otherwise state machine doesn’t accept a write,
responds with an error and returns to IDLE state. When Image Write is accepted,
state machine enables first write to WBW Fifo. During this write, address from
wb_addr_mux.v is driven on WBW Fifo address/data output, PCI bus command
is driven on command/byte enable output (PCI bus command is based on whether
this is memory (Memory Write command) or I/O write (I/O Write command).
Corresponding control bus value is also written to WBW Fifo during this write to
mark an entry as an address/bus command entry. At this same time, state machine
acknowledges the transfer and stores values from SDAT_I and SEL_I buses into
intermediate register. State machine now switches WBW Fifo output to
intermediate register data and negated selects sampled on previous clock edge. In
case of I/O write, it asserts Fifo write enable, drives a value on Fifo control bus to
mark an entry as last in a transaction and returns to IDLE state. In case of single
memory write (CAB_I de-asserted) or when WBW Fifo status is ALMOST

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 20

FULL, the action taken is the same as for I/O writes. Otherwise, state machine
continues to WRITE state used for burst writes. In this state, it keeps sampling
data and selects on every clock cycle STB_I is sampled asserted, responds with
acknowledge, and writes previously sampled data to Fifo, until it signals
ALMOST FULL status or WB Master stops transferring (de-asserts CYC_I or
CAB_I). When this happens, data sampled into intermediate register is written to
Fifo and marked as last in a transaction by providing right value on Fifo control
bus. State machine then returns to IDLE state.

During WB read requests, logic checks whether or not all conditions for a read are
satisfied. There are a few different ways reads are processed:

• Reads are decoded in a same manner as writes, the only difference is that WE_I
WB signal must be inactive (0) .

• Configuration Reads - configuration read starts, when decoder hit0 is active and
lower twelve addresses don’t match with Configuration Cycle data register or
Interrupt Acknowledge Cycle register offset. Configuration reads are accepted
only as single reads to DWORD aligned addresses. If any of addresses [1:0] are
non-zero or CAB_I signal is active during configuration read, WB slave state
machine responds with an error and returns to IDLE state. A special case applies
when bridge is defined as a GUEST – if configuration image is not implemented,
WB slave state machine does not respond to configuration reads at all, because
decoder for Configuration space accesses is not implemented.

• Interrupt Acknowledge Read – can only be done when PCI Core is configured
as HOST. It starts when decoder hit0 is active and lower twelve addresses match
with Interrupt Acknowledge Cycle register offset. Since Interrupt Acknowledge
cycle is generated as a Delayed Read Transaction, some additional rules to
Configuration Reads’ rules apply: There must be no other outstanding Delayed
Request or Completion present in WB unit of the bridge. When this is true,
Delayed Read Request with Interrupt Acknowledge PCI bus command is
accepted, WB slave state machine responds with retry and returns to IDLE state.
When Interrupt Acknowledge cycle is finished on PCI, status is transfered
through delayed_sync.v and data through WB Read Fifo (in wbw_wbr_fifos.v).
When cycle is repeated by external WB Master, Delayed Completion pending is
signaled from delayed_sync.v and PCI Write Fifo (pciw_pcir_fifos.v in
pci_target_unit.v) is empty, data and appropriate status are signaled to requesting
WB Master and state machine returns to IDLE state.

• Configuration Cycle Read - can only be done when PCI Core is configured as
HOST. It starts when decoder hit0 is active and lower twelve addresses match
with Configuration Cycle Data register offset. Since Configuration Read cycle is
generated as a Delayed Read Transaction, some additional rules to Configuration
Reads’ rules apply: There must be no other outstanding Delayed Request or
Completion present in WB unit of the bridge. When this is true, Delayed Read

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 21

Request with Configuration Read PCI bus command and decoded address from
conf_cyc_addr_dec.v is accepted. WB slave state machine responds with retry
and returns to IDLE state. When Configuration Cycle is finished on PCI, status is
transfered through delayed_sync.v and data through WB Read Fifo (in
wbw_wbr_fifos.v). When cycle is repeated by external WB Master, Delayed
Completion pending is signaled from delayed_sync.v and PCI Write Fifo (
pciw_pcir_fifos.v in pci_target_unit.v) is empty, data and appropriate status are
signaled to requesting WB Master and state machine returns to IDLE state.

• Image Read – starts when one of hit signals is set, except for hit0 (configuration
hit). All image reads are processed as Delayed Transactions, so following rules
apply: If no other outstanding Delayed Request or Completion is pending in WB
slave unit, then new request can be accepted. In case of Memory Read, reads to
DWORD aligned addresses are accepted only. In case of I/O Read, only single
reads (CAB_I signal 0) with appropriate address/select line combinations are
accepted (PCI IP Core specification, Chapter 3.2.3). I/O and Memory reads are
differentiated by map bit that corresponds to current image hit. If map bit is 1, that
means I/O Read, otherwise it is processed as Memory Read. When new Delayed
Read Request is accepted, WB slave state machine responds with retry, stores
address, select and bus command information and returns to IDLE state. I/O
Reads are always processed the same way: as single reads with IO Read PCI bus
command used. Memory reads however can be processed in a few different ways,
depending on Core’s configuration. Memory Read Line and Pre-fetch enable bits
from an Image Control register that corresponds to current active hit input are
sampled when state machine leaves IDLE or one of DECODE states. Invalid
Cache Line Size register value masks these bits, so special commands can’t be
used and read bursts cannot be performed on PCI. Refer to PCI IP Core
Specification, Chapter 3.2.4 to see how Delayed Memory Reads depend on the
state of these bits. When new request can be accepted, WB slave state machine
stores the address provided by wb_addr_mux.v, SEL_I lines provided from
external WB Master and decoded PCI bus command by signaling new request to
delayed_sync.v included in wb_slave_unit.v. When requested read transaction
finishes on PCI bus, this status is signaled to WB slave state machine through
delayed_sync.v. The data fetched is stored in WB Read Fifo (wbw_wbr_fifo.v)
and is stored there until external WB Master repeats the same request. On any
occasion external WB Master starts a read cycle, address and select lines provided
are compared with stored values and result of this operation sampled into
registers, when WB slave state machine leaves IDLE or one of DECODE states.
If decoded address and select lines are the same and PCI Write Fifo is empty, then
WB slave state machine starts providing data from WB Read Fifo on SDAT_O
lines on WB bus. It keeps sending out data and acknowledging transfers until Fifo
is empty, data marked as last or error is fetched out from WB Read Fifo, or

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 22

external WB master stops a transfer. If external WB master stops a transfer before
Read Fifo is empty, state machine generates a flush signal, to get rid of stale data.

2.3.3.2 wb_addr_mux.v

Module provides address decoding functionality for WB Slave Unit. ADR_I bus from
WISHBONE is connected directly to this module. Configuration space is connected to
this module with all WISHBONE Base Addresses (WB_BAx), Translation Addresses (
WB_TAx) and Address Masks (WB_AMx). Each triplet of those values is connected to
its own decoder (in decoder.v), while ADR_I bus is connected to all of them. Each
implemented decoder generates independent address and hit signal output. Addresses
from implemented decoders are multiplexed to one output address bus based on value of
hit signals. Output address is connected to WB Slave state machine, where it is used in
various functions. Each defined decoder instantiated in wb_addr_mux.v is implemented
in decoder.v. This module is responsible for comparing decoded number of address lines
between provided base address and WISHBONE input address. If bus values are the
same, decoder sets hit signal to 1. Address Translation Enable input provided from
Configuration space is also checked. If it has a value of 1 and address translation is
implemented, then translation is performed by changing decoded number of WISHBONE
address bus input bits with decoded number of Translation Address inputs. Result is
provided on address output bus.

2.3.3.3 wbw_wbr_fifos.v

Module is the main storage unit for data passing through WISHBONE Slave Unit. It
instantiates synchronous dual port RAMs for each Fifo or one two port RAM used for
both Fifos. It also inferes two counters – one for incoming transactions and one for
outgoing transactions through WB Write Fifo. This is done to signal
pci_master32_sm_if.v interface when at least one complete Write Transaction is in the
Write Fifo and can be started on PCI bus. WB Read Fifo does not need such a counter,
because complete transaction is signalled through delayed_sync.v. The module is also
responsible for multiplexing read and write addresses in PCI and WB clock domain when
only one RAM is instantiated for both Fifos.

Data for WB Write Fifo is received from WB Slave state machine on multiplexed
address/data bus. It's written to WB Write Fifo on rising WB clock edge, when Fifo is not
full and WB Slave state machine asserts write enable signal. It's stored at write address
provided by wbw_fifo_control.v. If data witten to Fifo is marked as last on WB Write
Fifo control bus (also provided by WB Slave state machine), then incoming transaction
counter is incremented. When incoming and outgoing transaction counters are not equal,
Transaction Ready signal is generated on next rising PCI clock edge. Comparison is done
between Grey coded values, to provide glitch free comparator output.
pci_master32_sm_if.v signals a read from WB Write Fifo. If on rising PCI clock edge

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 23

WB Write Fifo read enable is active, read address from wbw_fifo_control.v is applied to
RAM interface, to provide next data at its data outputs. Address/data output from WB
Write Fifo is connected to pci_master32_sm_if.v. When data marked as last (determined
by monitoring control bus output) is read from Fifo, outgoing transaction counter is
incremented and Transaction Ready output is cleared. If there is another transaction ready
in the Fifo, Transaction Ready output will be set on next rising PCI clock edge.
wbw_fifo_control.v provides a module for generating synchronous RAM addresses for
WB Write Fifo. It provides write side RAM address (in WB clock domain) and read
side RAM address (in PCI clock domain). It also generates different statuses. Statuses
are always determined by comparing Grey coded read and write addresses to provide
glitch free comparator outputs. Status outputs are sampled in Flip-Flops in appropriate
clock domain. For example – WB clock domain always writes to WB Write Fifo, so it is
only interested in Fifo fullness. So Fifo's Almost Full and Full statuses are synchronized
to WB clock domain. On the other hand, PCI clock domain always just reads from this
Fifo and is therefore interested only in Fifo emptiness. Therefore statuses Two Left,
Almost Empty and Empty are syncronized to PCI clock domain. Grey code pipeline is
provided for generating statuses. Each clock domain has its own pipeline, values are
compared between clock domains and results sampled at appropriate clocks as stated
previously.

Data for WB Read Fifo is received from PCI Master state machine Interface. It is written
to RAM address provided by wbr_fifo_control.v on rising PCI clock edge when WB
Read Fifo Write Enable is asserted (received from PCI Master state machine Interface)
and Fifo is not Full. WB Slave state machine performs a read on rising edge of WB
clock, during which it holds WB Read Fifo Read Enable asserted. Read address provided
from wbr_fifo_control.v is applied to RAM address inputs on a port clocked by WB
clock, to provide next data and control signals to WB Slave state machine on Fifo's data
and control outputs. wbr_fifo_control.v provides a module for generating synchronous
RAM addresses for WB Read Fifo. It provides write side RAM address (in PCI clock
domain) and read side RAM address (in WB clock domain). It also generates different
statuses. Statuses are always determined by comparing Grey coded read and write
addresses to provide glitch free comparator outputs. Status outputs are sampled in Flip-
Flops in appropriate clock domain. For example – PCI clock domain always writes to
WB Read Fifo, so it is only interested in Fifo fullness. So Fifo's Full status is
synchronized to PCI clock domain. On the other hand, WB clock domain always just
reads from this Fifo and is therefore interested only in Fifo emptiness. Therefore status
Empty is syncronized to WB clock domain. Grey code pipeline is provided for generating
statuses. Each clock domain has its own pipeline, values are compared between clock
domains and results sampled at appropriate clocks as stated previously.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 24

2.3.3.4 delayed_write_reg.v

Module is provided as additional storage for Delayed Write Transactions. Only
Configuration Write Transactions are processed as Delayed Writes currently, so this
register is only relevant in HOST bridge implementation. When WB Slave state machine
signals a Delayed Write Request, this register stores provided data for transfer on PCI
bus.

2.3.3.5 conf_cyc_addr_dec.v

Module provides address bus value for generation of Configuration Cycles. It is included
only in HOST bridge implementation, since GUEST implementation cannot generate
them. It receives value written in Configuration Cycle Address register in Configuration
space. If value in this register marks Configuration Cycle as Type1 cycle, then address
from register passes through the module unchanged. If a value in a register marks
Configuration Cycle as Type0, then lower 11 bits pass through module unchanged. Next
5 bits in register value are decoded to provide 21 upper address bits. Refer to PCI IP Core
Specification.

2.3.3.6 pci_master32_sm_if.v

Module is provided for passing requests from delayed_sync.v and wbw_wbr_fifos.v to
pci_master32_sm.v. When no transaction is in progress currently, which is determined by
three request Flip-Flops, the interface monitors its inputs from WB Write Fifo (in
wbw_wbr_fifos.v) and delayed_sync.v.

When Posted Write is prepared in WB Write Fifo, the interface starts preparing all
necesary data for PCI Master state machine. It fetches the address into address counter
and PCI bus command to its register first. These two registers are connected directly to
address and bus command output buses, which go to pci_master32_sm.v. Then it fetches
two data entries with byte enables (if Posted Write is long enough) to additional
registers provided. One register is needed to store the last data in a Write Transaction that
was not transfered to PCI bus. This has to be done if Disconnect is signaled in the middle
of transaction. The second register is used to provide next data and byte enable
information to PCI Master state machine. When address and bus command are prepared
and data registers are loaded, the interface signals a request to PCI Master state machine.
It receives statuses from the state machine, to know when to provide next write data.
Statuses received are:

• Wait – means state machine is not transfering yet – when wait is set to 1, all other
statuses are ignored

• Registered Transfer – status means data was transfered on previous rising PCI
clock edge.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 25

• Wire Transfer – status signals transfer is going to happen on next rising PCI clock
edge. Generation of this status uses unregistered PCI bus control inputs which are
timing critical. Usage of this signal should be reduced to minimum to minimize
fan-out and logic levels on timing critical PCI control inputs.

• Registered Retry – status signals that retry or dissconnect was signaled on
previous rising PCI clock edge.

• Registered Error – status signals that Target Abort Termination was detected on
previous rising PCI clock edge.

• Master Abort - status signals that Master Abort Termination was initiated on
previous rising PCI clock edge. Master Abort Termination status is treated the
same way as Target Abort, except during Configuration Cycles.

The interface is also responsible for signaling to PCI Master state machine if current data
phase is also the last or if current data phase is one before last (state machine needs this
information because of PCI bus protocol and registered PCI outputs). Posted Write
Transaction will be repeated and retried, until all data in the transaction is transfered or
error status is signalled. Write Transaction can be interrupted by an external Target in the
middle of transfer, so address counter is implemented to always provide the right address
from which transaction must continue. If error is detected in the middle of Posted Write
Transaction (either Master or Target Abort), error status is signaled to Configuration
space, with erroneous address, bus command, data, byte enable and error source
information. Refer to PCI IP Core Specification. The interface also recovers from a
Posted Write error, by pulling data out of WB Write Fifo, until last data of current
transaction is detected (data marked as last on WB Write Fifo control bus input).

When no transaction is in progress, WB Write Fifo signals an Empty status and Delayed
Request is signaled from delayed_sync.v, the interface starts preparing everything data
for PCI Master state machine. It fetches address and bus command provided from
delayed_sync.v into address counter and bus command register. If this is a Delayed Write
Request, then it also fetches data from delayed_write_reg.v. If this is burst Delayed Read
Request, a read counter is provided, to stop the reading when enough data is read. Single
reads are stopped after single data is transfered from PCI bus. Refer to PCI IP Core
Specification, regarding length of burst reads.

Delayed Writes are always single transactions. When Delayed Write is finished on PCI
bus – PCI Master state machine signaling Registered Transfer or Error with Wait status
zero, appropriate status is returned to delayed_sync.v (Delayed Request Complete and
Error, if detected).

Delayed Reads can be done as burst or single transactions – Refer to PCI IP Core
Specification. If delayed Read Request is decoded as a single read, then the interface will
stop the request immediately after single data is stored in WB Read Fifo. Data can be
marked as normal or error, depending on status returned by PCI Master state machine.
Burst Read Request will be signaled to PCI Master state machine until all data required is

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 26

stored in WB Read Fifo (determined by a state of read counter), external Target
Disconnects or Master Abort or Target Abort is signaled. In later two cases, data entry
will still be written to WB Read Fifo marked as error on WB Read Fifo control bus
output (except on Master Abort during execution of Configuration Read command).
Disconnects are determined with FIRST status Flip-Flop. If Registered Retry is received
from PCI Master state machine and FIRST status is active, this means a normal Retry and
transaction must be requested again. If FIRST status is inactive when Registered Retry is
received, this means a Disconnect, which does not have to be repeated on PCI bus. The
interface is responsible for signaling appropriate statuses to PCI Master state machine
during Burst Delayed Reads also (last data phase, one before last data phase). This
statuses are determined from a state of read counter. The interface also uses Cache Line
Size register value from Configuration space for Burst Delayed Read Transactions in
some cases.

2.3.3.7 pci_master32_sm.v

Module implements PCI Master state machine and control logic. State machine only
signals current state, Wait status and data source to the outside world. Control logic
calculates appropriate value for each PCI bus signal, controls loading of output and
output enable Flip-Flops and supplies appropriate value for them. It also disables clock
on PCI Master state machine, when it is not allowed to change the state it is in.

When state machine is in IDLE state, control logic monitors PCI control input signals. If
PCI bus is idle (FRAME# and IRDY# both de-asserted) and GNT# is asserted, it just
loads output enable Flip-Flops for AD and CBE# busses with active value (1). This
implements bus parking functionality. Value of those buses is not important at this time.
When Request and Ready signals from pci_master32_sm_if.v are both 1, control logic
loads REQ# output Flip-Flop with active value (0). It also monitors state of PCI bus and
GNT# input signal. If PCI bus is idle and GNT# is asserted (0), control logic enables
load of new values to AD and CBE output buses, loads output enable Flip-Flops to active
state for FRAME# signal and AD and CBE buses. It also enables clock for PCI Master
State machine, which will proceede to ADDRESS state on next rising PCI clock edge.
While state machine is in address phase (always for one cycle only), control logic keeps
state machine clock enabled. It determines next value of FRAME# output signal – if data
is marked as last from pci_master32_sm_if.v this would be 1, otherwise FRAME#
output Flip-Flop is loaded with active value (0). It determines next value for AD output
enable Flip-Flops. If this is a read transaction (determined from LS bit of PCI bus
command), AD output enable Flip-Flops are loaded with inactive value, to disable
driving of AD bus when state machine leaves an ADDRESS state. IRDY# output and
output enable Flip-Flops are loaded with an active value. State machine is now in
TRANSFER state. It is allowed to go out from this state only when FRAME# output is
de-asserted. Control logic now calculates next values for output enables, loads and values
for control signals by monitoring external Target response signals, statuses received from

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 27

pci_master32_sm_if.v and internal counters. It also signals its own statuses and the ones
received from external PCI target to the interface. Two counters are implemented to
satisfy PCI bus protocol: Decode Timeout and Latency Timeout. Decode Timeout occurs
when state machine is in TRANSFER state and no external target has responded to
transaction address by asserting DEVSEL# signal. This happens four PCI clock cycles
after state machine leaves ADDRESS state. If DEVSEL# is not sampled asserted after
these four clocks, Master Abort procedure is initiated. Latency Timer counter value is
received from Configuration space. Timer counts all the time when state machine is in
ADDRESS or TRANSFER state. When it is zero and GNT# is sampled de-asserted,
Latency Timeout occurs. When this occurs, PCI Master state machine finishes the
transfer and signals to the interface as if Disconnect was received. For Burst Posted Write
Transaction this means it will continue next time PCI Master state machine is granted a
bus, while Burst Read transaction is finished when this happens (since the interface stops
requesting). When Latency Timeout, Master Abort, Target Abort, Retry, Disconnect or
transfer of last data is decoded, state machine goes to TURN_AROUND state. At this
time, AD and CBE buses and FRAME# output enable Flip-Flops are loaded with
inactive value, IRDY# output is loaded with de-asserted value (1). When state machine
leaves TURN_AROUND state, IRDY# output enable Flip-Flop is loaded with inactive
value also.

Submodules instantiated in pci_master32_sm.v are used to resolve timing issues on PCI
control signals used unregistered. Logic optimization was turned off for these modules
during FPGA synthesis to reduce a number of logic levels on timing critical PCI input
paths.

• frame_crit.v – module feeds FRAME PCI signal output Flip – Flop. FRAME#
signal must be de-asserted on any clock cycle STOP# input is sampled asserted.
Normal FRAME output calculation is performed in the wb_master32_sm.v and
fed to this module in parallel with STOP# input. When this one is sampled
asserted, module immediately blocks out FRAME# assertion regardless of the
result of normal FRAME# calculation.

• frame_load_crit.v – module feeds FRAME output Flip-Flop’s clock enable.
Value of FRAME# output signal changes when state machine starts operation,
when external PCI target is responding or when Master Abort termination is
initiated. Master Abort termination and start of transaction are not critical to
detect, since they are generated internally. The calculation of those is fed to this
module in parallel with TRDY# and STOP# PCI inputs. New value of FRAME#
output is loaded when internal logic forces it or, in the middle of transaction,
when external target responds with TRDY# or #STOP asserted.

• irdy_out_crit.v – this module is provided for basically the same operation as
previous one, except it feeds IRDY# output Flip – Flop. External logic signals
when IRDY# must be asserted no matter what and state of current FRAME#
output. When FRAME# output signal is de-asserted, module waits for TRDY# or

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 28

STOP# signals to be asserted and de-asserts IRDY# output on that same rising
PCI clock edge.

• mas_ad_load_crit.v – module signals to pci_io_mux.v in pci_bridge32.v when to
load next data to AD[31:0] output Flip-Flops. It receives a signal which forces
output registers to be loaded, and signal that allows outputs to be loaded and
GNT# input from PCI bus. Load is forced, when state machine is changing state
from IDLE to ADDRESS, to provide the address received from
pci_master32_sm_if.v on AD outputs, and when state machine is changing state
from ADDRESS to TRANSFER, if current transaction is a write. When state
machine is in TRANSFER state during a write, loading is allowed on every cycle
transfer is signaled, which is decoded in pci_io_mux.v

• mas_ch_state_crit.v – module provides an internal signal for clock enable on state
machine. State transition is controlled by requests received from
pci_master32_sm_if.v, state that state machine is currently in and PCI control
input signals. For example – when state machine is in IDLE state, it can change
state to ADDRESS state only when PCI bus is in idle state, pci_master32_sm_if.v
request and ready signals are set and GNT# input is asserted. Or, when state
machine is in TRANSFER state, state is allowed to change only when FRAME#
output is de-asserted, Master Abort is in progress or external target is responding
with TRDY# or STOP# asserted.

• mas_ad_en_crit.v – module is provided to feed AD bus output enable Flip-Flops.
It is provided, because Master state machine must enable output buffers when PCI
bus is IDLE and GNT# is asserted. GNT# is constrained PCI input, so calculation
is done in separate module. Other internal, non-critical calculations are done
outside this module.

• cbe_en_crit.v – module is provided for CBE output enable calculations that
include timing critical PCI inputs. Since only PCI Master state machine can drive
CBE outputs, this module resides in Master state machine and not in
pci_io_mux.v as opposed to AD enable sub-modules, which are used in Master
and Target operation.

• frame_en_crit.v – module feeds FRAME# output enable Flip-Flop. FRAME#
output must remain enabled, until last data phase is complete or Master Abort
termination occurs. Signals for the module provide information on when
FRAME# must remain enabled, when it must be disabled and when it is allowed
to be disabled. When disabling of FRAME# is allowed, module waits for STOP#
or TRDY# to be asserted and disables FRAME# output immediately on that
clock edge.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 29

2.3.4 Description of PCI target Unit submodules

The module pci_target_unit.v is used for connecting lower level modules that implement
unit’s functionality which is accessing WB bus from PCI bus (see Figure 2-4: Fourth
picture - Module hierarchy of PCI target Unit). It has three communication ports; one
from PCI bus, one to access Configuration space and one to access WB bus. Ports from
PCI bus and to access Configuration space operate on PCI clock, while port for accessing
WB bus operates on WB clock.

2.3.4.1 pci_target32_sm.v & pci_target32_interface.v

Module pci_target32_sm.v implements PCI Target state machine and control logic. State
machine only signals current state and decides a next state regarding the signals from
control logic. Control logic calculates appropriate value for each PCI bus signal, controls
loading of output and output enable Flip-Flops and supplies appropriate value for them. It
also disables clock on PCI Target state machine, when it is not allowed to change the
state it is in, and it signals to pci_target32_interface.v where to data must be loaded
(FIFO or Configuration space) or where from data must be fetched. Module
pci_target32_interface.v additionally checks when stored address from requested read is
the same as currently translated address from PCI bus and other checking that influence,
what kind of termination will be.

The control logic monitors PCI control input signals and control signals from
pci_target32_interface.v, since all storing registers, multiplexers and address decoders
(pci_decoder.v) are implemented there. Internal control signals and ones from
pci_target32_interface.v module, that influence on initial PCI Target response, are
registered in pci_target32_sm.v module due to timing constraints in FPGA. This
incorporates initial wait cycle for PCI Target response. Control signals from
pci_target32_interface.v module are:

• addr_claim_in – ORed hits from PCI decoders (not registered before used)
• same_read_in – If PCI bus read command and translated address are the same as

stored ones (registered due to critical timings)
• pci_cbe_reg_in[0] – Registered R/W signal from PCI bus command (registered

due to large fanout)
• read_completed_in – If there is a delayed read request finished on a WB bus and

all data are ready in PCI read FIFO – pciw_pcir_fifos.v (used in equation and
registered due to critical timings)

• read_processing_in – If there is a delayed read request pending on a WB bus
(used in equation and registered due to critical timings)

• norm_access_to_config_in – If there is a memory access to Configuration space
(used in equation and registered due to critical timings)

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 30

• disconect_wo_data_out – If no data can be transferred any more. Signaled
during data phases and used for disconnect without data (not registered before
used).

• disconect_w_data_out – If no data can be transferred any more. Signaled during
data phases and used for disconnect with data (not registered before used).

• target_abort_out – If a transaction must be aborted after address phase. Signaled
at address phase only (not registered before used).

• wbw_fifo_empty_in – If WB write FIFO is empty – just connected through
pci_target32_interface.v module (used in equation and registered due to critical
timings)

• pciw_fifo_full_out – If PCI write FIFO has not enough space left (less then 3
locations, first one is for address) – ORed signals from FIFO pciw_fifo_full_in,
pciw_fifo_almost_full_in and pciw_fifo_two_left_in (not registered before
used).

• pcir_fifo_data_err_out – If corresponding control bit value, of the data read out
of PCI read FIFO, signals that an data entry is erroneous, therefore read must be
aborted. This is signaled when FIFO is selected and not Configuration space (not
registered before used).

All transactions are initiated from PCI bus (from other PCI master). How PCI reads and
writes are processed is discussed separately. There are a few different ways writes are
processed:

• PCI Target state machine starts processing a write with address and one of write
commands on AD and CBE# busses respectively, when FRAME# signal is active
(0). Registered PCI address passes through PCI decoders (pci_decoder.v)
implemented in pci_target32_interface.v (it is also stored in a register there). PCI
decoders compare input address with addresses stored in Configuration space.
Regarding the space (MEMORY or I/O) to which an image is assigned to (bit 0 in
P_BA register), there must also be enabled MEMORY or I/O space (PCI Header
- Command register, see PCI IP Core Specification, chapter 4.1.2) to allow PCI
decoders to generate hit signals. Write can progress when there is address hit and:
if there is no read request pending on a WB bus and PCI write FIFO is not full
(full, almost full and two left), if there is read request completed on a WB bus and
PCI write FIFO is not full (full, almost full and two left) or if there is single word
write command to Configuration space.

• Configuration Writes – configuration write is meant as a write to Configuration
space and they proceeds regardless of uncompleted read requests. It can be
performed with MEM WRITE or CONF WRITE commands.

Memory write to Configuration space starts, when decoder hit0 is active. Writes
are accepted only as single writes (all MEM WRITE commands are DWORD
aligned). If burst MEM WRITE is attempting, then control logic responds
Disconnect With Data when data is transferred or Disconnect Without Data after

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 31

data is transferred (disconect_wo_data_in and disconect_w_data_in signals
from pci_target32_interface.v).

Configuration write to Configuration space starts, when PCI signal IDSEL is
active and CONF WRITE command is performed (all CONF WRITE commands
are single writes and DWORD aligned).

Logic in PCI target state machine signals to Configuration space when write to
register is to be done (load_to_pciw_fifo_out - write enable signal to
configuration space). In case of HOST implementation of the bridge, writes have
no effect on Configuration space registers. A special case applies here – when
bridge is defined as a HOST and configuration image is not implemented or is
changed into normal PCI-WB image, PCI target state machine does not respond
to configuration writes at all, because decoder for Configuration space accesses is
not implemented.

• Image Writes – Image write is initiated when following conditions are satisfied:
o PCI Write Fifo (in pciw_pcir_fifos.v) is not full nor almost full nor two

left (pciw_fifo_full_in signal from pci_target32_interface.v)

o Delayed Read Request is not pending (read_processing_in signal from
pci_target32_interface.v), but can be completed (read_completed_in
signal from pci_target32_interface.v)

o One of hits from decoders is active, except hit0 (see PCI IP Core
Specification, chapter 3.3.2)

Image write has two possible forms – I/O write or Memory write with IO WRITE
or MEM WRITE commands respectively. As mentioned, the appropriate space of
an image must be enabled (MEMORY or I/O) for each kind of commands and
also image must be assigned to appropriate space (MEMORY or I/O in a base
address register – bit 0), otherwise PCI target state machine will not response at
all. PCI decoders (pci_decoder.v) take care of this for each image.

Memory write can be single or burst (all MEM WRITE commands are DWORD
aligned). The two LSBits of address (AD[1:0]) tell what kind of burst ordering is
initiated. Two kinds are possible; linear incrementing and cacheline wrap, but
only the first one is supported. If PCI master initiates the cacheline wrap burst
ordering, the PCI target logic terminates the transaction with Disconnect With or
Without Data and only single data phase transfers data (disconect_wo_data_in
and disconect_w_data_in signals from pci_target32_interface.v) as it reacts
when there remains only two spare locations in PCI write FIFO during linear
incrementing burst. The byte enables indicate the affected bytes within the
DWORD for each data written.

I/O write is only single write. All 32 address bits are used to provide a full byte
address. The PCI master is required to ensure that AD[1:0] indicate the least

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 32

significant valid byte for the transaction. The byte enables indicate the size of the
transfer and the affected bytes within the DWORD and must be consistent with
AD[1:0] (see PCI IP Core Specification, chapter 3.3.3), otherwise PCI target logic
terminates the transaction with Target-Abort (target_abort_in signal from
pci_target32_interface.v) and no data is transferred.

When Image Write is accepted, control logic in pci_target32_interface.v enables
first write to PCIW Fifo. During this write, address stored in a register (address is
stored from multiplexer, to which PCI decoders are connected) is driven on PCIW
Fifo address/data output, PCI bus command stored in a register is driven on
command/byte enable output. Corresponding control bus value is also written to
PCIW Fifo during this write to mark an entry as an address/bus command entry.
Control logic now switches registered data from PCI bus to PCIW Fifo. In case of
I/O write, it asserts Fifo write enable, drives a value on Fifo control bus to mark
an entry as last. In case of single memory write (FRAME# de-asserted before
first data phase), the action taken is the same as for I/O writes. When there is a
burst memory write, data are normally written, with corresponding control bus
value written to mark an entry as a burst, until there remains only two spare
locations in PCIW Fifo or PCI master stops writing. When this happens,
registered data written to Fifo are marked as last with corresponding control bus
value.

During PCI read requests, logic checks whether or not all conditions for a read are
satisfied. There are a few different ways reads are processed:

• Reads are decoded in a same manner as writes, the only differences are READ
commands instead of WRITE commands and that Read is requested on WB bus
when there is address hit and there is no read request pending on a WB bus and
no read request completed and it is not a read from Configuration space. Read
from PCI bridge can progress when there is address hit and: if there is read
request completed on WB bus and the same address as an address of completed
read and WBW Fifo is empty (due to transaction ordering) or if there is single
word read command from Configuration space.

• Configuration Reads – configuration read is meant as a read from Configuration
space and they proceeds regardless of uncompleted or completed read requests. It
can be performed with MEM READ or CONF READ commands.

Memory read from Configuration space starts, when decoder hit0 is active. Reads
are accepted only as single reads (all MEM READ commands are DWORD
aligned). If burst MEM READ is attempting, then control logic responds
Disconnect With Data when data is transferred or Disconnect Without Data after
data is transferred (disconect_wo_data_in and disconect_w_data_in signals
from pci_target32_interface.v).

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 33

Configuration read from Configuration space starts, when PCI signal IDSEL is
active and CONF READ command is performed (all CONF READ commands
are single reads and DWORD aligned).

Logic in PCI target state machine just set the current address to Configuration
space when read from register is to be done and set select signal on multiplexer
for fetching the data from Configuration space (sel_conf_fifo_out). In case of
HOST implementation of the bridge, just reads have effect on Configuration
space registers. A special case applies here – when bridge is defined as a HOST
and configuration image is not implemented or is changed into normal PCI-WB
image, PCI target state machine does not respond to configuration reads at all,
because decoder for Configuration space accesses is not implemented.

• Image Reads – Image read is accepted when following conditions are satisfied:
o Delayed Read Request is not pending (read_processing_in signal from

pci_target32_interface.v) and Delayed Read Request is not completed
(read_completed_in signal from pci_target32_interface.v)

o One of hits from decoders is active, except hit0 (see PCI IP Core
Specification, chapter 3.3.2)

– Image read is initiated when following conditions are satisfied:

o Delayed Read Request is completed (read_completed_in signal from
pci_target32_interface.v)

o One of hits from decoders is active, except hit0 (see PCI IP Core
Specification, chapter 3.3.2)

o Initiated address is the same as the starting address of completed Delayed
Read Request (same_read_in signal from pci_target32_interface.v)

o WB Write Fifo (in wbw_wbr_fifos.v) is empty (wbw_fifo_empty_in
signal from wb_slave_unit.v) due to transaction ordering

As mentioned, Delayed Read must first be accepted and requested to complete on
WB bus. When new Delayed Read Request is accepted, PCI target state machine
responds with retry and stores the translated address with its bus command. Image
read has two possible forms – I/O read or Memory read with IO READ or MEM
READ commands respectively. As mentioned, the appropriate space of an image
must be enabled (MEMORY or I/O) for each kind of commands and also image
must be assigned to appropriate space (MEMORY or I/O in a base address
register – bit 0), otherwise PCI target state machine will not response at all. PCI
decoders (pci_decoder.v) take care of this for each image. I/O Reads are always
processed the same way: as single reads with IO Read PCI bus command used.
The PCI master is required to ensure that AD[1:0] indicate the least significant
valid byte for the transaction. The byte enables indicate the size of the transfer
and the affected bytes within the DWORD and must be consistent with AD[1:0]

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 34

(see PCI IP Core Specification, chapter 3.3.3), otherwise PCI target logic
terminates the transaction with Target-Abort (target_abort_in signal from
pci_target32_interface.v) and no data is transferred. Memory reads however can
be processed in a few different ways, depending on Core’s configuration. Pre-
fetch enable bits from an Image Control register that corresponds to current active
hit input together with one of MEM READ commands and Cache Line Size
register value influence to a number of data read on a WB bus (see PCI IP Core
Specification, Chapter 3.2.4). When new request can be accepted, PCI target state
machine stores the translated address and PCI bus command by signaling new
request to delayed_sync.v included in pci_target_unit.v. When requested read
transaction finishes on WB bus, this status is signaled to PCI target state machine
through delayed_sync.v and pci_target32_interface.v. The data fetched is stored
in PCI Read Fifo (pciw_pcir_fifo.v) and is stored there until external PCI Master
repeats the same request. On any occasion external PCI Master starts a read cycle,
translated address and PCI bus command provided are compared with stored
values. If decoded address and bus command are the same and WB Write Fifo is
empty, then PCI target state machine set select signal on multiplexer for fetching
the data from Fifo and starts providing data from PCI Read Fifo to PCI bus. There
is also one storing register between Fifo and output register, in order to have only
one initial wait cycle and no subsequent wait cycles. PCI target state machine
keeps sending out data and acknowledging transfers until Fifo is empty, data
marked as last or error is fetched out from PCI Read Fifo, or external PCI master
stops a transfer. If PCI master initiates the cacheline wrap burst ordering for
MEM READ commands, the PCI target logic terminates the transaction with
Disconnect With or Without Data and only single data phase transfers data
(disconect_wo_data_in and disconect_w_data_in signals from
pci_target32_interface.v). If a transfer is stopped before Read Fifo is empty, state
machine generates a flush signal, to get rid of stale data. The byte enables indicate
the affected bytes within the DWORD for each single data read, while for burst
data reads byte enables have no meaning.

Submodules instantiated in pci_target32_sm.v are used to resolve timing issues on PCI
control signals used unregistered. Logic optimization was turned off for these modules
during FPGA synthesis to reduce a number of logic levels on timing critical PCI input
paths.

• pci_target32_clk_en.v – module feeds clock enable signal for state machine with
inputs FRAME# and IRDY#.

• pci_target32_trdy_crit.v – module feeds output value for TRDY# signal.

• pci_target32_stop_crit.v – module feeds output value for STOP# signal.

• pci_target32_devs_crit.v – module feeds output value for DEVSEL# signal.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 35

2.3.4.2 pciw_pcir_fifos.v

Module is the main storage unit for data passing through PCI Target Unit. It instantiates
synchronous dual port RAMs for each Fifo or one two port RAM used for both Fifos. It
also inferes two counters – one for incoming transactions and one for outgoing
transactions through PCI Write Fifo. This is done to signal wb_master.v state machine
when at least one complete Write Transaction is in the Write Fifo and can be started on
WB bus. PCI Read Fifo does not need such a counter, because complete transaction is
signalled through delayed_sync.v. The module is also responsible for multiplexing read
and write addresses in PCI and WB clock domain when only one RAM is instantiated for
both Fifos.

Data for PCI Write Fifo is received from PCI Target state machine on multiplexed
address/data bus. It's written to PCI Write Fifo on rising PCI clock edge, when Fifo is not
full and PCI Target state machine asserts write enable signal. It's stored at write address
provided by pciw_fifo_control.v. If data witten to Fifo is marked as last on PCI Write
Fifo control bus (also provided by PCI Target state machine), then incoming transaction
counter is incremented. When incoming and outgoing transaction counters are not equal,
Transaction Ready signal is generated on next rising WB clock edge. Comparison is done
between Grey coded values, to provide glitch free comparator output. wb_master.v
signals a read from PCI Write Fifo. If on rising WB clock edge PCI Write Fifo read
enable is active, read address from pciw_fifo_control.v is applied to RAM interface, to
provide next data at its data outputs. Address/data output from PCI Write Fifo is
connected to wb_master.v. When data marked as last (determined by monitoring control
bus output) is read from Fifo, outgoing transaction counter is incremented and
Transaction Ready output is cleared. If there is another transaction ready in the Fifo,
Transaction Ready output will be set on next rising WB clock edge. pciw_fifo_control.v
provides a module for generating synchronous RAM addresses for PCI Write Fifo. It
provides write side RAM address (in PCI clock domain) and read side RAM address (in
WB clock domain). It also generates different statuses. Statuses are always determined
by comparing Grey coded read and write addresses to provide glitch free comparator
outputs. Status outputs are sampled in Flip-Flops in appropriate clock domain. For
example – PCI clock domain always writes to PCI Write Fifo, so it is only interested in
Fifo fullness. So Fifo's Almost Full and Full statuses are synchronized to PCI clock
domain. On the other hand, WB clock domain always just reads from this Fifo and is
therefore interested only in Fifo emptiness. Therefore statuses Two Left, Almost Empty
and Empty are syncronized to WB clock domain. Grey code pipeline is provided for
generating statuses. Each clock domain has its own pipeline, values are compared
between clock domains and results sampled at appropriate clocks as stated previously.

Data for PCI Read Fifo is received from WB Master state machine. It is written to RAM
address provided by fifo_control.v on rising WB clock edge when PCI Read Fifo Write
Enable is asserted (received from WB Master state machine) and Fifo is not Full. PCI
Target state machine performs a read on rising edge of PCI clock, during which it holds

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 36

PCI Read Fifo Read Enable asserted. Read address provided from fifo_control.v is
applied to RAM address inputs on a port clocked by PCI clock, to provide next data and
control signals to PCI Target state machine on Fifo's data and control outputs.
fifo_control.v provides a module for generating synchronous RAM addresses for PCI
Read Fifo. It provides write side RAM address (in WB clock domain) and read side
RAM address (in PCI clock domain). It also generates different statuses. Statuses are
always determined by comparing Grey coded read and write addresses to provide glitch
free comparator outputs. Status outputs are sampled in Flip-Flops in appropriate clock
domain. For example – WB clock domain always writes to PCI Read Fifo, so it is only
interested in Fifo fullness. So Fifo's Full status is synchronized to WB clock domain. On
the other hand, PCI clock domain always just reads from this Fifo and is therefore
interested only in Fifo emptiness. Therefore status Empty is syncronized to PCI clock
domain. Grey code pipeline is provided for generating statuses. Each clock domain has
its own pipeline, values are compared between clock domains and results sampled at
appropriate clocks as stated previously.

2.3.4.3 wb_master.v

Module implements WISHBONE master state machine and is provided for passing
requests from delayed_sync.v and pciw_pcir_fifos.v to external WB slaves.

When Posted Write is prepared in PCI Write Fifo, the state machine fetches the address
into address counter. These register is connected directly to address output bus. Then it
fetches each data with byte enables (if Posted Write) and put it on WB bus until last data
is fetched from PCIW Fifo, while address counter is incremented for each data phase,
when data are terminated with ACK_I. If write is terminated with RTY_I signal, the last
data transfer is repeated for the value of define WB_RTY_CNT_MAX. If there is no
response on WB bus, internal signal (set_retry) is active after 8 WB clock periods, and is
used as there would be a termination with RTY_I signal. If retry counter reaches
maximum value, address, data, bus command and control signals (cause of the error,
error_source_out and write_rty_cnt_exp_out) are written into ERR registers if this is
enabled. The rest of posted write is emptied from PCIW Fifo until last data (more Posted
Writes can be in PCIW Fifo). If write is terminated with ERR_I signal, then action is the
same as when retry counter reaches maximum value.

When there is a delayed read request, it can not be processed until PCIW Fifo is empty
(due to transaction ordering). Logic first determine how long a read should be performed.
This is calculated from PCI bus command, pre-fetch enable bit of image control register
and cache line size register (must be aligned to 4 DWORDs – 2 LSBits are zero). Then
state machine fetches the address into address counter and starts the transaction. Address
counter is incremented for each data phase, when data are terminated with ACK_I. If
read is terminated with RTY_I signal, the last data transfer is repeated for the value of
define WB_RTY_CNT_MAX. If there is no response on WB bus, internal signal
(set_retry) is active after 8 WB clock periods, and is used as there would be a

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 37

termination with RTY_I signal. If retry counter reaches maximum value because of
RTY_I termination, then state machine stop reading, otherwise if retry counter reaches
maximum value because of no response, then state machine write last “data” into PCIR
Fifo with error control bit, the same as it would be terminated with ERR_I.

2.3.5 Description of Configuration space
submodules

The module conf_space.v is also referenced as Configuration space (see Figure 2-3:
Third picture - Module hierarchy of WB slave Unit and Configuration space). It consists
of PCI Configuration Header and Device specific registers for WB slave and PCI target
Units. It has some sub-modules used for synchronization, sync_module.v and
synchronizer_flop.v.

It has two ports for access registers by their address. One port is Read-Only, the other is
Read/Write. Both ports have theirs own address and read data busses, but only
Read/Write port has write data bus. Each port has its own address decoder for accessing
appointed registers. Reading is asynchronous, while writing is synchronous. To have only
one address decoder for Read/Write port, we set address decoded select signals
w_reg_select_dec[55:0] in address decoder for reading from Read/Write port and then
we use those selects for writing into individual registers.

Some register bits are constant and cannot be changed. Almost all others can be set to
desired values. Only exceptions are status bits, which are set to logic ‘1’ when there
occurs e.g. error and are deleted with writing ‘1’ into them.

If PCI bridge is implemented as HOST bridge, then Configuration access port from
wb_slave.v (in WB slave Unit) is connected to Read/Write port of Configuration space
and Configuration access port from pci_target32_interface.v (in PCI Target Unit) is
connected to Read-Only port. For GUEST bridge implementation it is vice-versa.

If PCI bridge is implemented as HOST bridge with all 6 PCI images (PCI_IMAGE6) or
if there are less images and disabled Read-Only access (NO_CNF_IMAGE), then there is
no Read-Only port connection between Configuration space and PCI Target Unit. If PCI
bridge is implemented as GUEST bridge and disabled Read-Only access
(NO_CNF_IMAGE), then there is no Read-Only port connection between Configuration
space and WB Slave Unit.

Read-Only port consists of inputs: r_conf_address_in and r_re (read enable); and of
outputs: r_conf_data_out. Read/Write port consists of inputs: w_conf_address_in,
w_conf_data_in, w_byte_en, w_re (read enable) and w_we (write enable); and of
outputs: w_conf_data_out.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 38

Basically all register bit outputs (control, status, address etc.) are connected directly to the
modules, which action depends on them. Registers themselves are well described in PCI
IP Core Specification.

OUTPUTS form PCI Configuration Header registers:
- serr_enable, perr_response (bits 8 and 6 of Command register): connected

to pci_parity_check.v of PCI I/O
- pci_master_enable (bit 2 of Command register): connected to wb_slave.v of

WB slave Unit
- memory_space_enable, io_space_enable (bits 1 and 0 of Command

register): connected to pci_target32_interface.v of PCI raget Unit
- cache_line_size_to_pci (Cache Line Size register): connected to

pci_master32_sm_if.v of WB slave Unit
- cache_line_size_to_wb (Cache Line Size register): connected to wb_master.v

of PCI target Unit
- cache_lsize_not_zero_to_wb: connected to wb_slave.v of WB slave Unit and

to wb_master.v of PCI target Unit
- latency_tim (Latency Timer register): connected to pci_master32_sm.v of

WB slave Unit
OUTPUTS from PCI Image registers:

- pci_base_addr* (bits 31-12 of P_BA* register): connected to pci_decoder.v
of PCI target Unit

- pci_memory_io* (bit 0 of P_BA* register): connected to pci_decoder.v of
PCI target Unit

- pci_addr_mask* (bits 31-12 of P_AM* register): connected to pci_decoder.v
of PCI target Unit

- pci_tran_addr* (bits 31-12 of P_TA* register): connected to pci_decoder.v
of PCI target Unit

- pci_img_ctrl* (bits 2-1 of P_IMG_CTRL* register): connected to
pci_decoder.v (bit 2) and pci_target32_interface.v of PCI target Unit

* Stands for number from 0 to N (N is a number of implemented PCI images), see
PCI IP Core Specification document.

12 This value of P_BA, P_AM and P_TA registers is determined according to
PCI_Number_of_Decoded_Address_Lines (20 is maximum – 31:12, 1 is
minimum – 31:31).

OUTPUTS from WB Image registers:
- wb_base_addr** (bits 31-12 of W_BA** register): connected to decoder.v of

WB slave Unit
- wb_memory_io* (bit 0 of W_BA* register): connected to wb_slave.v of WB

slave Unit
- wb_addr_mask* (bits 31-12 of W_AM* register): connected to decoder.v of

WB slave Unit
- wb_tran_addr* (bits 31-12 of W_TA* register): connected to decoder.v of

WB slave Unit

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 39

- wb_img_ctrl* (bits 2-0 of W_IMG_CTRL* register): connected to decoder.v
(bit 2) and wb_slave.v of WB slave Unit

* Stands for number from 1 to N (N is a number of implemented WB images).
** Stands for number from 0 to N (N is a number of implemented WB images), see

PCI IP Core Specification document.
12 This value of W_BA, W_AM and W_TA registers is determined according to

WB_Number_of_Decoded_Address_Lines (20 is maximum – 31:12, 1 is
minimum – 31:31).

OUTPUTS from device specific control registers:
- config_addr (CNF_ADDR register): connected to conf_cyc_addr_dec.v of

WB slave Unit if there is a HOST bridge implementation
- icr_soft_res (bit 31 of ICR register): connected to pci_rst_int.v of PCI I/O
- int_out (ORed bits 4-0 of ISR register):connected to pci_rst_int.v of PCI I/O

INPUTS to PCI Configuration Header register:
- perr_in, serr_in and master_data_par_err (bits 15, 14 and 8 of Status

register): connected from pci_parity_check.v of PCI I/O
- master_abort_recv and target_abort_recv (bits 13 and 12 of Status

register): connected from pci_master32_sm_if.v of WB slave Unit
- target_abort_set (bit 11 of Status register): connected from

pci_target32_sm.v of PCI target Unit
INPUTS to PCI Error registers:

- pci_error_be, pci_error_bc, pci_error_rty_exp , pci_error_es and
pci_error_sig (bits 31-28, 27-24, 10, 9 and 8 of P_ERR_CS register):
connected from wb_master.v of PCI target Unit

- pci_error_addr (P_ERR_ADDR register): connected from wb_master.v of
PCI target Unit

- pci_error_data (P_ERR_DATA register): connected from wb_master.v of
PCI target Unit

INPUTS to WB Error registers:
- wb_error_be (bits 31-28 of W_ERR_CS register): connected from

cur_out_reg.v of PCI I/O
- wb_error_bc, wb_error_es and wb_error_sig (bits 27-24, 9 and 8 of

W_ERR_CS register): connected from pci_master32_sm_if.v of WB slave
Unit

- wb_error_addr (W_ERR_ADDR register): connected from
pci_master32_sm_if.v of WB slave Unit

- wb_error_data (W_ERR_DATA register): connected from cur_out_reg.v of
PCI I/O

INPUTS to Interrupt Status register:
- isr_sys_err_int and isr_par_err_int (bits 4 and 3 of ISR register): connected

from pci_master32_sm_if.v of WB slave Unit
- pci_error_sig (bit 2 of ISR register): connected from wb_master.v of PCI

target Unit

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 40

- wb_error_sig (bit 1 of ISR register): connected from pci_master32_sm_if.v
of WB slave Unit

- isr_int_prop (bit 0 of ISR register): connected from pci_rst_int.v of PCI I/O

Since access and monitoring of Configuration space is from two clock domains, some
synchronization need to be done, where necessary (fixed values of course don’t need to
be synchronized, e.g. WB_CONF_SPC_BAR). Access from Read-Only and Read/Write
ports is straight forward, because of system point of view, most of registers don’t need to
be synchronized. If PCI bridge is implemented as HOST, then WB device must initialize
the Configuration space, otherwise (if GUEST) PCI device (the HOST) must initialize
the Configuration space. Following registers are set only during initialization phase and
therefore don’t need to be synchronized:

- Interrupt Line register (PCI Header)
- P_IMG_CTRL0 - P_IMG_CTRLn (n is a number of implemented PCI

images, see also PCI IP Core Specification document)
- P_BA0 - P_BAn (n is a number of implemented PCI images)
- P_AM0 - P_AMn (n is a number of implemented PCI images)
- P_TA0 - P_TAn (n is a number of implemented PCI images)
- W_IMG_CTRL1 - W_IMG_CTRLn (n is a number of implemented WB

images, see also PCI IP Core Specification document)
- W_BA1 - W_BAn (n is a number of implemented WB images)
- W_AM1 - W_AMn (n is a number of implemented WB images)
- W_TA1 - W_TAn (n is a number of implemented WB images)

If the initialization device needs to change any of this registers when system already
normally operate, then it must prevent all devices on the opposite bus to access through
bridge and stop the opposite bridge unit.

Following registers are used only when PCI bridge is implemented as HOST and also
don’t need to be synchronized, because they are used for specific cycles totally by WB
slave Unit:

- CNF_ADDR (for configuration cycles, see also PCI IP Core Specification
document)

- CNF_DATA (for configuration cycles)
- INT_ACK (for interrupt acknowledge cycles)

Following registers are somehow linked with synchronization (their outputs, their
deleting etc.), except specific bits. therefore they are described separately.

- Bits 15-11 and 8 of Status register (PCI Header) are synchronized, when PCI
bridge is implemented as HOST. This bits are always set on a PCI CLK, and
in a case of HOST bridge, they are read and deleted on WB CLK. The value
of status bit is also blocked the next WB CLK period, when delete bit is
written, so there is like immediate response of status. The value of status bit
itself is also synchronized (with two flip-flops on WB CLK) to WB CLK. See
Figure 2-5: SET and DELETE synchronization for status reporting bit.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 41

- Bits 8, 6, 1 and 0 of Command register (PCI Header) are synchronized, when
PCI bridge is implemented as HOST. Their values are always used on PCI
CLK (in pci_parity_check.v and pci_decoder.v). This bits are set in a case of
HOST bridge on WB CLK. Their values are therefore synchronized (with two
flip-flops on PCI CLK) to PCI CLK.

- Bit 2 of Command register (PCI Header) is synchronized, when PCI bridge is
implemented as GUEST. Its value is always used on WB CLK (in
wb_slave.v). This bit is set in a case of GUEST bridge on PCI CLK. Its value
is therefore synchronized (with two flip-flops on WB CLK) to WB CLK.

- Cache Line Size register (PCI Header) is synchronized.
Outputs cache_line_size_to_pci are always used on PCI CLK
(pci_master32_sm_if.v) and are synchronized, when PCI bridge is
implemented as HOST. This register is set in a case of HOST bridge on WB
CLK. Its outputs are therefore synchronized (with two flip-flops on PCI CLK)
to PCI CLK.
Outputs cache_line_size_to_wb are always used on WB CLK (wb_master.v)
and are synchronized, when PCI bridge is implemented as GUEST. This
register is set in a case of GUEST bridge on PCI CLK. Its outputs are
therefore synchronized (with two flip-flops on WB CLK) to WB CLK.

- Latency Timer register (PCI Header) is synchronized, when PCI bridge is
implemented as HOST. Its outputs are always used on PCI CLK (in
pci_master32_sm.v). This register is set in a case of HOST bridge on WB
CLK. Its outputs are therefore synchronized (with two flip-flops on PCI CLK)
to PCI CLK.

- Bit 0 (ERR_EN) of P_ERR_CS and W_ERR_CS registers is not
synchronized, because it is only the enable for error pulse on error signal.

- Bit 8 (ERR_SIG) of P_ERR_CS register is synchronized, when PCI bridge is
implemented as GUEST. This bit is always set on WB CLK if bit 0
(ERR_EN) of P_ERR_CS register is set. Its value is used in a case of GUEST
bridge on PCI CLK (software on other PCI device). The value of status bit is
also blocked the next PCI CLK period, when delete bit is written, so there is
like immediate response of status. The value of status bit itself is also
synchronized (with two flip-flops on PCI CLK) to PCI CLK. See Figure 2-5:
SET and DELETE synchronization for status reporting bit.

- Bit 8 (ERR_SIG) of W_ERR_CS register is synchronized, when PCI bridge is
implemented as HOST. This bit is always set on PCI CLK if bit 0 (ERR_EN)
of W_ERR_CS register is set. Its value is used in a case of HOST bridge on
WB CLK (software on other WB device). The value of status bit is also
blocked the next WB CLK period, when delete bit is written, so there is like
immediate response of status. The value of status bit itself is also
synchronized (with two flip-flops on WB CLK) to WB CLK. See Figure 2-5:
SET and DELETE synchronization for status reporting bit.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 42

- Bits 31-28 (BE), 27-24 (BC), 10 (RTY_EXP only for P_ERR_CS) and 9 (ES)
of P_ERR_CS and W_ERR_CS registers are only status information bits and
are not synchronized, because they are valid when bit 8 (ERR_SIG) is valid
(this bit is synchronized). If software uses error poling, it must respond only to
bit 8 (ERR_SIG)!

- Bit 31 (SW_RST) of ICR register is not synchronized, since reset is
asynchronously propagated. If PCI bridge is implemented as HOST, then
value of this bit is propagated to PCI bus, otherwise it is propagated to WB
bus.

- Bits 4 (SERR_INT_EN) and 3 (PERR_INT_EN) of ICR register are
implemented only when bridge is implemented as HOST (GUEST bridges
only trigger interrupts to PCI bus; see also PCI IP Core Specification). This
bits are not synchronized because they are only enables for interrupt pulses
on interrupt signals.

- Bits 2-0 (PCI_EINT_EN, WB_EINT_EN and INT_PROP_EN) of ICR
register are not synchronized because they are only enables for interrupt
pulses on interrupt signals.

- Bits 4 (SERR_INT) and 3 (PERR_INT) of ISR register are synchronized and
are implemented only when bridge is implemented as HOST (GUEST bridges
only trigger interrupts to PCI bus; see also PCI IP Core Specification). This
bits are always set on PCI CLK if bits 4 (SERR_INT_EN) and 3
(PERR_INT_EN) respectively, of ICR register, are set. Theirs values are used
on WB CLK (software on other WB device). The values of status bits are also
blocked the next WB CLK period, when each delete bit is written, so there is
like immediate response of status. The values of status bit them-self are also
synchronized (with two flip-flops on WB CLK) to WB CLK. See Figure 2-5:
SET and DELETE synchronization for status reporting bit.

- Bit 2 (PCI_EINT) of ISR register is synchronized, when PCI bridge is
implemented as GUEST. This bit is always set on WB CLK if bit 2
(PCI_EINT_EN) of ICR register and bit 0 (ERR_EN) of P_ERR_CS register
are set. Its value is used in a case of GUEST bridge on PCI CLK (software on
other PCI device). The value of status bit is also blocked the next PCI CLK
period, when delete bit is written, so there is like immediate response of
status. The value of status bit itself is also synchronized (with two flip-flops
on PCI CLK) to PCI CLK. See Figure 2-5: SET and DELETE
synchronization for status reporting bit.

- Bit 1 (WB_EINT) of ISR register is synchronized, when PCI bridge is
implemented as HOST. This bit is always set on PCI CLK if bit 1
(WB_EINT_EN) of ICR register and bit 0 (ERR_EN) of W_ERR_CS register
are set. Its value is used in a case of HOST bridge on WB CLK (software on
other WB device). The value of status bit is also blocked the next WB CLK
period, when delete bit is written, so there is like immediate response of
status. The value of status bit itself is also synchronized (with two flip-flops

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 43

on WB CLK) to WB CLK. See Figure 2-5: SET and DELETE
synchronization for status reporting bit.

- Bit 0 (INT) of ISR register is synchronized.
When PCI bridge is implemented as HOST, is this bit set on PCI CLK if bit 0
(INT_PROP_EN) of ICR register is set. Its value is used in a case of HOST
bridge on WB CLK (software on other WB device). The value of status bit
itself is also synchronized (with two flip-flops on WB CLK) to WB CLK.
When PCI bridge is implemented as GUEST, is this bit set on WB CLK if bit
0 (INT_PROP_EN) of ICR register is set. Its value is used in a case of
GUEST bridge on PCI CLK (software on other PCI device). The value of
status bit itself is also synchronized (with two flip-flops on PCI CLK) to PCI
CLK.

There is also a synchronization, before interrupts are connected to int_out signal.

All interrupts are logically ORed and then synchronized. When PCI bridge is
implemented as HOST, the synchronization is done (with two flip-flops on WB CLK) to
WB CLK, otherwise the synchronization is done (with two flip-flops on PCI CLK) to
PCI CLK.

Signal, which sets bit 0 (INT) of ISR register, is connected to OR logic directly, before it
is synchronized to status bit in ISR. All other 4 bits (in case of HOST bridge, otherwise
there are 2 bits) are connected to OR logic from AND gates after flip-flops, which are set
directly from interrupt signals, if they are synchronized, otherwise they are connected
from flip-flops.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 44

D

Q

QD

Q

Q

S

Q

Q

R

D

Q

QD

Q

Q

D

Q

Q

D

Q

Q

&0

0

0

&0

0

0

delete A

delete B

clk A

clk B
bl

oc
k

B

sync_module.v

S

Q

Q

R

& 0

0

0

clk B

ERROR PULSEERROR BIT
D

Q

QD

Q

Q

clk A *

*

*

* Synchronizer_flop.v - this flip-flop is prone to metastability

Figure 2-5: SET and DELETE synchronization for status reporting bit

2.4 Changeable Core Constants

PCI IP Core user changeable constants are defined in pci_user_constants.v in project’s
rtl/verilog subdirectory.

2.4.1 Fifo size constants

Values in following defines indirectly define sizes of implemented PCI IP Core Fifos:

• WBW_ADDR_LENGTH – number defined here defines WB Write Fifo’s size.
Size is calculated as 2^^WBW_ADDR_LENGTH. Note that Fifo’s control logic
is such, that one location in RAM is always empty, so usable Fifo size is
(2^^WBW_ADDR_LENGTH) – 1. Any value equal to or larger than 3 is valid
here – the only restriction is the size of RAMs instantiated for Fifo storage.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 45

• WBR_ADDR_LENGTH – same as WBW_ADDR_LENGTH, except this applies
to WB Read Fifo implementation.

• PCIW_ADDR_LENGTH – same as WBW_ADDR_LENGTH, except this applies
to PCI Write Fifo implementation.

• PCIR_ADDR_LENGTH – same as WBW_ADDR_LENGTH, except this applies
to PCI Read Fifo implementation.

2.4.2 Fifo RAM instantiation Constants

RAMs are instantiated in pci_tpram.v and wb_tpram.v, each used in PCI Target Unit
and WB Slave Unit respectively.

Following defines in pci_user_constants.v influence RAM – storage implementation for
all Fifos in the PCI IP Core:

• RAM_DONT_SHARE – if defined, than each Fifo in PCI IP Core has storage
space implemented in its own RAM instance. That would mean 12 block RAM
instances in XILINX FPGA or 4 RAM instances in ASIC. This instances can be
dual port (write and read port in different clock domains). If this is not defined,
RAM sharing between Fifos is performed. Two Fifos use one RAM instance for
their storage. That would mean 6 block RAM instances used in XILINX FPGA or
2 RAM instances in an ASIC. This RAM instances must be two port (read and
write port in different clock domains). When RAM sharing is implemented, Fifos
split the RAM address space in half. One half is used for one Fifo, other half for
the other.

• FPGA – if FPGA is defined, then some restrictions on RAM instantiating apply.
o XILINX - Currently only Xilinx block and distributed RAM instances are

supported, which are included into design by defining XILINX in addition
to FPGA. Xilinx Block RAMs used are configured as RAMB4_S16_S16,
which is dual 16 bit port RAM. It can store 256 entries, so address for this
RAM is 8 bit in length (no exceptions). For smaller Fifo sizes (8 or 16),
Xilinx distributed RAM instances can be included into the implementation
by defining WB_XILINX_DIST_RAM or PCI_XILINX_DIST_RAM.
PCI_FIFO_RAM_ADDR_LENGTH
and WB_FIFO_RAM_ADDR_LENGTH must be set to 4 in this case.

• FPGA not defined – user must generate appropriate RAM instances with RAM
generators provided by various ASIC library vendors. RAM has to be 40 bits wide
and a size equal to or larger than 8 for Fifo implementations that do not share
RAM instances, and equal to or larger than 16 for implementations that share
RAMs between FIFOs. Designer is also responsible for defining appropriate
RAM address lengths.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 46

o PCI_FIFO_RAM_ADDR_LENGTH – must be equal to address length of
instantiated RAM in pci_tpram.v.

o WB_FIFO_RAM_ADDR_LENGTH – must be equal to address length of
instantiated RAM in wb_tpram.v.

2.4.3 PCI I/O Pads constants

Depending on PCI I/O buffers used, designer may choose how PCI IP Core generates its
PCI bus signals output enables.

• ACTIVE_HIGH_OE – selects active high output enables generated by the core

• ACTIVE_LOW_OE - selects active low output enables generated by the core
Designer must define only one of these two options for given implementation – never
both at the same time!

2.4.4 HOST / GUEST implementation selection

• HOST – if defined, core will be implemented or simulated with HOST bridge
features enabled

• GUEST – if defined, core will be implemented or simulated with GUEST bridge
features enabled

These two defines are mutually exclusive. PCI IP Core Specification throughout contains
all information regarding different behavior of the Core, if implemented as HOST or
GUEST.

2.4.5 Image implementation constants

PCI IP Core can be implemented with various number of images for accessing
WISHBONE bus address space from PCI bus and vice – versa.

2.4.6 Optional Read-Only Configuration image
implementation

• NO_CNF_IMAGE – constant definition prevents Read-Only configuration image
to be implemented. Read-Only Configuration space access can be provided
through PCI image 0 for HOST implementation of the Core, and through WB
image 0 for GUEST implementation. If NO_CNF_IMAGE is defined, then this
image is not implemented. This saves one address decoder and one multiplexer in

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 47

overall design. It is recommended to define this constant, when the Core is used in
such an application that does not need this Read-Only access to Configuration
space. PCI Bridge implemented as GUEST with CRT controller connected to WB
Slave interface is an example application. Although CRT controller has WB
Master interface to fetch its own pixel data from PCI bus, it will never need or use
access to Bridge’s Configuration space. So by defining NO_CNF_IMAGE, some
additional space is saved.

• ADDR_TRAN_IMPL – if defined, address translation functionality is added to
decoders for both, PCI and WISHBONE accesses. Address translation
implementation is useful when application uses fixed address map, while PCI
address map is configurable. If address translation is not needed, this define can
be commented out to allow faster decode timing.

2.4.7 PCI images’ implementation constants

Constants’ definitions described in this chapter control the number and minimum address
range of PCI Target images. PCI image 1 is always implemented, without any exceptions,
so no define is provided for it. Image implementation means that all required registers for
each image are implemented in Configuration space and each image needs its own
decoder. Image constants’ definitions have quite an impact on Core’s size and speed.

• PCI_NUM_OF_DEC_ADDR_LINES – number defined here is used for
controlling implementation of PCI images’ decoders. It defines how many address
lines are used for decoding PCI Target accesses and therefore defines what
minimum image size can be. Maximum number allowed is 20 (4KB minimum
image size) and minimum is 1 (2GB minimum image size – this value implies
that more than two images cannot be enabled at the same time). The number of
decoded address lines also influences the speed of the Core.

• PCI_IMAGE0 – this define only has meaning when HOST and
NO_CNF_IMAGE are defined also. This enables usage of all 6 PCI Target
images for accessing WISHBONE bus address space from PCI address space.
Otherwise, PCI_IMAGE0 does not needs to be defined, since it is always used for
accessing Configuration space.

• PCI_IMAGE2 – if defined, PCI Target image 2 is implemented

• PCI_IMAGE3 – if defined, PCI Target image 3 is implemented

• PCI_IMAGE4 – if defined, PCI Target image 4 is implemented

• PCI_IMAGE5 – if defined, PCI Target image 5 is implemented

• PCI_AM0, PCI_AM1, PCI_AM2, PCI_AM3, PCI_AM4, PCI_AM5 – values
defined with this macros are initial (reset) values of PCI address masks’

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 48

registers. These are very important if the Core is implemented as GUEST, since
configuration is done via PCI Target state machine. If the designer wants an
implemented PCI Target image to be detected by device independent software at
system power-up, he has to set initial masks to enabled state – MS bit has to be 1.
Other bits can have a value of 1 or zero, depending on what size of an image has
to be presented to the software. The masks can be set inactive also, but device
independent software won’t detect implemented PCI Target images and therefore
not configure them. Device specific software will then have to jump in to
configure images with inactive initial masks defined, which also means that it will
probably have to rebuild PCI address space map.

• PCI_BA0_MEM_IO, PCI_BA1_MEM_IO, PCI_BA2_MEM_IO,
PCI_BA3_MEM_IO, PCI_BA4_MEM_IO, PCI_BA5_MEM_IO – Those are
initial values of PCI Base Address registers’ bits 0. If the Core is configured as
HOST, this initial values can later be changed by writing appropriate value to PCI
Base Address register x. If the core is GUEST, than this values are hardwired,
because device independent software must know in advance where to map each
PCI Base Address.

2.4.8 WISHBONE images’ implementation
constants

Constants’ definitions described in this chapter control the number and minimum address
range of WISHBONE Slave images. WISHBONE image 1 is always implemented,
without any exceptions, so no define is provided for it. Image implementation means that
all required registers for each image are implemented in Configuration space and each
image needs its own decoder. Image constants’ definitions have quite an impact on
Core’s size and speed.

• WB_NUM_OF_DEC_ADDR_LINES – number defined here is used for
controlling implementation of WISHBONE images’ decoders. It defines how
many address lines are used for decoding WISHBONE Slave accesses and
therefore defines what minimum image size can be. Maximum number allowed is
20 (4KB minimum image size) and minimum is 1 (2GB minimum image size –
this value implies that more than two images cannot be enabled at the same time).
The number of decoded address lines also influences the speed of the Core.

• WB_IMAGE2 – if defined, WB Slave image 2 is implemented

• WB_IMAGE3 – if defined, WB Slave image 3 is implemented

• WB_IMAGE4 – if defined, WB Slave image 4 is implemented

• WB_IMAGE5 – if defined, WB Slave image 5 is implemented

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 49

2.4.9 WISHBONE Slave specific constants

• WB_DECODE_FAST, WB_DECODE_MEDIUM, WB_DECODE_SLOW –
these are all mutually exclusive definitions. They define how many cycles
WISHBONE Slave state machine takes to decode an access. WB Slave state
machine samples decode information on same clock edge cycle is started when
WB_DECODE_FAST is defined. It samples decode data one clock after cycle is
started if WB_DECODE_MEDIUM is defined. If WB_DECODE_SLOW is
defined, state machine samples decode data two clocks after cycle is started. This
defines can or should be taken into account during synthesis to provide
information about multicycle paths.

• WB_CONFIGURATION_BASE – defines 20 bit value for WISHBONE
configuration image address. Those bits are compared to 20 MS bits of
WISHBONE Slave address to decode Configuration accesses from WISHBONE
bus. This is constant value and cannot be changed after the Core is implemented,
since WISHBONE bus does not provide any special mechanism for device
configuration.

• REGISTER_WBS_OUTPUTS – this define is used mostly when the Core is
included into top level application as precompiled macro, because timings cannot
be optimized during top level synthesis. WISHBONE Slave state machine
registers all outputs when this macro is defined and introduces one wait cycle
after every transfer. It also registers all interfaces with core internals to release a
burden on WISHBONE Slave inputs also.

2.4.10 PCI specific constants

• PCI33, PCI66 – these two mutually exclusive defines are used for simulation
purposes (PCI clock speed) and to set 66MHz Capable bit in PCI Device Status
register, if PCI66 is defined. There are no other features dependent on those
defines.

• HEADER_VENDOR_ID – each PCI bus compatible hardware vendor gets its 16
bit hexadecimal ID from PCI SIG organization. It should be specified in this
define. This value shows up in Vendor ID register of PCI Type0 Configuration
Header.

• HEADER_DEVICE_ID – Device ID is vendor specific, 16 bit hexadecimal value.
It shows up in Device ID register of PCI Type0 Configuration Header.

• HEADER_REVISION_ID – Also vendor specific, 8 bit hexadecimal value, that
shows up in Revision ID register of PCI Type0 Configuration Header.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 50

2.4.11 WISHBONE Master specific constants

• REGISTER_WBM_OUTPUTS – this define is used mostly when the Core is
included into top level application as precompiled macro, because timings cannot
be optimized during top level synthesis. WISHBONE Master state machine
registers all outputs when this macro is defined and introduces one wait cycle
after every transfer. It also registers input data and some interfaces with core
internals to release a burden on WISHBONE Master control inputs also.

• WB_RTY_CNT_MAX – this define is used to prevent deadlock in WB Master
state machine for maximum counting value of RTY terminations on WB bus,
before ACK or ERR terminations. The last two terminations reset the counter.
This counter is also used, when no WB device responds (e.g. if accessing to
unused memory locations). In that case internal set_retry signal is set every 8
WB clock periods and counter counts to maximum value defined.

2.5 Changeable constants dependencies

This chapter describes what the user should be aware of when defining / not defining
some of the changeable Core constants.

• WBW_ADDR_LENGTH, WBR_ADDR_LENGTH – numbers defined cannot
have value less than 3, because of Fifos control logic implementation.
WBW(R)_ADDR_LENGTH constant value also depends on value of
WB_FIFO_RAM_ADDR_LENGTH and definition of
WB_RAM_DONT_SHARE. If WB_RAM_DONT_SHARE is defined, then
WBW(R)_ADDR_LENGTH can be defined as any number between 3 and
WB_FIFO_RAM_ADDR_LENGTH. Otherwise, WBW(R)_ADDR_LENGTH
can be defined as any number between 3 and
(WB_FIFO_RAM_ADDR_LENGTH – 1).

• PCIW_ADDR_LENGTH, PCIR_ADDR_LENGTH – numbers defined cannot
have value less than 3, because of Fifo control logic implementation.
PCIW(R)_ADDR_LENGTH constant value also depends on value of
PCI_FIFO_RAM_ADDR_LENGTH and definition of
PCI_RAM_DONT_SHARE. If PCI_RAM_DONT_SHARE is defined, then
PCIW(R)_ADDR_LENGTH can be defined as any number between 3 and
PCI_FIFO_RAM_ADDR_LENGTH. Otherwise,
PCIW(R)_ADDR_LENGTH can be defined as any number between 3 and
(PCI_FIFO_RAM_ADDR_LENGTH – 1).

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 51

• WB_FIFO_RAM_ADDR_LENGTH, PCI_FIFO_RAM_ADDR_LENGTH –
depend on other constants only if FPGA is defined. If XILINX is defined, user
can select between two possible RAM instances – Block Select RAM+ or
Distributed RAM. If WB(PCI)_XILINX_RAMB4 is defined, this selects Block
Select RAM+ for WB (PCI) Read and Write Fifos implementation.
WB(PCI)_FIFO_RAM_ADDR_LENGTH can only be defined to 8 in this case.
If WB(PCI)_XILINX_DIST_RAM is defined, then
WB(PCI)_FIFO_RAM_ADDR_LENGTH constant can only be defined to a
value of 4. User can use Distributed and Block Select RAM+ in the same design,
by defining Block RAM for PCI(WB) Fifos and Distributed RAM for WB(PCI)
Fifos. When the Core is to be implemented in an ASIC, user must include
appropriate RAM instances into wb_tpram.v and pci_tpram.v under appropriate
define and edit these two constants to reflect proper information about instantiated
RAM blocks.

• WB(PCI)_XILINX_RAMB4 – user must define FPGA and XILINX also, to
use Xilinx Block RAMs.

• WB(PCI)_XILINX_DIST_RAM – user must define FPGA, XILINX and
corresponding (WB)PCI_RAM_DONT_SHARE. Distributed RAM can’t be
shared between Fifos, because it only has one write port.

• PCI_NUM_OF_DEC_ADDR_LINES – maximum value can be 20 and
minimum 1, which implements minimum PCI image size of 4KB or 2GB
respectively. This number also depends on number of implemented PCI images –
bridge cannot decode accesses to 6 different images by decoding only 1 bit of
address. If 1 or 2 PCI images are implemented, then minimum number of decoded
address lines can be 1, if 3 or 4 are implemented, at least two address lines must
be decoded and if 5 or 6 images are implemented, at least 3 address lines must be
decoded. PCI images are implemented by defining PCI_IMAGE2 through
PCI_IMAGE5 and PCI_IMAGE0 for HOST bridge implementation with
NO_CNF_IMAGE defined. Note that PCI image 1 is always implemented. PCI
image 0 is implemented when bridge is configured as GUEST or when it is
configured as HOST and NO_CNF_IMAGE is not defined or PCI_IMAGE0 is
defined.

• WB_NUM_OF_DEC_ADDR_LINES – rules described for PCI number of
decoded address lines apply to WISHBONE number of decoded address lines
also, except the number depends on WISHBONE Images implemented.
WISHBONE Image 1 is always implemented. WISHBONE Image 0 is
implemented in HOST implementation of the bridge or in GUEST
implementation of the bridge when NO_CNF_IMAGE is not defined. Other
WISHBONE Images are selected by defining WB_IMAGE2 through
WB_IMAGE5.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 52

• WB_DECODE_FAST – fast decoding in WISHBONE Slave state machine is
possible only when REGISTER_WBS_OUTPUTS is not defined. If
REGISTER_WBS_OUTPUTS is defined, then medium decode is implemented
in WISHBONE Slave state machine, unless WB_DECODE_SLOW is defined.

2.6 Unchangeable Core Constants

Constants defined in file pci_constants.v in project’s rtl/verilog subdirectory are not to
be changed by the end user of the core, so they are just described here briefly for
reference.

2.6.1 Fifo constants

• WBW_DEPTH – size of WB Write Fifo calculated from user constant
WBW_ADDR_LENGTH

• WBR_DEPTH – size of WB Read Fifo calculated from user constant
WBR_ADDR_LENGTH

• PCIW_DEPTH – size of PCI Write Fifo calculated from user constant
PCIW_ADDR_LENGTH

• PCIR_DEPTH – size of PCI Read Fifo calculated from user constant
PCIR_ADDR_LENGTH

• *_BIT – Fifo Control bus bit positions – used internally by the core for decoding
what kind of data or transaction is on top of Fifo.

2.6.2 WISHBONE Slave constants

• WB_AM0 – 20 bit address mask value for WISHBONE configuration image.
Used for decoding WISHBONE Configuration accesses and can’t be changed.

2.6.3 Configuration registers’ address constants

• *_ADDR – these defines specify the offset of each individual register residing in
Configuration space. Defines are also used in testbench for accessing and
checking value of registers.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 53

2.6.4 66Mhz Capable bit constant

• HEADER_66MHz – specifies a value for 66MHz Capable bit in Device Status
register depending on PCI33 and PCI66 defines.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 54

3
PCI Bridge Testbench

3.1 Overview

PCI Bridge testbench consists of a whole environment for testing PCI Bridge including
PCI and WISHBONE bus models with bus monitors and test-cases which use those
models to stimulate transactions through PCI Bridge. Those transactions are checked
when Wishbone Slave Unit and PCI Target Unit operates separately and simultaneously.

3.2 Testbench File Hierarchy

The hierarchy of modules in the Testbench of the PCI Bridge core is shown here with file
tree. Each file here implements one module in a hierarchy source files of the Testbench
are in the pci\bench\verilog subdirectory.

system.v
. top.v
. wb_bus_monitor.v*
. wb_master_behavioral.v
. . wb_master32.v
. wb_slave_behavioral.v
. pci_bus_monitor.v
. pci_blue_arbiter.v
. pci_behavioral_device.v*
. . pci_behaviorial_master.v

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 55

. . pci_behaviorial_target.v

. . delayed_test_pad.v*

. pci_behavioral_iack_target.v

. pci_unsupported_commands_master.v

* Files are used within one module more than once: wb_bus_monitor.v is used
within system.v for 2 times, pci_behavioral_device.v is used within system.v for 2
times, delayed_test_pad.v is used within pci_behavioral_device.v for 9 times.

3.2.1 Testbench Module Hierarchy

Module hierarchy is shown in detail in the following picture. Description of modules and
their connections is in the chapter 3.3, Description of Testbench Modules.

system.v

top.v
wb_bus_monitor.v

wb_slave_behavioral.v

wb_bus_monitor.v

wb_master_behavioral.v

UUT
(PCI Bridge)

pci_behavioral_device.v

pci_behaviorial_master.v

pci_behaviorial_target.v

delayed_test_pad.v

delayed_test_pad.v

pci_bus_monitor.v

pci_blue_arbiter.v

pci_behavioral_iack_target.v

pci_unsupported_commands_master.v

pci_behavioral_device.v

pci_behaviorial_master.v

pci_behaviorial_target.v

delayed_test_pad.v

delayed_test_pad.v

PC
I

WB

WB

wb_master32.v

Figure 3-1: Testbench module hierarchy

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 56

3.3 Description of Testbench Modules

The module system.v is used as testing environment and it incorporates beside all test
submodules, functions and tasks also Unit Under Test (PCI Bridge). Description of tasks
is covered in chapter Description of Testcases, while all test submodules are described in
the following chapters.

3.3.1 Description of PCI submodules

3.3.1.1 pci_bus_monitor submodule

The module pci_bus_monitor.v monitors the PCI Bus and tries to see PCI Protocol
Errors. This module also has access to the individual PCI Bus OE signals for each
behavioral interface (either through extra output ports or through "." notation), and it can
see when more than one interface is driving the bus, even of the values are the same.

Author of this module is Blue Beaver.

3.3.1.2 pci_blue_arbiter submodule

The module pci_blue_arbiter.v is used for arbitration on the PCI bus. It has 4 external
PCI Request/Grant pairs and one internal Request/Grant Pair. All 4 external PCI
Request/Grant pairs are used for 2 pci_behavioral_device submodules,
pci_unsupported_commands_master submodule and for UUT - PCI Bridge.

Author of this module is Blue Beaver.

3.3.1.3 pci_behavioral_device submodule

The module pci_behavioral_device.v is used as PCI behavioral interface and includes
two submodules for its operation; pci_behavioral_master.v and pci_behavioral_target.v.

The module pci_behavioral_master.v accepts commands from top-level stimulus task.
Regarding the arguments passed to this submodule, it generates appropriate bus
command. All bus cycles must terminate as expected by top-level task. It also arbitrates
for the bus, sends data when writing, and compares returned data when reading.
Comparing of read data is sometimes switched off, e.g. when NO data was written into a
location from which a device is reading. Read data is also provided to the top-level (Note:
providing codes of operation on AD lines to the PCI Target device is disabled).

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 57

The module pci_behavioral_target.v receives PCI commands from the PCI bus. Its
termination of cycle is controlled by top-level (Note: providing codes of operation on AD
lines to the PCI Target device is disabled). This Target contains Configuration registers
and a 256 byte scratch SRAM. It responds with data when it is given a Read command,
and checks data when it is given a Write command.

Author of this module is Blue Beaver.

3.3.1.4 pci_behavioral_iack_target submodule

The module pci_behavioral_iack_target.v is Target-only module. It is used to respond
only to interrupt acknowledge commands, because other models don’t respond to that
command. When it should respond and the value of the interrupt vector is controlled by
top-level.

3.3.1.5 pci_unsupported_commands_master submodule

The module pci_unsupported_commands_master.v is Master-only module. It is used to
generate PCI bus commands, that are not supported by PCI Bridge Target device and
those commands can not be generated by pci_behavioral_device.v module. It is also used
for parity checking with ability to generate the address parity error on first and/or on
second address phase of the DUAL ADDRESS CYCLE bus command. This bus
command is unsupported, but parity checker must check for parity errors.

This PCI Master module waits for master-abort termination of the initiated bus cycle.

3.3.2 Description of WB submodules

3.3.2.1 wb_bus_monitor submodule

The module wb_bus_monitor.v monitors the WB Bus and tries to see WB Protocol
Errors. There are two point-to-point WB buses (WB master from PCI Target Unit and
WB slave from WB Slave Unit), and two WB bus monitors, one for each WB bus.

3.3.2.2 wb_master_behavioral submodule

The module wb_master_behavioral.v is used to initiates WB cycles to WB Slave in the
PCI bridge. That is controlled by top-level. This module also includes a submodule
wb_master32.v, which is used to generate proper WB cycles. The length and type of each
cycle is controlled by wb_master_behavioral.v module.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 58

3.3.2.3 wb_slave_behavioral submodule

The module wb_slave_behavioral.v responds to cycles initiated by WB Master in the PCI
bridge. When to respond and a type of cycle termination is controlled by top-level. This
module also incorporates a block of SRAM.

3.4 Description of Testcases

There are some tasks not used as testcases (e.g. fill_memory, do_reset and specific tasks
for initializing some registers, see chapters 3.4.1 and 3.4.2), but are significant for proper
working of testbench. But there are some tasks used as basic tasks for all testcases (e.g.
DO_REF – located in system.v module, wishbone_master.wb_single_write – located
in wb_master_behavioral.v module, and other wishbone_master.wb_… tasks).

All Testcases are in system.v file and are sometimes combined with more tasks or are
just a part of one task. Testcases are controlled in a task run_tests; some system
parameters (behavioral master and target wait cycles – tb_init_waits, tb_subseq_waits;
behavioral target response time – tb_target_decode_speed) are used with all possible
combinations while running all testcases (most of testcases are used more than one time).
In the following chapters basic descriptions for groups of testcases are presented. Each
testcase has its name with a test type meaning. For deeper explanations of testcases see
the comments in the system.v file.

Testbench also provide log files as a result of all tests into pci/sim/rtl_sim/log directory.
File pci_tb.log has all testcases results written as SUCCESSFULL or FAIL. Files
pci_mon.log, wbu_mon.log and pciu_mon.log report any wrong and suspicious
activities on PCI and both WB buses.

3.4.1 Description of WBU Testcases

Before running testcases for WBU, some initialization must be done.

With task configure_bridge_target, some registers in PCI Bridge Target are initialized
(master and target are enabled, base address register 0 is set and enabled).

With task configure_target each behavioral PCI target is initialized.

Task find_pci_devices executes only if PCI Bridge is implemented as HOST. It is not
referenced in any log file as a testcase, since it is like a part of initialization. It checks if

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 59

all PCI devices are connected correctly in the testbench with PCI Master configuration
cycles.

3.4.1.1 Testcases for Configuration

Testcases described here are fundamental for all tests to pass successful. They set the
configuration of the WBU of the PCI Bridge, but they don’t test WB to PCI accesses.
Because of that, they are not listed in the pci_tb.log file.

Following testcases are for configuring normal writes and reads through IMAGEs. Task
location for testcases is: run_tests –> test_wb_image.

"WB IMAGE CONFIGURATION"

"CONFIGURE ADDRESS TRANSLATION FOR WISHBONE IMAGE"

"CHANGE WB IMAGE BASE ADDRESS"

"ENABLE WB IMAGE ADDRESS TRANSLATION"

"ENABLING/DISABLING IMAGE'S FEATURES"

"DISABLING WB IMAGE"

Following testcases are for configuring erroneous WB writes and reads through IMAGEs.
Task location for testcases is: run_tests –> wb_slave_errors.

"CONFIGURING IMAGE FOR WB SLAVE ERROR TERMINATION TESTING"

"RECONFIGURING IMAGE TO I/O MAPPED ADDRESS SPACE"

"DISABLE IMAGE"

Following testcases are for configuring erroneous PCI writes and reads through IMAGEs.
Task location for testcases is: run_tests –> wb_to_pci_error_handling.

"CONFIGURING BRIDGE FOR PCI ERROR TERMINATION RESPONSE BY WB
SLAVE TESTING"

"SETUP BRIDGE FOR TARGET ABORT HANDLING TESTS"

Following testcases are for configuring parity checking during writes and reads through
IMAGEs. Task location for testcases is: run_tests –> parity_checking.

"CONFIGURE BRIDGE FOR PARITY CHECKER FUNCTIONS TESTING"

"CLEARING PARITY ERROR STATUSES"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 60

"CLEARANCE OF PARITY INTERRUPT STATUSES"

"DISABLE USED IMAGES"

Following testcases are for configuring transactions during writes and reads through
IMAGEs. Task location for testcases is: run_tests –> wb_to_pci_transactions.

"BRIDGE CONFIGURATION FOR TRANSACTION TESTING"

"RECONFIGURE PCI MASTER/WISHBONE SLAVE"

"DISABLE_IMAGE"

3.4.1.2 Testcases for IMAGEs Tests

Following testcases are for testing normal writes and reads through IMAGEs. Task
location for testcases is: run_tests –> test_wb_image.

"NORMAL SINGLE MEMORY WRITE THROUGH WB IMAGE TO PCI"

"NORMAL SINGLE MEMORY READ THROUGH WB IMAGE FROM PCI"

"NORMAL SINGLE MEMORY WRITE THROUGH WB IMAGE TO PCI WITH
ADDRESS TRANSLATION"

"CAB MEMORY WRITE THROUGH WB SLAVE TO PCI"

"CAB MEMORY READ THROUGH WB SLAVE FROM PCI"

"CAB MEMORY READ THROUGH WB IMAGE WITH READ BURSTING
ENABLED"

"SINGLE MEMORY READ THROUGH WB IMAGE WITH READ BURSTING
ENABLED"

"I/O WRITE TRANSACTION FROM WB TO PCI TEST"

"I/O READ TRANSACTION FROM WB TO PCI TEST"

Following testcases are for testing erroneous WB writes and reads through IMAGEs.
Task location for testcases is: run_tests –> wb_slave_errors.

"SINGLE ERRONEOUS MEMORY WRITE TO WB SLAVE"

"SINGLE ERRONEOUS MEMORY READ TO WB SLAVE"

"ERRONEOUS CAB MEMORY WRITE TO WB SLAVE"

"ERRONEOUS CAB MEMORY READ TO WB SLAVE"

"ERRONEOUS I/O WRITE TO WB SLAVE"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 61

"ERRONEOUS I/O READ TO WB SLAVE"

"CAB I/O WRITE TO WB SLAVE"

"CAB I/O READ TO WB SLAVE"

"ERRONEOUS WB CONFIGURATION WRITE ACCESS"

"ERRONEOUS WB CONFIGURATION READ ACCESS"

"WB CAB CONFIGURATION WRITE ACCESS"

"WB CAB CONFIGURATION READ ACCESS"

Following testcases are for testing erroneous PCI writes and reads through IMAGEs.
Task location for testcases is: run_tests –> wb_to_pci_error_handling.

"MASTER ABORT ERROR HANDLING DURING WB TO PCI WRITES"

"MASTER ABORT ERROR HANDLING FOR WB TO PCI READS"

"MASTER ABORT ERROR DURING CAB READ FROM WB TO PCI"

"TARGET ABORT ERROR ON SINGLE WRITE"

"TARGET ABORT ERROR ON CAB MEMORY WRITE"

"TARGET ABORT TERMINATION ON SECOND DATA PHASE OF BURST
WRITE"

"TARGET ABORT DURING SINGLE MEMORY READ"

"TARGET ABORT ERROR DURING SECOND DATAPHASE OF BURST READ"

"TARGET ABORT ERROR DURING LAST DATAPHASE OF BURST READ"

"ERROR REPORTING FUNCTIONALITY FOR I/O WRITE"

Following testcases are for testing parity during PCI writes and reads through IMAGEs.
Task location for testcases is: run_tests –> parity_checking.

"RESPONSE TO TARGET ASSERTING PERR DURING MASTER WRITE"

"RESPONSE TO TARGET ASSERTING PERR DURING MASTER WRITE WITH
PARITY ERROR RESPONSE ENABLED"

"MASTER WRITE WITH NO PARITY ERRORS"

"BRIDGE'S RESPONSE TO PARITY ERRORS DURING MASTER READS"

"NO PERR ASSERTION ON MASTER READ WITH PAR. ERR. RESPONSE
DISABLED"

"MASTER READ TRANSACTION WITH NO PARITY ERRORS"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 62

"NO SERR ASSERTION AFTER ADDRESS PARITY ERROR, SERR DISABLED
AND PAR. ERR. RESPONSE ENABLED"

"ADDRESS PARITY ERROR ON FIRST DATA PHASE OF DUAL ADDRESS
CYCLE - SERR DISABLED, PAR. RESP. ENABLED"

"ADDRESS PARITY ERROR ON SECOND DATA PHASE OF DUAL ADDRESS
CYCLE - SERR DISABLED, PAR. RESP. ENABLED"

"ADDRESS PARITY ERROR ON BOTH DATA PHASES OF DUAL ADDRESS
CYCLE - SERR DISABLED, PAR. RESP. ENABLED"

"ADDRESS PARITY ERROR RESPONSE WITH SERR AND PARITY ERROR
RESPONSE ENABLED"

"ADDRESS PARITY ERROR ON FIRST DATA PHASE OF DUAL ADDRESS
CYCLE - SERR ENABLED, PAR. RESP. ENABLED"

"ADDRESS PARITY ERROR ON SECOND DATA PHASE OF DUAL ADDRESS
CYCLE - SERR ENABLED, PAR. RESP. ENABLED"

"ADDRESS PARITY ERROR ON BOTH DATA PHASES OF DUAL ADDRESS
CYCLE - SERR ENABLED, PAR. RESP. ENABLED"

"NO SERR ASSERTION ON ADDRESS PARITY ERROR WITH SERR ENABLED
AND PAR. ERR. RESPONSE DISABLED"

"ADDRESS PARITY ERROR ON FIRST DATA PHASE OF DUAL ADDRESS
CYCLE - SERR ENABLED, PAR. RESP. DISABLED"

"ADDRESS PARITY ERROR ON SECOND DATA PHASE OF DUAL ADDRESS
CYCLE - SERR ENABLED, PAR. RESP. DISABLED"

"ADDRESS PARITY ERROR ON BOTH DATA PHASES OF DUAL ADDRESS
CYCLE - SERR ENABLED, PAR. RESP. DISABLED"

"EXTERNAL WRITE WITH NO PARITY ERRORS"

"INVALID PAR ON WRITE REFERENCE THROUGH BRIDGE'S TARGET - PERR
RESPONSE ENABLED"

"PARITY ERROR HANDLING ON TARGET READ REFERENCE"

Following testcases are for testing transactions during writes and reads through IMAGEs.
Task location for testcases is: run_tests –> wb_to_pci_transactions.

"SINGLE POSTED WRITE TRANSACTION PROCESSING ON PCI"

"SINGLE POSTED WRITE FROM WISHBONE TO PCI RETRIED FIRST TIME"

"SINGLE POSTED WRITE FROM WISHBONE TO PCI RETRIED SECOND TIME"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 63

"SINGLE POSTED WRITE FROM WISHBONE TO PCI DISCONNECTED"

"BURST LENGTH 2 POSTED WRITE TRANSACTION PROCESSING ON PCI"

"BURST LENGTH 2 POSTED WRITE STARTS WITH RETRY"

"BURST LENGTH 2 POSTED WRITE RETRIED SECOND TIME DISCONNECTED
ON FIRST DATAPHASE"

"BURST LENGTH 2 POSTED WRITE NORMAL COMPLETION AFTER
DISCONNECT "

"BURST LENGTH 2 POSTED WRITE DISCONNECTED AFTER FIRST
DATAPHASE FIRST TIME"

"BURST LENGTH 2 POSTED WRITE DISCONNECTED WITH SECOND
DATAPHASE SECOND TIME"

"BURST LENGTH 2 POSTED WRITE TRANSACTION PROCESSING ON PCI
WITH NORMAL COMPLETION"

"BURST LENGTH 3 POSTED WRITE TRANSACTION PROCESSING ON PCI"

"BURST LENGTH 3 POSTED WRITE TRANSACTION DISCONNECT ON FIRST
DATAPHASE FIRST TIME"

"BURST LENGTH 3 POSTED WRITE TRANSACTION DISCONNECT ON SECOND
DATAPHASE SECOND TIME"

"BURST LENGTH 3 POSTED WRITE DISCONNECTED ON SECOND FIRST
TIME"

"BURST LENGTH 3 POSTED WRITE DISCONNECTED ON FIRST SECOND
TIME"

"BURST LENGTH 3 POSTED WRITE TRANSACTION WITH NORMAL
COMPLETION"

"BURST LENGTH OF WISHBONE FIFO DEPTH POSTED MEMORY WRITE"

"FULL WRITE FIFO BURST RETRIED FIRST TIME"

"FULL WRITE FIFO BURST DISCONNECT WITH FIRST SECOND TIME"

"FULL WRITE FIFO BURST DISCONNECT AFTER FIRST THIRD TIME"

"FULL WRITE FIFO BURST DISCONNECT WITH SECOND FOURTH TIME"

"REMAINDER OF FULL WRITE FIFO BURST NORMAL COMPLETION FIFTH
TIME"

"READ DATA BURSTED TO TARGET BACK AND CHECK VALUES"

"SINGLE READ TRANSACTION PROCESSING ON PCI"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 64

"SINGLE MEMORY READ RETRIED FIRST TIME"

"SINGLE MEMORY READ DISCONNECTED WITH FIRST SECOND TIME"

"FILL TARGET MEMORY WITH DATA"

"SINGLE READ TO PUSH WRITE DATA FROM FIFO"

"BURST READ WITH DISCONNECT ON FIRST"

"BURST READ WITH DISCONNECT AFTER FIRST"

"BURST READ WITH DISCONNECT ON SECOND - TAKE OUT ONLY ONE"

"BURST READ WITH NORMAL TERMINATION"

"NORMAL BURST READ WITH NORMAL COMPLETION, MEMORY READ LINE
DISABLED, PREFETCH ENABLED, BURST SIZE 4"

"SINGLE READ WITH FUNNY BYTE ENABLE COMBINATION"

"BURST READ WITH NORMAL COMPLETION FILLING FULL FIFO - MRL AND
PREFETCH BOTH ENABLED"

"SINGLE CAB READ FOR FLUSHING STALE READ DATA FROM FIFO"

"WB BURST READ WHEN CACHE LINE SIZE VALUE IS INVALID"

"WB BURST READ WHEN CACHE LINE SIZE VALUE IS ZERO"

"LATENCY TIMER OPERATION ON PCI MASTER WRITE"

"BURST WRITE DATA DISCONNECTED BY LATENCY TIMEOUT"

"LATENCY TIMER OPERATION DURING MASTER READ"

Following testcases are for testing interrupt acknowledge cycles. Task location for
testcases is: run_tests –> iack_cycle.

"INTERRUPT ACKNOWLEDGE CYCLE GENERATION WITH MASTER ABORT"

"INTERRUPT ACKNOWLEDGE CYCLE GENERATION WITH NORMAL
COMPLETION"

"INTERRUPT ACKNOWLEDGE CYCLE GENERATION WITH NORMAL
COMPLETION AND FUNNY BYTE ENABLES"

3.4.1.3 Testcases for Verification

Following testcase is for testing normal writes and reads through IMAGEs. Task location
for testcase is: run_tests –> test_wb_image.

"CHECK MAXIMUM IMAGE SIZE"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 65

Following testcases are for testing erroneous PCI writes and reads through IMAGEs.
Task location for testcases is: run_tests –> wb_to_pci_error_handling.

"CHECKING ERROR REPORTING FUNCTIONS AFTER MASTER ABORT
ERROR"

"CHECKING INTERRUPT REQUESTS AFTER MASTER ABORT ERROR"

"CHECKING PCI DEVICE STATUS REGISTER VALUE AFTER MASTER ABORT"

"CHECKING MASTER ABORT ERROR HANDLING ON CAB MEMORY WRITE"

"CHECKING ERROR REPORTING REGISTERS' VALUES AFTER MASTER
ABORT ERROR"

"CHECKING INTERRUPT REQUESTS AFTER CLEARING THEM"

"CHECK NORMAL WRITING/READING FROM WISHBONE TO PCI AFTER
ERRORS WERE PRESENTED"

"CHECKING ERROR STATUS AFTER MASTER ABORT ON READ"

"CHECK PCI DEVICE STATUS REGISTER VALUE AFTER TARGET ABORT ON
DELAYED READ"

"CHECK PCI DEVICE STATUS REGISTER AFTER READ TERMINATED WITH
MASTER ABORT"

"NORMAL SINGLE MEMORY WRITE IMMEDIATELY AFTER ONE
TERMINATED WITH TARGET ABORT"

"NORMAL SINGLE MEMORY READ AFTER WRITE TERMINATED WITH
TARGET ABORT"

"WB ERROR CONTROL AND STATUS REGISTER VALUE CHECK AFTER
WRITE TARGET ABORT"

"INTERRUPT STATUS REGISTER VALUE CHECK AFTER WRITE TARGET
ABORT"

"PCI DEVICE STATUS REGISTER VALUE CHECK AFTER WRITE TARGET
ABORT"

"WB ERROR CONTROL AND STATUS REGISTER VALUE CHECK AFTER
WRITE TARGET ABORT"

"WB ERRONEOUS ADDRESS AND DATA REGISTERS' VALUES CHECK AFTER
WRITE TARGET ABORT"

"PCI DEVICE STATUS VALUE CHECK AFTER WRITE TARGET ABORT"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 66

"WB ERROR CONTROL AND STATUS REGISTER VALUE CHECK AFTER
CLEARING ERROR STATUS"

"INTERRUPT REQUEST ASSERTION AFTER ERROR REPORTING TRIGGER"

"PCI DEVICE STATUS REGISTER VALUE CHECK AFTER TARGET ABORTED
MEMORY WRITE"

"INTERRUPT STATUS REGISTER VALUE CHECK AFTER CLEARING STATUS
BITS"

"WB ERROR STATUS REGISTER VALUE CHECK AFTER CLEARING STATUS
BIT"

"WB ERROR STATUS REGISTER VALUE CHECK AFTER READ TERMINATED
WITH TARGET ABORT"

"PCI DEVICE STATUS REGISTER VALUE CHECK AFTER READ TERMINATED
WITH TARGET ABORT"

"INTERRUPT STATUS REGISTER VALUE CHECK AFTER READ TERMINATED
WITH TARGET ABORT"

"CHECK NORMAL BURST READ AFTER TARGET ABORT TERMINATED
BURST READ"

"WB ERROR STATUS REGISTER VALUE AFTER MASTER ABORTED I/O
WRITE"

"WB ERRONEOUS ADDRESS AND DATA REGISTERS' VALUES AFTER
MASTER ABORTED I/O WRITE"

"INTERRUPT STATUS REGISTER VALUE AFTER MASTER ABORTED I/O
WRITE"

"PCI DEVICE STATUS REGISTER VALUE AFTER MASTER ABORTED I/O
WRITE"

Following testcases are for testing parity during PCI writes and reads through IMAGEs.
Task location for testcases is: run_tests –> parity_checking.

"CHECK PCI DEVICE STATUS REGISTER VALUE AFTER PARITY ERROR
DURING MASTER WRITE"

"PCI DEVICE STATUS REGISTER VALUE AFTER PARITY ERROR DURING
MASTER WRITE - PAR. ERR. RESPONSE ENABLED"

"PCI DEVICE STATUS REGISTER VALUE AFTER NORMAL MEMORY WRITE"

"INTERRUPT REQUEST ASSERTION AFTER PARITY ERROR"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 67

"PCI DEVICE STATUS REGISTER VALUE AFTER MASTER READ PARITY
ERROR"

"INTERRUPT STATUS REGISTER AFTER MASTER READ PARITY ERROR"

"INTERRUPT REQUEST CHECK AFTER READ PARITY ERROR WITH PARITY
ERROR RESPONSE DISABLED"

"INTERRUPT STATUS REGISTER VALUE AFTER MASTER READ PARITY
ERROR WITH PAR. ERR. RESPONSE DISABLED"

"PCI DEVICE STATUS REGISTER VALUE AFTER NORMAL READ"

"INTERRUPT STATUS REGISTER VALUE AFTER NORMAL READ"

"PCI DEVICE STATUS REGISTER VALUE AFTER ADDRESS PARITY ERROR
AND SERR DISABLED"

"INTERRUPT REQUEST AFTER ADDRESS PARITY ERROR"

"INTERRUPT REQUEST AFTER ADDRESS PARITY ERROR WAS PRESENTED
ON PCI"

"PCI DEVICE STATUS REGISTER VALUE AFTER ADDRESS PARITY ERROR ON
PCI"

"INTERRUPT STATUS REGISTER VALUE AFTER ADDRESS PARITY ERROR ON
PCI"

"INTERRUPT REQUEST AFTER ADDR. PARITY ERROR WITH PERR RESPONSE
DISABLED"

"PCI DEVICE STATUS REGISTER VALUE AFTER ADDR PERR WITH PERR
RESPONSE DISABLED"

"INTERRUPT STATUS REGISTER VALUE AFTER ADDR PERR WITH PERR
RESPONSE DISABLED"

"PCI DEVICE STATUS REGISTER VALUE AFTER ADDRESS PARITY ERROR
AND PERR DISABLED"

"INTERRUPT REQUESTS AFTER NORMAL EXTERNAL MASTER WRITE"

"PCI DEVICE STATUS REGISTER VALUE AFTER NORMAL EXTERNAL
MASTER WRITE"

"INTERRUPT STATUS REGISTER VALUE AFTER NORMAL EXTERNAL
MASTER WRITE"

"INTERRUPT REQUESTS AFTER TARGET WRITE REFERENCE PARITY
ERROR"

"PCI DEVICE STATUS REGISTER VALUE AFTER PARITY ERROR ON TARGET
REFERENCE"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 68

"INTERRUPT STATUS REGISTER VALUE AFTER PARITY ERROR ON TARGET
REFERENCE"

"INTERRUPT REQUESTS AFTER PERR ON READ REFERENCE THROUGH
BRIDGE'S TARGET"

"PCI DEVICE STATUS REGISTER VALUE AFTER PARITY ERROR ON TARGET
READ REFERENCE"

"INTERRUPT STATUS REGISTER VALUE AFTER PARITY ERROR ON TARGET
READ REFERENCE"

3.4.2 Description of PCIU Testcases

Before running testcases for PCIU, some initialization must be done.

With task configure_bridge_target_base_addresses, PCI Bridge Target is initialized
(master and target are enabled, all implemented base address registers are set and
enabled).

3.4.2.1 Testcases for Configuration

Testcases described here are fundamental for all tests to pass successful. They set the
configuration of the PCIU of the PCI Bridge, but they don’t test PCI to WB accesses.
Because of that, they are not listed in the pci_tb.log file.

Following testcases are for configuring normal writes and reads through MEMORY
IMAGEs. Task location for testcases is: run_tests –> test_pci_image –>
test_normal_wr_rd.

"PCI IMAGE SETTINGS"

"CONFIGURE BRIDGE FOR NORMAL TARGET READ/WRITE"

Following testcases are for configuring erroneous WB writes and reads through
MEMORY IMAGEs. Task location for testcases is: run_tests –> test_pci_image –>
test_wb_error_wr.

"CONFIGURE BRIDGE FOR ERROR TERMINATED WRITES THROUGH PCI
TARGET UNIT"

"CLEARING STATUS BITS AFTER WRITE TERMINATED WITH ERROR ON WB"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 69

"INTERRUPT REQUEST FINISHED AFTER PCI ERROR INTERRUPT STATUS IS
CLEARED"

"CONFIGURE BRIDGE FOR ERROR TERMINATED READS THROUGH PCI
TARGET UNIT"

"DISABLE IMAGE"

Following testcases are for configuring normal writes and reads through I/O IMAGEs.
Task location for testcases is: run_tests –> test_pci_image.

"PCI IMAGE SETTINGS"

"ENABLE/DISABLE ADDRESS TRANSLATION"

Following testcases are for configuring erroneous writes and reads through I/O IMAGEs.
Task location for testcases is: run_tests –> test_wb_error_rd.

"ENABLE/DISABLE ADDRESS TRANSLATION"

"ENABLE/DISABLE ERROR REPORTING"

"ENABLE/DISABLE PCI ERROR INTERRUPTS"

"CLEAR ERROR STATUS"

"CLEARING INTERRUPT STATUS"

"CONFIGURE BRIDGE FOR ERROR TERMINATED READS THROUGH PCI
TARGET UNIT"

"DISABLE IMAGE"

Following testcases are for configuring fast back-to-back writes and reads through
IMAGEs. Task location for testcases is: run_tests –> target_fast_back_to_back.

"CONFIGURE TARGET FOR FAST B2B TESTING"

"DISABLING MEM IMAGE"

"DISABLING IO IMAGE"

Following testcases are for configuring target disconnects on PCI writes and reads
through IMAGEs. Task location for testcases is: run_tests –> target_disconnects.

"CONFIGURE TARGET FOR DISCONNECT TESTING"

"DISABLING MEMORY IMAGE"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 70

"DISABLING IO IMAGE"

Following testcases are for configuring target aborts on PCI writes and reads through I/O
IMAGEs. Task location for testcases is: run_tests –> test_target_abort.
"CONFIGURE TARGET FOR TARGET ABORT TESTING"

"DISABLE IMAGE"

Following testcases are for configuring transaction ordering during writes and reads
through WBU and PCIU simultaneously. Task location for testcase is: run_tests –>
transaction_ordering.

"BRIDGE CONFIGURATION FOR TRANSACTION ORDERING TESTS"

3.4.2.2 Testcases for IMAGEs Tests

Following testcases are for testing normal writes and reads through MEMORY IMAGEs
(singles and bursts). Task location for testcases is: run_tests –> test_pci_image –>
test_normal_wr_rd.

"NORMAL POSTED WRITE THROUGH PCI TARGET UNIT"

"NORMAL MEMORY READ THROUGH PCI TARGET UNIT"

Following testcases are for testing erroneous WB writes and reads through MEMORY
IMAGEs (singles and bursts). Task location for testcases is: run_tests –>
test_pci_image –> test_wb_error_wr.

"POSTED WRITE THROUGH PCI TARGET ERROR TERMINATION ON WB ON
FIRST TRANSFER"

"POSTED WRITE THROUGH PCI TARGET ERROR TERMINATION ON WB ONE
BEFORE LAST TRANSFER"

"POSTED WRITE THROUGH PCI TARGET ERROR TERMINATION ON WB ON
LAST TRANSFER"

"SINGLE READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE"

"BURST READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE ON FIRST DATAPHASE"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 71

"BURST READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE ON SECOND DATAPHASE"

"BURST READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE ON LAST DATAPHASE"

"BURST READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE ON ONE BEFORE LAST DATAPHASE"

"FULL FIFO BURST READ THROUGH PCI TARGET TERMINATED WITH
ERROR ON WISHBONE ON LAST DATAPHASE"

"FULL FIFO BURST READ THROUGH PCI TARGET TERMINATED WITH
ERROR ON WISHBONE BEFORE LAST DATAPHASE"

"BURST READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE, ERROR NOT PULLED OUT ON PCI"

Following testcases are for testing normal writes and reads through I/O IMAGEs. Task
location for testcases is: run_tests –> test_pci_image –> test_target_io_wr_rd.

"BYTE ADDRESSABLE WRITES THROUGH TARGET IO IMAGE"

"READ BY WORDS IO DATA PREVIOUSLY WRITTEN BY BYTES"

Following testcases are for testing erroneous writes and reads through I/O IMAGEs. Task
location for testcases is: run_tests –> test_pci_image –> test_target_io_err_wr.

"POST IO WRITE THAT WILL BE TERMINATED WITH ERROR ON WISHBONE"

"SINGLE I/O READ THROUGH PCI TARGET TERMINATED WITH ERROR ON
WISHBONE"

Following testcases are for testing NO target response (master abort) on unsupported PCI
bus commands. Task location for testcases is: run_tests –> test_pci_image –>
target_unsupported_cmds.

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - IACK"

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - SPECIAL"

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - RESERVED0"

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - RESERVED1"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 72

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - RESERVED2"

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - RESERVED3"

"MASTER ABORT WHEN ACCESSING TARGET WITH UNSUPPORTED BUS
COMMAND - DUAL_ADDR_CYC"

Following testcases are for testing fast back-to-back writes and reads through IMAGEs.
Task location for testcases is: run_tests –> target_fast_back_to_back.

"FAST BACK TO BACK THROUGH TARGET - FILL WRITE FIFO, CHECK
RETRY ON FAST B2B WRITE"

"FAST BACK TO BACK THROUGH TARGET - BOTH WRITES SMALL ENOUGH
TO PROCEEDE THROUGH FIFO"

"FAST BACK TO BACK THROUGH TARGET - FIRST WRITE FULL FIFO, THEN
READ BACK"

"FAST BACK TO BACK THROUGH TARGET - TWO SINGLE IO WRITES"

"FAST BACK TO BACK THROUGH TARGET - FIRST I/O WRITE, THEN READ
BACK"

Following testcases are for testing target disconnects on PCI writes and reads through
IMAGEs. Task location for testcases is: run_tests –> target_disconnects.

"TARGET DISCONNECT ON BURST WRITE TO CONFIGURATION SPACE"

"TARGET DISCONNECT ON BURST READ FROM CONFIGURATION SPACE"

"TARGET DISCONNECT WHEN WRITE FIFO FILLED DURING BURST WRITE"

"TARGET DISCONNECT WHEN READ FIFO IS EMPTIED DURING BURST
READ"

"TARGET DISCONNECT ON WRITES WITH UNSUPPORTED WRAPING MODES"

"TARGET DISCONNECT ON READS WITH UNSUPPORTED WRAPING MODES"

"TARGET DISCONNECT ON BURST WRITE TO IO SPACE"

"TARGET DISCONNECT ON BURST READ TO IO SPACE"

Following testcases are for testing target aborts on PCI writes and reads through I/O
IMAGEs. Task location for testcase is: run_tests –> test_target_abort.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 73

"TARGET ABORT SIGNALING ON I/O ACCESSES WITH INVALID
ADDRESS/BYTE ENABLE COMBINATION"

Following testcases are for testing transaction ordering during writes and reads through
WBU and PCIU simultaneously. Task location for testcases is: run_tests –>
transaction_ordering.

"SIMULTANEOUS WRITE REFERENCE TO WB SLAVE AND PCI TARGET"

"SIMULTANEOUS WRITE REFERENCE TO PCI TARGET AND WB SLAVE"

"SIMULTANEOUS MULTI BEAT WRITES THROUGH WB SLAVE AND PCI
TARGET"

"SIMULTANEOUS MULTI BEAT WRITE REFERENCE TO PCI TARGET AND WB
SLAVE"

"ORDERING OF TRANSACTIONS MOVING IN SAME DIRECTION - WRITE
THROUGH WB SLAVE, READ THROUGH PCI TARGET"

"ORDERING OF TRANSACTIONS MOVING IN SAME DIRECTION - WRITE
THROUGH PCI TARGET, READ THROUGH WB SLAVE"

3.4.2.3 Testcases for Verification

Following testcase is for testing normal writes and reads through IMAGEs. Task location
for testcase is: run_tests –> test_pci_image –> test_normal_wr_rd.

"PCI ERROR STATUS AFTER NORMAL WRITE/READ"

Following testcases are for testing erroneous PCI writes and reads through MEMORY
IMAGEs. Task location for testcases is: run_tests –> test_pci_image –>
test_wb_error_wr.

"PCI ERROR CONTROL AND STATUS REGISTER VALUE AFTER WRITE
TERMINATED WITH ERROR"

"PCI ERRONEOUS DATA REGISTER VALUE AFTER WRITE TERMINATED
WITH ERROR ON WB"

"PCI ERRONEOUS ADDRESS REGISTER VALUE AFTER WRITE TERMINATED
WITH ERROR ON WB"

"INTERRUPT ASSERTION AND STATUS AFTER WRITE TERMINATED WITH
ERROR ON WB"

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 74

"PCI DEVICE STATUS REGISTER VALUE AFTER TARGET ABORT"

"PCI ERROR CONTROL AND STATUS REGISTER VALUE AFTER READ
THROUGH TARGET TERMINATED WITH TARGET ABORT"

"ALL PCI DEVICE STATUSES AFTER ERRONEOUS TARGET READS"

Following testcases are for testing erroneous writes and reads through I/O IMAGEs. Task
location for testcase is: run_tests –> test_pci_image –> test_target_io_err_wr.

"INTERRUPT REQUEST ASSERTION AFTER ERROR TERMINATED WRITE ON
WISHBONE"

"ERROR STATUS REGISTER VALUE CHECK AFTER ERROR TERMINATED
POSTED IO WRITE ON WISHBONE"

"ERRONEOUS ADDRESS AND DATA REGISTERS' VALUES CHECK AFTER
WRITE TERMINATED WITH ERROR ON WISHBONE"

"INTERRUPT STATUS REGISTER VALUE AFTER ERROR TERMINATED WRITE
ON WISHBONE"

"INTERRUPT REQUEST DEASSERTION AFTER CLEARING INTERRUPT
STATUS"

"PCI DEVICE STATUS REGISTER VALUE AFTER TARGET ABORT"

"PCI ERROR CONTROL AND STATUS REGISTER VALUE AFTER READ
THROUGH TARGET TERMINATED WITH TARGET ABORT"

Following testcases are for testing target aborts on PCI writes and reads through I/O
IMAGEs. Task location for testcase is: run_tests –> test_target_abort.
"PCI DEVICE STATUS REGISTER VALUE AFTER TARGET ABORT"

"ERROR CONTROL AND STATUS REGISTER VALUE CHECK AFTER TARGET
ABORTS"

3.5 Testbench Constants

There are three files with constants for whole testbench. Two of them are for behavioral
models of Blue Beaver, pci_blue_options.vh and pci_blue_constants.vh. There were
some additional lines added into this two files so we can use all features needed for

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 75

testing PCI Bridge. The third file, for testbench and other behavioral models, is
pci_testbench_defines.v.

All constants in all three files are set to test “all” possible combinations on WB and/or
PCI buses. So none of those constants should be changed (see chapter 3.5.2
Unchangeable Testbench Constants), except those mentioned below (see chapter 3.5.1
Changeable Testbench Constants). All constants described are from
pci_testbench_defines.v file.

3.5.1 Changeable Testbench Constants

Constants written in a pci_testbench_defines.v file under section ‘Changeable testbench
defines (constants)’ are described herein.

Following define affects the execution of the testbench:

• STOP_ON_FAILURE – if defined, testbench will stop when a testcase fails.
Value in the following define affects a ratio of WB to PCI clocks:

• WB_FREQ – number defined here defines WB clock frequency in GHz (e.g.
0.025 = 25 MHz). PCI clock is fixed (33 MHz).

Following constants can be changed, but must be very carefully set. IMAGEs are NOT
allowed to interleave on a PCI bus. See PCI IP Core Specification document for more
details on how to set IMAGEs.

Values in following defines define base addresses of implemented PCI IP Core IMAGEs:

• TAR0_BASE_ADDR_0, TAR0_BASE_ADDR_1, TAR0_BASE_ADDR_2,
TAR0_BASE_ADDR_3, TAR0_BASE_ADDR_4, TAR0_BASE_ADDR_5 –
numbers defined here define 32 bit values for each PCI IMAGE’s base address.
They are written into PCI Bridge during initialization.

Which base addresses are implemented and the number of valid MSBits depend
on changeable constants (NO_CNF_IMAGE, PCI_IMAGE0, PCI_IMAGE2 – 5
and PCI_NUM_OF_DEC_ADDR_LINES) described in a chapter 2.4.7 PCI
images’ implementation constants.

Values in following defines define address masks of implemented PCI IP Core IMAGEs:

• TAR0_ADDR_MASK_0, TAR0_ADDR_MASK_1, TAR0_ADDR_MASK_2,
TAR0_ADDR_MASK_3, TAR0_ADDR_MASK_4, TAR0_ADDR_MASK_5 –
numbers defined here define 32 bit values for each PCI IMAGE’s address mask.
This defines the size of each IMAGE. They are written into PCI Bridge during
initialization.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 76

Which address masks are implemented and the number of valid MSBits depend
on changeable constants (NO_CNF_IMAGE, PCI_IMAGE0, PCI_IMAGE2 – 5
and PCI_NUM_OF_DEC_ADDR_LINES) described in a chapter 2.4.7 PCI
images’ implementation constants.

Values in following defines define translation addresses of implemented PCI IP Core
IMAGEs:

• TAR0_TRAN_ADDR_0, TAR0_TRAN_ADDR_1, TAR0_TRAN_ADDR_2,
TAR0_TRAN_ADDR_3, TAR0_TRAN_ADDR_4, TAR0_TRAN_ADDR_5 –
numbers defined here define 32 bit values for each PCI IMAGE’s translation
address. This defines how base address is translated from PCI to WB side. They
are written into PCI Bridge during initialization.

Which translation addresses are implemented and the number of valid MSBits
depend on changeable constants (NO_CNF_IMAGE, PCI_IMAGE0,
PCI_IMAGE2 – 5 and PCI_NUM_OF_DEC_ADDR_LINES) described in a
chapter 2.4.7 PCI images’ implementation constants.

Values in following defines define starting and ending base addresses of behavioral PCI
target IMAGEs:

• BEH_TAR1_MEM_START, BEH_TAR1_MEM_END – numbers defined here
define 32 bit values for starting and ending base addresses of PCI MEMORY
IMAGE. They are written into behavioral PCI device 1 during initialization.

• BEH_TAR1_IO_START, BEH_TAR1_IO_END – numbers defined here define
32 bit values for starting and ending base addresses of PCI IO IMAGE. They are
written into behavioral PCI device 1 during initialization.

• BEH_TAR2_MEM_START, BEH_TAR2_MEM_END – numbers defined here
define 32 bit values for starting and ending base addresses of PCI MEMORY
IMAGE. They are written into behavioral PCI device 2 during initialization.

• BEH_TAR2_IO_START, BEH_TAR2_IO_END – numbers defined here define
32 bit values for starting and ending base addresses of PCI IO IMAGE. They are
written into behavioral PCI device 2 during initialization.

3.5.2 Unchangeable Testbench Constants

Constants written in a pci_testbench_defines.v file under section ‘User-unchangeable
testbench defines (constants)’ are mentioned herein. Basic descriptions can be found in a
file where they are defined.

OpenCores PCI IP Core Design document 28.1.2002

http://www.opencores.org Rev 0.1 77

Index
This section contains an alphabetical list of helpful document entries with their
corresponding page numbers.

	Introduction
	PCI IP Core Introduction
	PCI IP Core Features
	PCI IP Core Directory Structure

	PCI Bridge Core
	Overview
	Core File Hierarchy
	Core Module Hierarchy

	Description of Core Modules
	Description of general core submodules
	Description of PCI I/O submodules
	pci_io_mux submodule
	cur_out_reg submodule
	pci_in_reg submodule
	pci_rst_int submodule
	pci_parity_check submodule

	Description of WB slave Unit submodules
	wb_slave.v
	wb_addr_mux.v
	wbw_wbr_fifos.v
	delayed_write_reg.v
	conf_cyc_addr_dec.v
	pci_master32_sm_if.v
	pci_master32_sm.v

	Description of PCI target Unit submodules
	pci_target32_sm.v & pci_target32_interface.v
	pciw_pcir_fifos.v
	wb_master.v

	Description of Configuration space submodules

	Changeable Core Constants
	Fifo size constants
	Fifo RAM instantiation Constants
	PCI I/O Pads constants
	HOST / GUEST implementation selection
	Image implementation constants
	Optional Read-Only Configuration image implementation
	PCI images’ implementation constants
	WISHBONE images’ implementation constants
	WISHBONE Slave specific constants
	PCI specific constants
	WISHBONE Master specific constants

	Changeable constants dependencies
	Unchangeable Core Constants
	Fifo constants
	WISHBONE Slave constants
	Configuration registers’ address constants
	66Mhz Capable bit constant

	PCI Bridge Testbench
	Overview
	Testbench File Hierarchy
	Testbench Module Hierarchy

	Description of Testbench Modules
	Description of PCI submodules
	pci_bus_monitor submodule
	pci_blue_arbiter submodule
	pci_behavioral_device submodule
	pci_behavioral_iack_target submodule
	pci_unsupported_commands_master submodule

	Description of WB submodules
	wb_bus_monitor submodule
	wb_master_behavioral submodule
	wb_slave_behavioral submodule

	Description of Testcases
	Description of WBU Testcases
	Testcases for Configuration
	Testcases for IMAGEs Tests
	Testcases for Verification

	Description of PCIU Testcases
	Testcases for Configuration
	Testcases for IMAGEs Tests
	Testcases for Verification

	Testbench Constants
	Changeable Testbench Constants
	Unchangeable Testbench Constants

