
OpenCores PCI IP Core Specification 16.7.2004

PCI IP Core
Specification

Authors: Miha Dolenc & Tadej Markovic

mihad@opencores.org

tadej@opencores.org

Rev. 1.2

July 16, 2004

OpenCores PCI IP Core Specification 16.7.2004

This page has been intentionally left blank.

http://www.opencores.org i Rev 1.2 i

OpenCores PCI IP Core Specification 16.7.2004

Revision History

 i

Rev. Date Author Description
0.0 5/1/01 Miha Dolenc

Tadej Markovic
First Draft

0.1 5/8/01 Miha Dolenc
Tadej Markovic

Waveforms added for WISHBONE slave

0.2 5/15/01 Miha Dolenc
Tadej Markovic

Detailed description of FIFO added, Operation of

target
0.3 5/22/01 Miha Dolenc

Tadej Markovic
FIFO structure changed

0.4 10/13/01 Jeanne
Wiegelmann

First review

0.5 10/20/01 Miha Dolenc
Tadej Markovic

Updated register descriptions and Configuration
Space access

0.6 01/28/02 Miha Dolenc
Tadej Markovic

Updated descriptions and added Software
obligations

0.8 12/09/03 Miha Dolenc Added new defines descriptions. Added
WISHBONE Slave B3 description.

1.0 12/10/2003 Miha Dolenc Moved and updated Software Obligations to

1.1 12/11/2003 Miha Dolenc Added CompactPCI Hot Swap support descriptions.
1.2 01/09/2004 Miha Dolenc Added Serial Power On Configuration interface

description.

PCI target unit added, Waveforms added for PCI

Initialization and reconfiguration chapter.

http://www.opencores.org Rev 1.2 ii

OpenCores PCI IP Core Specification 16.7.2004

List of Contents
INTRODUCTION .. 1

1.1. WHAT IS A PCI BRIDGE?.. 1
1.2. PCI IP CORE INTRODUCTION .. 1
1.3. PCI IP CORE FEATURES .. 1

ARCHITECTURE...3
2.1. OVERVIEW.. 3
2.2. WISHBONE SLAVE UNIT... 4

2.2.1. WISHBONE Slave Unit Architecture.. 5
2.2.1.1 WISHBONE Slave Module..5
2.2.1.2 WBW_FIFO ...5
2.2.1.3 WBR_FIFO...6
2.2.1.4 PCI Master Module..6

2.3. PCI TARGET UNIT .. 6
2.3.1. PCI Target Unit Architecture... 7

2.3.1.1 PCI Target Module ..7
2.3.1.2 PCIR_FIFO ..7
2.3.1.3 WISHBONE Master Module...8

2.4. CLOCKS ... 8
2.5. FIFO ... 8
2.6. ADDRESS TRANSLATION LOGIC.. 10

2.6.1. Description of Address Translation Logic.. 10
OPERATION... 12

3.1. INITIALIZATION... 12
3.1.1. Initialization for GUEST implementation.. 12
3.1.2. Initialization for HOST implementation... 12
3.1.3. Changing the configuration in operational mode.. 13

3.2. CONFIGURATION SPACE .. 14
3.2.1. Configuration Space Access for Host Bus Bridges .. 15
3.2.2. Configuration Space Access for Guest Bridges.. 16
3.2.3. Configuration Cycles ... 17
3.2.4. Generating Configuration Cycles.. 18
3.2.5. Generating Interrupt Acknowledge Cycles.. 20

3.3. WISHBONE SLAVE UNIT... 20
3.3.1. WISHBONE Slave Unit Functionality .. 21

3.3.1.1 WISHBONE Slave Module..21
3.3.1.2 WBW_FIFO ...21
3.3.1.3 WBR_FIFO...21
3.3.1.4 PCI Master Module..21

3.3.2. Addressing and Images of the WISHBONE Slave Unit .. 22
3.3.3. WISHBONE to PCI Write Cycles... 23
3.3.4. WISHBONE to PCI Read Cycles.. 24
3.3.5. WISHBONE SoC Interconnection Rev. B3 support .. 27

3.4. PCI TARGET UNIT .. 28
3.4.1. PCI Target Unit Functionality ... 28

3.4.1.1 PCI Target Module ..28
3.4.1.2 PCIW_FIFO ...28
3.4.1.3 PCIR_FIFO ..29
3.4.1.4 WISHBONE Master Module...29

http://www.opencores.org Rev 1.2 iv

OpenCores PCI IP Core Specification 16.7.2004

3.4.2. Addressing and Images of the PCI Target Unit ... 29
3.4.3. PCI to WISHBONE Write Cycles... 30
3.4.4. PCI to WISHBONE Read Cycles.. 33
3.4.5. WISHBONE SoC Interconnection Rev. B3 support .. 34

3.5. TRANSACTION ORDERING... 35
3.6. PCI BUS PARITY GENERATION AND CHECKING .. 36
3.7. INTERRUPTS ... 36
3.8. COMPACT PCI HOT SWAP SUPPORT ... 37

3.8.1. LED# output functional description... 37
3.8.2. ENUM# output functional description .. 38
3.8.3. Handle Switch input functional description .. 38
3.8.4. PCI Device Status Register ... 39
3.8.5. Capabilities Pointer .. 39
3.8.6. Hot Swap Control and Status Register.. 39

3.9. SERIAL POWER ON CONFIGURATION INTERFACE... 40
3.9.1. Serial EPROM Configuration Data Organization ... 41
3.9.2. Power On Configuration Sequence... 43
3.9.3. Serial EPROM Control and Status Register .. 44
3.9.4. Initiating EPROM Byte Write Sequence .. 45
3.9.5. Initiating EPROM Byte Read Sequence ... 46

REGISTERS... 48
4.1. REGISTER LIST AND DESCRIPTION... 48

4.1.1. WISHBONE Slave Unit Control & Status... 51
4.1.1.1 WISHBONE Configuration Space BAR..51
4.1.1.2 WISHBONE Image Control and Address Registers..52

4.1.2. PCI Target Unit Control & Status.. 55
4.1.2.1 PCI Image Control and Address Registers...60

4.1.3. Reporting Registers ... 64
4.1.3.1 WISHBONE Slave Unit Error Reporting Registers...64
4.1.3.2 PCI Target Unit Error Reporting Registers ...66
4.1.3.3 Configuration Cycle Generation Registers ...68
4.1.3.4 Interrupt Acknowledge Cycle Generation Register ..69

4.1.4. Interrupt Control & Status Registers .. 70
IO PORTS .. 74

5.1. PCI INTERFACE... 74
5.2. WISHBONE SLAVE INTERFACE.. 76
5.3. WISHBONE MASTER INTERFACE .. 77
5.4. SERIAL POWER ON CONFIGURATION INTERFACE... 78

WAVEFORMS.. 79
6.1. WISHBONE SLAVE UNIT... 79

6.1.1. WISHBONE Configuration Accesses ... 79
6.1.2. WISHBONE to PCI Accesses ... 81
6.1.3. PCI Cycles ... 81
6.1.4. PCI Terminations .. 84

6.1.4.1 Master Initiated Terminations ..84
6.1.4.2 Target Terminations Handled by PCI Master Module ...85

6.2. PCI TARGET UNIT .. 88
6.2.1. PCI Configuration Accesses .. 88
6.2.2. PCI to WISHBONE Accesses With WISHBONE Cycles.. 89
6.2.3. WISHBONE Terminations.. 91

APPENDIX A... 92

http://www.opencores.org Rev 1.2 v

OpenCores PCI IP Core Specification 16.7.2004

INDEX ... 99

http://www.opencores.org i Rev 1.2 v

OpenCores PCI IP Core Specification 16.7.2004

List of Tables

FIGURE 2.1: PCI BRIDGE CORE ARCHITECTURE ..4

FIGURE 2.6: ADDRESS TRANSLATION LOGIC..11

TABLE 3.1: VALUE ON AD[31:11] PCI BUS LINES DURING ADDRESS PHASE OF
CONFIGURATION CYCLE TYPE 0 .. 19

TABLE 3.2: GENERATION OF BYTE ADDRESS FOR PCI I/O ACCESSES 23

TABLE 3.3: BUS COMMAND ENCODING FOR READ CYCLES THROUGH PCI MASTER
MODULE... 26

TABLE 3.4 - WISHBONE SLAVE REGISTERED FEEDBACK CYCLE TRANSLATION............. 27

FIGURE 3.5: PCI TARGET UNIT ARCHITECTURE OVERVIEW.. 28

EXAMPLE 3-3: ADDRESS RANGE OF PCI TARGET IMAGE ... 30

TABLE 3.5: VALID AD(1:0) AND BE# (3:0) COMBINATIONS FOR I/O MAPPED ADDRESS
SPACE ACCESSES .. 31

TABLE 3.6: BURST ORDERING COMBINATIONS FOR MEMORY MAPPED ADDRESS SPACE
ACCESSES ... 31

TABLE 3.7: BUS COMMAND ENCODING FOR READ CYCLES THROUGH PCI TARGET
MODULE... 33

TABLE 3.8 - WISHBONE MASTER REGISTERED FEEDBACK CYCLE SUPPORT.................... 35

FIGURE 3.6: HOT SWAP CONTROL AND STATUS REGISTER LAYOUT 39

TABLE 3.9: HOT SWAP CONTROL AND STATUS REGISTER FIELD DESCRIPTIONS........... 40

FIGURE 3.7: SERIAL EPROM DATA ORGANIZATION .. 42

FIGURE 3.8: 3.9.3. SERIAL EPROM CONTROL AND STATUS REGISTER LAYOUT............ 44

TABLE 3.10: SERIAL EPROM CONTROL AND STATUS REGISTER FIELDS............................. 45

TABLE 4.1: WISHBONE CONFIGURATION SPACE BASE ADDRESS REGISTER..................... 51

TABLE 4.2: WISHBONE IMAGE CONTROL REGISTER .. 52

TABLE 4.3: WISHBONE IMAGE CONTROL REGISTER BIT DESCRIPTIONS.......................... 52

TABLE 4.4: WISHBONE BASE ADDRESS REGISTER ... 53

http://www.opencores.org i Rev 1.2 vi

OpenCores PCI IP Core Specification 16.7.2004

TABLE 4.5: WISHBONE BASE ADDRESS REGISTER BIT DESCRIPTIONS............................... 53

TABLE 4.6: WISHBONE ADDRESS MASK REGISTER .. 53

TABLE 4.7: WISHBONE ADDRESS MASK REGISTER BIT DESCRIPTIONS 54

TABLE 4.8: WISHBONE TRANSLATION ADDRESS REGISTER .. 54

TABLE 4.9: WISHBONE TRANSLATION ADDRESS REGISTER BIT DESCRIPTIONS 55

TABLE 4.10: COMMAND REGISTER OF PCI CONFIGURATION HEADER............................... 58

TABLE 4.11: STATUS REGISTER OF PCI CONFIGURATION HEADER...................................... 59

TABLE 4.12: BASE ADDRESS REGISTER OF PCI CONFIGURATION HEADER FOR
MEMORY MAPPED SPACE.. 60

TABLE 4.13: BASE ADDRESS REGISTER OF PCI CONFIGURATION HEADER FOR I/O
MAPPED SPACE... 60

TABLE 4.14: PCI IMAGE0 BASE ADDRESS REGISTER ... 60

TABLE 4.15: PCI IMAGE CONTROL REGISTER .. 61

TABLE 4.16: PCI IMAGE CONTROL REGISTER BIT DESCRIPTIONS.. 61

TABLE 4.17: PCI BASE ADDRESS REGISTER ... 62

TABLE 4.18: PCI BASE ADDRESS REGISTER BIT DESCRIPTIONS... 62

TABLE 4.19: PCI ADDRESS MASK REGISTER .. 63

TABLE 4.20: PCI ADDRESS MASK REGISTER BIT DESCRIPTIONS.. 63

TABLE 4.21: PCI TRANSLATION ADDRESS REGISTER .. 63

TABLE 4.22: PCI TRANSLATION ADDRESS REGISTER BIT DESCRIPTIONS.......................... 64

TABLE 4.23: WISHBONE ERROR CONTROL AND STATUS REGISTER 64

TABLE 4.24: WISHBONE ERROR CONTROL AND STATUS REGISTER BIT DESCRIPTIONS
... 65

TABLE 4.25: WISHBONE ERRONEOUS ADDRESS REGISTER .. 66

TABLE 4.26: WISHBONE ERRONEOUS DATA REGISTER ... 66

TABLE 4.27: PCI ERROR CONTROL AND STATUS REGISTER.. 66

TABLE 4.28: PCI ERROR CONTROL AND STATUS REGISTER BIT DESCRIPTIONS 67

TABLE 4.29: PCI ERRONEOUS ADDRESS REGISTER.. 68

http://www.opencores.org i Rev 1.2 vii

OpenCores PCI IP Core Specification 16.7.2004

TABLE 4.30: PCI ERRONEOUS DATA REGISTER... 68

TABLE 4.31: CONFIGURATION ADDRESS REGISTER .. 68

TABLE 4.32: CONFIGURATION ADDRESS REGISTER BIT DESCRIPTIONS............................ 69

TABLE 4.33: CONFIGURATION DATA REGISTER ... 69

TABLE 4.34: INTERRUPT ACKNOWLEDGE REGISTER ... 70

TABLE 4.35: INTERRUPT CONTROL REGISTER... 70

TABLE 4.36: INTERRUPT CONTROL REGISTER BIT DESCRIPTIONS..................................... 71

TABLE 4.37: INTERRUPT STATUS REGISTER.. 71

TABLE 4.38: INTERRUPT STATUS REGISTER BIT DESCRIPTIONS... 72

TABLE 5.1: PCI INTERFACE.. 76

TABLE 5.2: WISHBONE SLAVE INTERFACE SIGNALS... 77

TABLE 6.1: USER USEFUL HARDWARE CONFIGURATION PARAMETERS............................. 98

http://www.opencores.org Rev 1.2 ix

OpenCores PCI IP Core Specification 16.7.2004

List of Figures & Examples

FIGURE 2.2: WISHBONE SLAVE UNIT ARCHITECTURE ..5

FIGURE 2.3: PCI TARGET UNIT ARCHITECTURE OVERVIEW..7

FIGURE 2.4: DETAILED DESCRIPTION OF FIFO REGISTER LINES ..8

FIGURE 2.5: FIFO ARCHITECTURE..9

FIGURE 3.1: PCI BRIDGE CONFIGURATION SPACE... 15

FIGURE 3.2: CONFIGURATION SPACE ACCESS FOR HOST BUS BRIDGES............................. 16

FIGURE 3.3: CONFIGURATION SPACE ACCESS FOR GUEST BRIDGES 17

FIGURE 3.4: WISHBONE SLAVE UNIT ARCHITECTURE OVERVIEW...................................... 21

EXAMPLE 3-1: ADDRESS RANGE OF WISHBONE SLAVE IMAGE.. 22

EXAMPLE 3-2: ADDRESS TRANSLATION .. 23

EXAMPLE 3-4: ADDRESS TRANSLATION .. 30

FIGURE 4.1: WISHBONE CONFIGURATION SPACE BASE ADDRESS REGISTER LAYOUT.. 51

FIGURE 4.2: WISHBONE IMAGE CONTROL REGISTER LAYOUT... 52

FIGURE 4.3: WISHBONE BASE ADDRESS REGISTER LAYOUT.. 53

FIGURE 4.4: WISHBONE ADDRESS MASK REGISTER LAYOUT ... 54

FIGURE 4.5: WISHBONE TRANSLATION ADDRESS REGISTER LAYOUT 55

FIGURE 4.6: PCI CONFIGURATION SPACE HEADER (HEADER TYPE 00H)........................... 56

FIGURE 4.7: PCI IMAGE0 BASE ADDRESS REGISTER LAYOUT – IMAGE0 USED FOR
ACCESSING THE PCI CONFIGURATION SPACE... 61

FIGURE 4.8: PCI IMAGE CONTROL REGISTER LAYOUT .. 61

FIGURE 4.9: PCI BASE ADDRESS REGISTER LAYOUT.. 62

FIGURE 4.10: PCI ADDRESS MASK REGISTER LAYOUT ... 63

FIGURE 4.11: PCI TRANSLATION ADDRESS REGISTER LAYOUT ... 64

FIGURE 4.12: WISHBONE ERROR CONTROL AND STATUS REGISTER LAYOUT................. 65

http://www.opencores.org Rev 1.2 x

OpenCores PCI IP Core Specification 16.7.2004

FIGURE 4.13: PCI ERROR CONTROL AND STATUS REGISTER LAYOUT................................. 67

FIGURE 4.14: CONFIGURATION ADDRESS REGISTER LAYOUT... 69

FIGURE 4.15: INTERRUPT CONTROL REGISTER LAYOUT.. 70

FIGURE 4.16: INTERRUPT STATUS REGISTER LAYOUT... 72

FIGURE 6.1: WISHBONE CONFIGURATION READ CYCLE... 79

FIGURE 6.2: WISHBONE CONFIGURATION WRITE CYCLE .. 80

FIGURE 6.3: WISHBONE CONFIGURATION RMW CYCLE.. 80

FIGURE 6.4: WISHBONE ACCESS TO PCI ADDRESS SPACE.. 81

FIGURE 6.5: PCI SINGLE READ CYCLE.. 82

FIGURE 6.6: PCI SINGLE WRITE.. 82

FIGURE 6.7: PCI BURST READ CYCLE.. 83

FIGURE 6.8: PCI BURST WRITE CYCLE ... 83

FIGURE 6.9: MASTER ABORT TERMINATION... 84

FIGURE 6.10: TIMEOUT TERMINATION... 85

FIGURE 6.11: TARGET ABORT.. 85

FIGURE 6.12: TARGET RETRY.. 86

FIGURE 6.13: TARGET DISCONNECT WITHOUT DATA .. 87

FIGURE 6.14: TARGET DISCONNECT WITH DATA... 87

FIGURE 6.15: PCI CONFIGURATION READ CYCLE .. 88

FIGURE 6.16: PCI CONFIGURATION WRITE CYCLE .. 88

FIGURE 6.17: PCI TARGET READ CYCLE... 89

FIGURE 6.18: PCI TO WISHBONE READ CYCLE .. 89

FIGURE 6.19: PCI INITIATOR TO TARGET BURST READ CYCLE.. 90

FIGURE 6.20: PCI INITIATOR TO TARGET BURST WRITE CYCLE ... 90

FIGURE 6.21: WISHBONE WRITE TRANSFER CAUSED BY PCI TO WISHBONE WRITE
CYCLE.. 90

FIGURE 6.22: RETRY ON WISHBONE BUS CAUSED BY PCI TO WISHBONE TRANSFER.... 91

http://www.opencores.org i Rev 1.2 x

OpenCores PCI IP Core Specification 16.7.2004

FIGURE 6.23: ERROR ON WISHBONE BUS CAUSED BY PCI TO WISHBONE TRANSFER ... 91

http://www.opencores.org i Rev 1.2 xi

OpenCores PCI IP Core Specification 16.7.2004

1.
Introduction

1.1. What is a PCI Bridge?
PCI bridges are used in applications and devices that want to utilize resources provided on a PCI
local bus. Systems that have multiple buses must – to enable communication between them –
provide an interface that connects the internal buses to the PCI local bus. PCI bridges provide such
an interface.

1.2. PCI IP Core Introduction
The PCI IP core (PCI bridge) provides an interface between the WISHBONE SoC bus and the PCI
local bus. It consists of two independent units, one handling transactions originating on the PCI bus,
the other one handling transactions originating on the WISHBONE bus.

The core has been designed to offer as much flexibility as possible to all kinds of applications.

1.3. PCI IP Core Features
The following lists the main features of the PCI IP core:

 32-bit PCI interface

 Fully PCI 2.2 compliant (with 66 MHz PCI specification)

 Separated initiator and target functional blocks

 Supported initiator commands and functions:

 Memory Read, Memory Write

http://www.opencores.org Rev 1.2 1

OpenCores PCI IP Core Specification 16.7.2004

 Memory Read Multiple (MRM)

 Memory Read Line (MRL)

 I/O Read, I/O Write

 Configuration Read, Configuration Write

 Bus Parking

 Interrupt Acknowledge

 Host Bridging

 Supported target commands and functions:

 Type 0 Configuration Space Header

(Type 0 is used to configure agents on the same bus segment)

(Type 1 is used to configure across PCI-to-PCI bridges) Parity Generation (PAR), Parity
Error Detection (PERR# and SERR#)

 Memory Read, Memory Write

 Memory Read Multiple (MRM)

 Memory Read Line (MRL)

 Memory Write and Invalidate (MWI)

 I/O Read, I/O Write

 Configuration Read, Configuration Write

 Target Abort, Target Retry, Target Disconnect

 Fast Back-to-Back Capable Target response

 Full Command/Status registers

 WISHBONE SoC Interconnection Rev. B compliant interface on processor side (master with
Target PCI and slave with Initiator PCI interface)

 Configurable on-chip FIFOs

http://www.opencores.org Rev 1.2 2

OpenCores PCI IP Core Specification 16.7.2004

2.
Architecture

2.1. Overview
The PCI bridge consists of two units: the PCI target unit and the WISHBONE slave unit. Each
holds its own set of functions to support bridging operations from WISHBONE to PCI and from
PCI to WISHBONE. The WISHBONE slave unit acts as a slave on the WISHBONE side of the
bridge and initiates transactions as a master on the PCI bus. The PCI target unit acts as a target on
the PCI side of the bridge and as a master on its WISHBONE side. Both units operate independently
of each other. The PCI target unit implements the target interface on the PCI bus and the master
interface on the WISHBONE bus, the WISHBONE slave unit implements the slave interface on the
WISHBONE bus and the master interface on the PCI bus.

The PCI interface is PCI Specification 2.2 compliant, whereas the WISHBONE is WISHBONE SoC
Interconnection architecture Specification Rev. B compliant. The WISHBONE implementation carries out
32-bit bus operations and does not support other bus widths.

Following figure gives an overview of the PCI bridge core architecture.

http://www.opencores.org Rev 1.2 3

OpenCores PCI IP Core Specification 16.7.2004

WBR_FIFO

WBW_FIFO
WISHBONE

SLAVE
MODULE

PCI
MASTER
MODULE

PCI
TARGET
MODULE

PCI BUS
INTERFACE

WISHBONE
BUS SLAVE
INTERFACE

WISHBONE
BUS

MASTER
INTERFACE

PCIW_FIFO

PCIR_FIFO WISHBONE
MASTER
MODULE

PCI TARGET CONFIGURATION &
STATUS REGISTERS

WB SLAVE CONFIGURATION &
STATUS REGISTERS

WISHBONE SLAVE

PCI TARGET

Figure 2.1: PCI bridge core architecture

2.2. WISHBONE Slave Unit
The WISHBONE bus agents can access the PCI bus through the WISHBONE slave unit. One to
five configurable images can be used to access the PCI address space.

Each image consists of:

 Base address register

 Address mask register

 Translation address register

 Image control register

 Decoder

The Base address, stored in the Base Address register, is masked with a value stored in the Address
Mask register. The decoder compares the masked WISHBONE bus address with the masked base
address to identify valid WISHBONE cycles. If needed, the WISHBONE address can be translated
to a different value before accessing the PCI bus. The value for an address to be presented on the
PCI bus is stored in the Address Translation register. The Image Control register is used to control
the behavior of an image.

Each image can be configured to access memory or I/O address space on the PCI bus.

Write cycles through the WB slave unit are processed as Posted Writes and Read cycles as delayed
reads. Reads can also be pre-fetched if the image accessed is configured properly. The only exception

http://www.opencores.org Rev 1.2 4

OpenCores PCI IP Core Specification 16.7.2004

to that rule is Configuration Write, which is initiated by a special mechanism and therefore described
separately in subsequent chapters.

The WISHBONE Write FIFO (WBW_FIFO) is used to post writes performed on the WISHBONE
bus; the WISHBONE Read FIFO (WBR_FIFO) accumulates pre-fetched reads. The WISHBONE
slave unit connects to WISHBONE masters by acting as a slave.

This section describes the architecture of a WISHBONE slave unit and is divided into subsections.

2.2.1. WISHBONE Slave Unit Architecture
The WISHBONE slave unit consists of a few functional parts allowing the WISHBONE master to
perform Read/Write access to the PCI bus. The following sections provide detailed descriptions.

WBW_FIFO
Parameterized

depth

PC
I M

A
ST

ER
M

O
D

U
L

PC
I B

U
S

PC
I

TA
R

G
ET

Address

WISHBONE slave unit

W
IS

H
B

O
N

E
SL

A
VE

 M
O

D
U

L

WBR_FIFO
Parameterized

depth

Write Data

Read Data

Master control

Slave control

W
IS

H
B

O
N

E
M

A
ST

ER

Figure 2.2: WISHBONE slave unit architecture

2.2.1.1 WISHBONE Slave Module
The WISHBONE slave module, which includes one to six image units, is a 32-bit WISHBONE slave
interface as defined in WISHBONE Specification Rev. 1B. It handles Read/Write cycles to images of
PCI address space and configuration space accesses.

2.2.1.2 WBW_FIFO
The WISHBONE slave module uses WBW_FIFO (WISHBONE Write FIFO) for posting memory
and I/O Write cycles performed by the WISHBONE master. Parameterized depth provides the
option to define the WBW_FIFO with regard to application specific needs for posting more or less
Write cycles.

http://www.opencores.org Rev 1.2 5

OpenCores PCI IP Core Specification 16.7.2004

The WISHBONE bus determines the speed of Write cycles to the WBW_FIFO, whereas the PCI
bus regulates the speed of Write cycles from the WBW_FIFO.

2.2.1.3 WBR_FIFO
The WISHBONE slave module uses WBR_FIFO (WISHBONE Read FIFO) for storing data read
from PCI targets.

The PCI bus determines the speed of Read cycles to the WBR_FIFO, and the WISHBONE bus
regulates the speed of Read cycles from the WBR_FIFO.

2.2.1.4 PCI Master Module
The PCI master module uses information provided by the WISHBONE slave module to perform
PCI bus cycles. It is a 32-bit/66MHz (33MHz in FPGA), PCI Local Bus Specification Rev. 2.2
compliant initiator interface.

2.3. PCI Target Unit
PCI agents can access the WISHBONE bus through the PCI target unit of the bridge, which
provides one to six images of the WISHBONE side memory space. Each image is selected by an
address provided during the address phase on the PCI bus. It is compared to the base address
masked with a mask value stored in PCI Configuration registers and can be mapped into the memory
or I/O space. An address can also be translated to a value stored in the Translation Address register
if the image is properly configured.

Write cycles through the PCI target unit are handled as Posted Writes. Read cycles and can be pre-
fetched.

The PCIW_FIFO stores Posted Write cycles; the PCIR_FIFO saves pre-fetched Read cycles.

http://www.opencores.org Rev 1.2 6

OpenCores PCI IP Core Specification 16.7.2004

2.3.1. PCI Target Unit Architecture
This part describes the architecture of the PCI target unit. The following sections provide detailed
descriptions.

PCIR_FIFO
Parameterized

depth

PC
I T

A
R

G
ET

M
O

D
U

L

PC
I B

U
S

PC
I

IN
IT

IA
TO

R

Address

PCI target unit

W
IS

H
B

O
N

E
M

A
ST

ER
 M

O
D

U
L

PCIW_FIFO
Parameterized

depth

Write Data

Read Data

Master control

Slave control W
IS

H
B

O
N

E
SL

A
VE

Figure 2.3: PCI target unit architecture overview

The PCI target unit consists of a few functional parts allowing PCI initiators to perform Read/Write
accesses to the WISHBONE bus.

The PCI target module is a 32-bit/66MHz (33MHz in FPGA), PCI Local Bus Specification Rev. 2.2
compliant target interface that includes two to six image units for address translation from the PCI
bus. Therefore, it handles Read/Write cycles to images of WISHBONE address space and
configuration space accesses.

2.3.1.1 PCI Target Module
The PCI target module uses PCIW_FIFO (PCI Write FIFO) for posting memory and I/O Write
cycles performed by the PCI initiator. Parameterized depth provides the option to define the
PCIW_FIFO with regard to application specific needs for posting more or less Write cycles.

The PCI bus determines the speed of Write cycles to the PCIW_FIFO, whereas the WISHBONE
bus regulates the speed of Write cycles from the PCIW_FIFO.

2.3.1.2 PCIR_FIFO
The WISHBONE master module uses PCIR_FIFO (PCI Read FIFO) for storing data read from
WISHBONE slaves.

http://www.opencores.org Rev 1.2 7

OpenCores PCI IP Core Specification 16.7.2004

The WISHBONE bus determines the speed of Read cycles to PCIR_FIFO, and the PCI bus
regulates the speed of Read cycles from the PCIR_FIFO.

2.3.1.3 WISHBONE Master Module
The WISHBONE master module is a 32-bit WISHBONE master interface as defined in
WISHBONE Specification Rev. 1B. Through its WISHBONE master module, the core sends requests
to the WISHBONE bus. Chapter WISHBONE Slave Interface, provides detailed information on the
WISHBONE interface of the core.

2.4. Clocks
The PCI core has two clock domains, one from the PCI bus, the other one from the WISHBONE
bus. With its interconnection logic, the FIFO adjusts the different bus clocks. There is no difference
between all four FIFOs, because it is not decisive which bus operates on higher frequency.

2.5. FIFO

Address / DataC
om

m
an

d
/

B
yt

e
en

ab
le

C
on

tro
l

0 || 39 .. 36 | 35 .. 32 | 31

One FIFO line

0
1

n - 3
n - 2
n - 1
 n

FIFO offset address

Figure 2.4: Detailed Description of FIFO Register Lines

http://www.opencores.org Rev 1.2 8

OpenCores PCI IP Core Specification 16.7.2004

The FIFO is structured by more than one line. The number of FIFO lines, which is configurable,
determines the depth number (the Design Document and Implementation Notes discuss in detail how FIFO
depth is defined). Figure 2.4 describes the structure of one FIFO line, which consists of 4 control
bits (the Design Document describes in detail how they are used—e.g. one bit is used to sign the last
data of the burst transfer etc.), 4 command or byte enable bits (coding will be described in detail in
the Design Document), and 32 address or data bits.

FIFOs are implemented as circular data buffers between WISHBONE and PCI interfaces (Figure
2.5) and adapt to different bus speeds with their interconnection logic. The input bus clock, which is
also connected to FIFO registers, writes data to the input side of the FIFO. The input pointer (input
counter), which has the same clock frequency as the input bus side, stores the value of the input
offset address of the first free FIFO line.

One FIFO line

Output from
FIFO

Input to
FIFO

n- 3

n- 2

n- 1

n

0

1

2

3

5

6

n- 4

Data waiting to
be transfered

(offset difference)

Pointer direction Pointer direction

Figure 2.5: FIFO Architecture

The output pointer (output counter) stores the output offset address value of the first FIFO line
from which data is to be read. It has the same clock frequency as the output bus side that reads the
data.

The comparator between both pointers (counters) validates if any data is waiting in the FIFO to be
read (the Design Document describes in detail the exact counter/comparator operation). Another
comparator is between the counter, which has the value of an input pointer incremented to one, and
the output pointer. When both variables are equal, the FIFO is full.

http://www.opencores.org Rev 1.2 9

OpenCores PCI IP Core Specification 16.7.2004

2.6. Address Translation Logic
WISHBONE slave unit and PCI target unit incorporate several address space images. If address
translation is implemented, each image can have address translation enabled via the Image Control
Register and Translation Address set in the Translation Address register.

2.6.1. Description of Address Translation Logic
For a description of the address translation logic, see Figure 2.6. All AND blocks and OR blocks are
bit-oriented operators that stand for logic operations between bits of the same weight (e.g. logic
function between bit[n-2] of bus A and bit[n-2] of bus B).

The base address is written into the Base Address register. The Address Mask register, which also
defines the size of an image, decides how many most significant bits are masked and replaced by
translation address bits. There is a rule how to set the Address Mask register: Address bits that can be
masked must start with the MS bit (bit[31]) and continue to the twelfth bit (bit[11]). All bits allowed
to be masked define the smallest size of 4KB that can be assigned. No zeros must be between mask
bits; otherwise this image will have two base addresses but only one Base Address register—a
situation that does not comply with the PCI Specification.

To find out if an address falls into the correct address range, the masked bits of input address and
base address must be compared (the number of masked bits defines the unchanging address of the
current address range and thereby the size of this image).

http://www.opencores.org Rev 1.2 10

OpenCores PCI IP Core Specification 16.7.2004

Base
Address

Translation
Address

Address
MaskREGISTERS:

MASK
CORRECTION

Negated
output

Normal
output

 &

AND

 &

AND

 &

AND

 &

AND

INPUT
ADDRESS

 =

 1

OR

EQUALITY
COMPARATOR

I.

II.

III.

IV. OUTPUT
ADDRESS

ADDRESS
READY

Figure 2.6: Address Translation Logic

http://www.opencores.org Rev 1.2 11

OpenCores PCI IP Core Specification 16.7.2004

3.
Operation

3.1. Initialization

3.1.1. Initialization for GUEST implementation

The GUEST implementation of the PCI Bridge will be connected into the host system with PCI Bus
support. At power up, the device independent software scans the PCI slots in the host system for any
connected devices. The host system performs configuration cycles to achieve that. The PCI Bridge
and all other PCI devices connected to the host system respond to configuration cycle transactions
only after power up reset has been applied and released. The following steps must be performed in
the correct order, to assure proper PCI Bridge operation:

1. Configure all PCI Base Address registers.

2. Enable PCI Master operation and PCI Target’s response to Memory and I/O spaces.

3. Configure other PCI Configuration Space Type00 Header registers as appropriate.

4. After the first three steps are done, all configuration registers can be accessed using Memory
Write and Read commands within the address range of PCI Image0. Now all other registers
can be configured as appropriate for the application.

5. When all PCI Bridge registers are configured, the software can start accessing slave devices
on the WISHBONE bus through the PCI Target unit and enable master devices on the
WISHBONE bus to access the PCI bus through the WISHBONE Slave unit.

The device independent software running on the host system usually performs the first three steps
and device dependent software (or driver) performs steps 4 and 5.

3.1.2. Initialization for HOST implementation

http://www.opencores.org Rev 1.2 12

OpenCores PCI IP Core Specification 16.7.2004

The HOST implementation of the PCI Bridge is intended for applications that will take full control
over and responsibility for configuration of the PCI devices connected to the PCI bus. The software
running on the WISHBONE side of the PCI Bridge should perform the following steps to assure
proper operation:

1. Enable the PCI Bridge’s PCI Master operation.

2. Scan the PCI bus for connected PCI devices using Type0 and Type1 configuration read
cycles. This is described in Generating Configuration Cycles.

3. Determine all connected PCI devices’ address space requirements and configure their
Configuration Space Header registers.

4. Configure the PCI Bridge registers using the WISHBONE Image0, as described in
Configuration Space Access for Host Bus Bridges.

5. When the PCI Bridge is configured and all devices on the PCI bus have their address ranges
assigned, the software can start loading device specific device drivers and applications, which
start accessing the PCI bus through the WISHBONE Slave unit.

6. The devices on the PCI bus can also access the WISHBONE bus through the PCI Target
unit.

3.1.3. Changing the configuration in operational mode

For majority of applications the initial configuration of the PCI Bridge will suffice and will not be
changed once the PCI Bridge is configured and operational. Some applications might need to do that
however. You must not change the values in the PCI Bridge registers while the PCI Bridge is
servicing accesses through the WISHBONE Slave or the PCI Target unit. The following steps
should be performed in the correct order, to assure proper operation during and after re-
configuration of the PCI Bridge:

1. Disable all devices and applications that are accessing WISHBONE address space through
the PCI Target unit.

2. Disable all devices and applications that are accessing PCI address space through the
WISHBONE Slave unit.

3. The configuration software initiates one valid write transaction through the PCI Target unit
(PCI to WISHBONE Write Cycles) for GUEST implementation, or through WISHBONE
Slave unit (WISHBONE to PCI Write Cycles) for HOST implementation.

4. The configuration software initiates one valid read transaction through the PCI Target unit
(PCI to WISHBONE Read Cycles) for GUEST implementation, or through WISHBONE
Slave unit (WISHBONE to PCI Read Cycles) for HOST implementation.

5. The configuration software is now free to reconfigure or disable the PCI Bridge.

Steps 3 and 4 in the above procedure are necessary to assure that none of four FIFO memories
contains any data. These two operations force all data out from the FIFOs, due to transaction
ordering requirements.

http://www.opencores.org Rev 1.2 13

OpenCores PCI IP Core Specification 16.7.2004

3.2. Configuration Space
Depending on core implementation, either the PCI or the WISHBONE agents have full access to
configuration space. If the core is implemented as a host bus bridge, the WISHBONE slave unit has
exclusive access to this space, whereas the PCI target unit has read-only access (this image can be
canceled or changed to normal PCI to WB image). If the core is implemented as a guest (expansion
bus bridge), exclusive access to configuration space lies with the PCI target unit and the
WISHBONE slave unit has read-only access (this image can also be canceled).

Configuration space has a configurable block size and is divided into two parts—one intended for
Configuration, Control, and Status registers of the WB slave unit, the other one for PCI Target Unit
registers. If the core is implemented as a host bus bridge, accessing specific registers in the
configuration space from the WISHBONE bus can generate PCI configuration cycles; otherwise,
another agent on the PCI bus must perform these cycles. Configuration space is accessible only with
Single Read and Single Write cycles (e.g. it cannot be accessed with bursts).

All registers in the configuration space of a core are 32-bits wide with 8-bit granularity. All accesses
from the PCI bus are DWORD aligned (e.g. two LS bits of address must be 00). The PCI standard
defines special encoding for those two bits used for PCI bus memory access. To access individual
bytes, the BE# signals for PCI bus access and the SEL_I signals for WISHBONE bus access must
carry an appropriate value.

http://www.opencores.org Rev 1.2 14

OpenCores PCI IP Core Specification 16.7.2004

WISHBONE slave unit
Configuration Space

WB side Configuration Space BAR

PCI target unit
Configuration space

PCI side Configuration Space P_BA0

PCI Configuration Space
Header (Type 00h)

256Bytes

O
ffs

et
:

0x
00

0
- 0

x1
7F

O
ffs

et
:

0x
00

0
- 0

x0
FF

O
ffs

et
:

0x
18

0
- 0

x1
E

8
(device specific Configuration Space)

(device specific Configuration Space)

Figure 3.1: PCI Bridge Configuration Space

3.2.1. Configuration Space Access for Host Bus Bridges
The core’s host bus bridge implementation provides two types of access to configuration space:
Read/Write access for the WISHBONE slave unit and read-only access for the PCI target unit
(unless PCI Target image 0 is canceled or used to access the WISHBONE bus—in which case
external PCI devices can not read configuration space. See also Addressing and Images of the PCI
Target Unit and Register List and Description). Thus, the WISHBONE master takes full
responsibility for configuring core registers and any other PCI devices residing on the PCI bus. The
WISHBONE side configuration space base address is predefined and cannot be changed once the
core has been implemented (the Design Document describes in detail how and where the base address is
defined.).

http://www.opencores.org Rev 1.2 15

OpenCores PCI IP Core Specification 16.7.2004

M
O

D
U

L

PC
I B

U
S

PC
I

Address

Configuration Space access for Host bus bridges

W
IS

H
B

O
N

E
SL

A
VE

 M
O

D
U

L

Write Data

Read Data

Master control

Slave control

W
IS

H
B

O
N

E
M

A
ST

ER

PC
I T

A
R

G
ET

IN
IT

IA
TO

R

Configuration

Space
R R / WR

R

Figure 3.2: Configuration space access for Host Bus Bridges

The WISHBONE master can access configuration space either by Single Read, Single Write, or Read
Modify Write (RMW) cycles. If the WISHBONE master attempts a Write cycle to non-implemented
space, the cycle is acknowledged by the WISHBONE slave module while Read cycles to non-
implemented space return all 0s.
The PCI side configuration space base address must be set by the WISHBONE master. The
WISHBONE master must perform a Write cycle to the PCI Base Address 0 register to enable read-
only access to PCI agents. The PCI target module provides read-only access to configuration space
from the PCI bus using Base Address 0 range, supporting all Memory Access commands. The
Memory Write commands have no effect on Configuration registers. After first data transfer
completes, the PCI target module signals Target Disconnect to the initiator. Read cycles to non-
implemented regions of configuration space return all 0s, whereas Write cycles have no effect.

3.2.2. Configuration Space Access for Guest Bridges
The implementation of the core as a guest bridge (more commonly referred to as expansion bus
bridge) provides two types of configuration space access: Read/Write access for the PCI target unit
and read-only access for the WISHBONE slave unit (unless WB slave image 0 is canceled). Other
PCI agents take full responsibility for configuring core registers and any other PCI devices residing
on the PCI bus. An agent on the PCI bus (most commonly the host bus bridge) sets the PCI Base
Address 0 by performing a Type 0 configuration cycle, as stated in the PCI Local Bus Specification Rev.
2.2. This enables device-independent software to map the bridge’s configuration space anywhere into
the memory address space.

http://www.opencores.org Rev 1.2 16

OpenCores PCI IP Core Specification 16.7.2004

M
O

D
U

L

PC
I B

U
S

PC
I

Address

Configuration Space access for Guest bus bridges

W
IS

H
B

O
N

E
SL

A
VE

 M
O

D
U

L

Read Data

Master control

Slave control

W
IS

H
B

O
N

E
M

A
ST

ER

PC
I T

A
R

G
ET

IN
IT

IA
TO

R

Configuration

Space
RR / W

R / W

R / W

Figure 3.3: Configuration space access for Guest Bridges

The external PCI Initiator can access all registers in the configuration space using the Memory
Access commands in the address range of the Bridge’s PCI BAR0. It can access the first 256 bytes of
the configuration space using the Configuration Access commands. The PCI Bridge terminates the
first data phase of all configuration space accesses normally, and terminates subsequent data phases
with Target Disconnect without Data. Write cycles have no effect on non-implemented
configuration space, Reads from it return all 0s.

The WISHBONE slave module provides read-only access to configuration space from the
WISHBONE bus. The WISHBONE side configuration space base address is predefined and cannot
be changed (the Design Document describes in detail how and where a base address is defined). The
WISHBONE slave module accepts Read or Write transfers to configuration space. Write cycles to
configuration space have no effect on Configuration Space registers. When the WISHBONE master
attempts to access a non-implemented region, Write cycles are acknowledged with no effect on
configuration space, but Read cycles return all 0s.

3.2.3. Configuration Cycles
Configuration cycles are another way of accessing the configuration space of the core. Only the lower
256 bytes of configuration space are available for Read/Write access with Type 0 configuration cycles
for guest (expansion bus) implementation of the core. The host bus bridge implementation provides
the Configuration Read operation only.1 Configuration Write cycles are accepted and acknowledged
but have no effect on Configuration registers.

Addressing during configuration cycles differs from normal Read and Write cycles on a PCI bus (For
more information, see PCI Local Bus Specification Rev 2.2, chapter 3.1.1, “Command Definition”).

1 Note: Because the host bus bridge normally generates configuration commands, and the PCI local bus
specification does not require a host bus bridge to respond to configuration cycles, it is most likely that this
feature will never be used.

http://www.opencores.org Rev 1.2 17

OpenCores PCI IP Core Specification 16.7.2004

Only Type 00h predefined header portion has been implemented in the lower 256 bytes of the
configuration space (in this document also called PCI configuration space). For its organization, see
PCI Local Bus Specification Rev 2.2, chapter 6.1.

3.2.4. Generating Configuration Cycles
The host bus bridge implementation of the core provides a mechanism for generating configuration
cycles on a PCI bus by accessing the CNF_ADDR and CNF_DATA register.

Step 1: The WISHBONE master must write the appropriate data to the CNF_ADDR register, which
holds information about register offset, function, device, and bus number. The TYPE bit in this
register defines a type of configuration cycle that is generated on the PCI bus (0 = Type 0, 1 = Type
1). The Offset field in the CNF_ADDR register identifies a register offset to or from which the
WISHBONE master wishes to write or read. The Function field is set to the function number of
multifunctional device being a target of configuration cycle. The Device field defines the address line
driven high during the address phase of the configuration cycle, which can be used as an IDSEL
signal for a Type 0 configuration cycle. The Bus field is set to the bus number the targeted device
resides on.

Step 2: To actually begin a configuration cycle on the PCI bus, the WISHBONE master must access
the CNF_DATA register. Accesses to CNF_DATA are treated as Single Delayed transactions. The
WISHBONE master’s access to this register is retried. If it is a Read cycle, the PCI master module
arbitrates for the PCI bus, performs the Configuration Read command with byte enables provided by
the WISHBONE master (signals SEL_I(3..0)), and provides data on the WISHBONE interface
when the WISHBONE master retries the transaction. In case of a Write access, the PCI master
module arbitrates for the PCI bus, performs a Write cycle with provided byte enables (signals
SEL_I(3..0)), and acknowledges the transaction when retried by the WISHBONE master.

Driving of PCI bus AD lines during the configuration cycle address phase depends on the TYPE of
the configuration cycle. If the WISHBONE master sets the TYPE bit of CNF_ADDR to 1
(indicating Type 1 configuration cycle), the value of lines on the PCI bus is driven with contents of
the CNF_ADDR register (AD[31..0] <= CNF_ADDR[31..0]) during address phase. If the TYPE bit
indicates TYPE 0 configuration cycle, then AD[31..11] lines on the PCI bus are driven according to
the following table (driving depends on the Device field in the CNF_ADDR register):

DEVICE
field
value

Value on AD[31..11] lines during address phase of configuration cycle

0000 0 0000 0000 0000 0000 0000 1
0000 1 0000 0000 0000 0000 0001 0
0001 0 0000 0000 0000 0000 0010 0
0001 1 0000 0000 0000 0000 0100 0
0010 0 0000 0000 0000 0000 1000 0
0010 1 0000 0000 0000 0001 0000 0
0011 0 0000 0000 0000 0010 0000 0

http://www.opencores.org Rev 1.2 18

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 19

DEVICE
field
value

Value on AD[31..11] lines during address phase of configuration cycle

0011 1 0000 0000 0000 0100 0000 0
0100 0 0000 0000 0000 1000 0000 0
0100 1 0000 0000 0001 0000 0000 0
0101 0 0000 0000 0010 0000 0000 0
0101 1 0000 0000 0100 0000 0000 0
0110 0 0000 0000 1000 0000 0000 0
0110 1 0000 0001 0000 0000 0000 0
0111 0 0000 0010 0000 0000 0000 0
0111 1 0000 0100 0000 0000 0000 0
1000 0 0000 1000 0000 0000 0000 0
1000 1 0001 0000 0000 0000 0000 0
1001 0 0010 0000 0000 0000 0000 0
1001 1 0100 0000 0000 0000 0000 0
1010 0 1000 0000 0000 0000 0000 0
1010 1 0000 0000 0000 0000 0000 0
1011 0 0000 0000 0000 0000 0000 0
1011 1 0000 0000 0000 0000 0000 0
1100 0 0000 0000 0000 0000 0000 0
1100 1 0000 0000 0000 0000 0000 0
1101 0 0000 0000 0000 0000 0000 0
1101 1 0000 0000 0000 0000 0000 0
1110 0 0000 0000 0000 0000 0000 0
1110 1 0000 0000 0000 0000 0000 0
1111 0 0000 0000 0000 0000 0000 0
1111 1 0000 0000 0000 0000 0000 0

Table 3.1: Value on AD[31:11] PCI bus lines during address phase of configuration cycle Type 0

Specified driving of PCI bus lines AD[31..11] provides a mechanism for tying IDSEL signals of
target devices directly to AD lines. This way, device 0 is connected with its IDSEL signal to AD[11],
device number 1 to AD[12], until device 20 connects to AD[31]. A total of 21 targets can be accessed
with configuration cycles through the PCI bridge. Combinations of Device field values of
CNF_ADDR register 10101 through 11111 are valid and terminate with Master Abort on the PCI
bus since none of the targets can respond to the cycle without its IDSEL signal being asserted.
Configuration Write data is discarded while Read cycles return all 1s on the WISHBONE bus. The
transaction is acknowledged as specified in PCI Specification Rev. 2.2.

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

Other AD lines on the PCI bus are driven during the address phase of the Type 0 configuration cycle
with data stored in the CNF_ADDR register, as described in PCI Specification Rev. 2.2.

3.2.5. Generating Interrupt Acknowledge Cycles
A special mechanism provides the generation of Interrupt Acknowledge cycles on the PCI bus. The
WISHBONE master must perform a Read cycle to the INT_ACK register. This Read cycle is treated
as Single Delayed transaction retried until the PCI master module arbitrates for the PCI bus and
fetches the data requested. Address and byte enables on the PCI bus are exact copies of
ADR_I(31..0) and SEL_I(3..0). The address has no meaning during an interrupt acknowledge cycle
while byte enables indicate the size of the interrupt vector returned.

Read cycles of this register from the PCI bus have no effect and return all 0s. Write cycles from the
WISHBONE or PCI side are accepted but have no effect.

3.3. WISHBONE Slave Unit
The WISHBONE slave unit connects to WISHBONE masters acting as a slave. This section
describes its basic functionality. It is divided into subsections, each of them describing what the
WISHBONE master needs to do to initiate WISHBONE to PCI transactions.

http://www.opencores.org Rev 1.2 20

OpenCores PCI IP Core Specification 16.7.2004

3.3.1. WISHBONE Slave Unit Functionality

WBR_FIFO
Parameterized depth

WBW_FIFO
Parameterized depth WISHBONE

SLAVE
MODULE

PCI MASTER
MODULE

PCI
BUS

PCI TARGET

WISHBONE
MASTER

Address

Write Data

Read Data

Master control

Slave control

WISHBONE slave unit

Figure 3.4: WISHBONE Slave Unit Architecture Overview

The WISHBONE slave unit consists of a few functional parts allowing the WISHBONE master to
perform Read/Write accesses to the PCI bus.

3.3.1.1 WISHBONE Slave Module
The WISHBONE slave module is a 32-bit WISHBONE slave interface as defined in WISHBONE
Specification Rev. 1B. It handles Read/Write cycles to images of PCI address space and configuration
space accesses.

3.3.1.2 WBW_FIFO
The WISHBONE slave module uses WBW_FIFO (WISHBONE Write FIFO) for posting Memory
and I/O Write cycles performed by the WISHBONE master. WBW_FIFO also performs a different
bus clock adaptation.

3.3.1.3 WBR_FIFO
The WISHBONE slave module uses WBR_FIFO (WISHBONE Read FIFO) for storing data read
from PCI targets. WBR_FIFO also performs a different bus clock adaptation.

3.3.1.4 PCI Master Module
The PCI master module is a 32-bit/66MHz, PCI Local Bus Specification Rev. 2.2 compliant initiator
interface. The core requests the PCI bus through its PCI master module and performs bus
operations as described in the following subsections. Chapter PCI Interface provides a detailed
overview of the PCI interface of the core.

http://www.opencores.org Rev 1.2 21

OpenCores PCI IP Core Specification 16.7.2004

3.3.2. Addressing and Images of the WISHBONE Slave Unit
As mentioned before, the WISHBONE slave unit incorporates 1 to 5 configurable WISHBONE
address space images (the Design Document and Implementation Notes discuss in detail how the number of
images is defined) and one image used for configuration space accesses from the WISHBONE bus
with a fixed base address. This fixed base address points to the starting address of the configuration
space. The base address for WISHBONE configuration space points to the offset address of the
whole configuration space and is independent of the PCI Base Address0.

The behavior of each image is controlled by its WISHBONE Base Address (W_BA1 – W_BA5),
WISHBONE Translation Address (W_TA1 – W_TA5), WISHBONE Image Control
(W_IMG_CTRL1 – W_IMG_CTRL5) and WISHBONE Address Mask (W_AM1 – W_AM5)
registers. Statuses, errors, and interrupts for each image are recorded in the Status registers of an
image described later in this document. The WISHBONE slave module claims the cycle initiated by
the master on the WISHBONE bus if one of the WISHBONE images is selected and enabled. An
image is enabled if the IMG_EN bit of its W_AM register is set to 1. An image is selected when the
address provided during the initial cycle on the WISHBONE bus falls into the range of that image.
The range is determined by values of W_BA and W_AM registers. Each image can represent 4KB to
2GB of PCI address space. Whether an image is mapped to memory or I/O space is determined by
the address space-mapping bit (ASM) of the image’s W_BAn register. If this bit is 0, the image maps
to memory space, otherwise to I/0 space.

How to specify a 1MB image of PCI address space with an address range of
0x10100000 - 0x101FFFFF?

The software must write a value of 0x10100XX0 to the image’s Base Address register (the LSB of
this register is set to 0 to indicate a memory space mapping). This way, the base address is set at
0x10100000. Twelve LS bits are marked as Don’t Cares. The minimum block size is 4KB. Then,
the software writes a value of 0xFFF00XXX into the W_AM register of the corresponding image.
The IMG_EN bit is the MS bit and set to a value of 1 (it is also used for address masking – i.e.
how we limit a maximum image size to 2GB). Each bit in the W_AM register corresponds to one
address line – if a bit is 1, this address line is used for address comparison, and otherwise it is not.
A value of 0xFFF00000 in the W_AM register means that ADR_I(31..20) signals are compared to
W_BA[31..20] values. If values match, the image is selected. In this case, ADR_I(19..0) lines define
an offset in an address range of 1MB.

Example 3-1: Address range of WISHBONE slave image

If enabled for a selected image (AT_EN bit of W_IMG_CTRLx is 1), address translation is
performed between WISHBONE and PCI address by replacing the masked part of a WISHBONE
address with the corresponding bits from the W_TA register. This provides very flexible address
mapping.

Let’s assume that base address and address mask are set as described in the previous example. We
want a WISHBONE address range of 0x10100000 – 0x101FFFFF to be mapped elsewhere on the
PCI b 0 01000000 0 010FFFFF T hi thi d tr l ti f ddr

http://www.opencores.org Rev 1.2 22

OpenCores PCI IP Core Specification 16.7.2004

PCI bus, e.g. 0x01000000 – 0x010FFFFF. To achieve this, we need a translation of addresses
coming from the WISHBONE master and set the AT_EN bit of the corresponding
W_IMG_CTRL register to a value of 1 and of the corresponding W_AT register to a value of
0x01000XXX. The W_AM register is already set, so address translation replaces ADR_I(31..20)
provided by the WISHBONE master with a value of 0x010 set in the W_TA register for accesses
on the PCI bus. This way, a PCI address range of 0x01000000 – 0x010FFFFF is accessible on the
WISHBONE bus within a range of 0x10100000 – 0x101FFFFF.

Example 3-2: Address translation

3.3.3. WISHBONE to PCI Write Cycles
This section gives a detailed description of Write accesses, assuming that the WISHBONE slave unit
has decoded an address to fall within a range of one of its enabled images.

The WISHBONE slave module is capable of handling Single and Block Write transfers through one
of its WISHBONE slave images. Read Modify Write (RMW) cycles are not supported.

Note:
WISHBONE Slave Interface identifies the serial block transfers (bursts) using the CAB_I input
signal that is outside the scope of the WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores Specification, prior to revision B3. This enables the PCI Initiator module to utilize
burst transfers on the PCI Bus.

All Write cycles from the WISHBONE master to the PCI bus are handled as Posted Writes and are
acknowledged on the WISHBONE bus immediately after receiving a request (before they are
finished on the PCI bus) and stored in WBW_FIFO. Each image can be mapped to I/O or memory
space, which is determined by a value of the address space-mapping bit (ASM) the W_BAx register
of the corresponding image. If an image maps to I/O space, serial block transfers are not possible
and the WISHBONE master receives an error signal. Normal block transfers are possible to I/O and
memory space since every data beat in a block is treated as Single Posted Write cycle.

The WISHBONE Slave Unit ignores the value presented on the ADR_I(1:0) lines. If accessed image
is mapped into the memory space, the value of AD[1:0] on the PCI bus during the address phase will
be 0b00. If accessed image is mapped into the I/O space, the AD[1:0] on the PCI bus during the
Address Phase will have the value generated according to the following table (value of x means don’t
care).

Value on SEL_I(3:0) lines Generated PCI Bus Address (AD[1:0])
0bxxx1 0b00
0bxx10 0b01
0bx100 0b10
0b1000 0b11

Table 3.2: Generation of byte address for PCI I/O accesses

In some cases, Write cycles initiated by the WISHBONE master cannot be accepted and are
terminated with Retry:

http://www.opencores.org Rev 1.2 23

OpenCores PCI IP Core Specification 16.7.2004

 WBW_FIFO is full or does not have enough space left to accommodate another transfer.

 A Delayed Read request is pending in the WISHBONE Slave unit (Write cycles cannot be
posted until a Read cycle finishes on the PCI bus).

 A Delayed Read completion is present in the PCI Target unit.

The PCI master module requests a PCI bus after a complete transaction has been stored in the
WISHBONE slave unit WBW_FIFO. After the PCI bus has been granted to the PCI master
module, it initiates a transaction on the PCI bus. The module uses Memory Write or I/O Write PCI
bus command, depending on the value of the address space-mapping bit (0 = memory, 1 = I/O) of
the image’s W_BAx register. In case the WISHBONE master posted a serial Block Write cycle, the
PCI master module performs a burst of the same length to the PCI target. Single Posted Write cycles
or non-serial Block Write cycles are completed as Single Write transactions on the PCI bus. If the
PCI bus arbiter revokes mastership from the PCI master module (#GNT is deasserted), it finishes
the current cycle and releases the PCI bus for which it afterwards has to re-arbitrate in order to
continue any Posted Write cycles left in a WBW_FIFO. The core handles Retry and Target
Disconnect terminations by retrying the transaction until it completes or some other termination is
signaled.

All Write cycles are handled as posted writes and are therefore immediately acknowledged by the
WISHBONE Slave. The PCI Bridge implements an error reporting mechanism for write cycles, that
were already acknowledged on the WISHBONE bus but later terminated with an error on the PCI
bus. Error Reporting registers provide an Error Reporting mechanism. Error Reporting must be
enabled by the errors enable (ERR_EN) bit of the WISHBONE Error Control and Status
(W_ERR_CS) register. When enabled, errors can generate interrupts if the error interrupt enable
(EINT_EN) bit of the W_ERR_CS register is 1. Each of the Error Reporting registers stores a part
of information about the Posted Write transaction on the PCI that was terminated with an error.

 A value of 1 in the error signaled bit (ERR_SIG) of the W_ERR_CS register indicates that an
error has been recorded. The Field Bus Command (BC) of this register stores a bus command
used for an access that has been terminated with Error, while field Byte Enables (BE) stores the
value of byte enables during the transfer. The error source bit (ES) indicates the source of an
error (1 = Master (Master Abort), 0 = Target (Target Abort)).

 W_ERR_ADDR stores a 32-bit address that the PCI master module tried to access when the
error occurred.

 W_ERR_DATA stores 32 bits of data used in a transfer that was terminated with an error.

Error terminated write transactions are discarded while other posted transactions proceede normally.

3.3.4. WISHBONE to PCI Read Cycles
Read cycles initiated by the WISHBONE master are handled as Delayed Read cycles. The Bridge
does not support Multiple Delayed Read requests. Delayed transactions must be completed on the
PCI bus before they can be completed on the WISHBONE bus. The section on addressing and
images has described how the WISHBONE slave unit decodes addresses to know if it is a slave for a
current cycle. Handling of Read transactions is encoded in the Image Control register
(W_IMG_CTRLx). There are a few options how to define the behavior of the WISHBONE slave
unit during Read transactions for images mapped to memory space:

http://www.opencores.org Rev 1.2 24

OpenCores PCI IP Core Specification 16.7.2004

 If PREF_EN and MRL_EN bits are both cleared, that indicates that the Image’s address range is
not prefetchable. The PCI Bridge will read a single word of data from the PCI bus using the
Memory Read command, regardless of the type of the read cycle requested.

 The PREF_EN bit indicates that the address range of an image is prefetchable When it is set and
MRL_EN bit is cleared and serial block read is requested, the PCI Bridge will prefetch one cache
line of data (set in the Cache Line Size register) using the Memory Read command on the PCI
bus.

 The MRL_EN bit indicates that the address range of an image is prefetchable When it is set and
PREF_EN bit is cleared and serial block read is requested, the PCI Bridge will prefetch one
cache line of data (set in the Cache Line Size register) using the Memory Read Line command
on the PCI bus.

 When both PREF_EN and MRL_EN bits are set and serial block read is requested, the PCI
Bridge will prefetch as much data as it can fit into the WBR_FIFO and use the Memory Read
Multiple command on the PCI bus.

The PCI Bridge reads all words within a prefetched burst memory read with all byte enables asserted
on the PCI bus. It uses the negated byte enables sent by the external WISHBONE Master for single
memory or I/O reads.

The PCI Bridge handles only single read or non-serial block read requests through the images
mapped to I/O space. It responds with an error on the WISHBONE bus when serial block read
through an I/O mapped image is requested. It never prefetches the I/O read requests – it always
reads a single 32 bit word using the I/O Read command and byte enables sent from the
WISHBONE Master on the PCI bus.

Non-prefetchable address space is assumed for the following conditions:

1. Accesses to I/O mapped address space are always non-prefetched.

2. The WISHBONE master performs a Single or non-serial Block Read cycle, or the
PREF_EN and MRL_EN bits are both cleared.

When the WISHBONE slave unit latches address and SEL_I(3:0) data of a Read request, the PCI
master module requests mastership for the PCI bus. When mastership is granted, the PCI master
module initiates a PCI Read transaction. The bus command used for the transaction depends on
various parameters described in the following table:

Address space
mapping of
image

Cycle initiated
by WISHBONE
master

PREF_EN bit
value

MRL_EN bit
value

Bus command
used

I/O Single or Block
Read

X X I/O Read

Single or Block
Read

X X

Memory Read

Memory

Serial Block 0 0 Memory Read

http://www.opencores.org Rev 1.2 25

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 26

Address space
mapping of
image

Cycle initiated
by WISHBONE
master

PREF_EN bit
value

MRL_EN bit
value

Bus command
used

0 1 Memory Read Line
1 0 Memory Read
1 1 Memory Read

Read

Multiple

Table 3.3: Bus command encoding for Read cycles through PCI master module

Read cycles to address space that is not prefetchable are performed in one data phase on the PCI
bus. After the first data phase, the PCI master module releases the PCI bus.

All serial block Delayed Read requests from address space marked as prefetchable are performed in
Burst Read cycles. The PCI master module reads data from the target and puts it into WBR_FIFO.
The PCI master module finishes a Burst Read cycle and releases the PCI bus if any of the following
conditions is met:

1. WBR_FIFO is full.

2. The target issues Target Disconnect.

3. The mastership of the PCI bus is revoked by the PCI arbiter (#GNT is de-asserted).

When the WISHBONE master retries this Read transaction, data is ready and the WISHBONE slave
module pulls data out of the WBR_FIFO and provides it on the WISHBONE bus.

Any data left in WBR_FIFO after the WISHBONE master ends a Read cycle is flushed immediately.

So far, WISHBONE to PCI Read cycles have been described as if they always completed
successfully, but it is common for PCI bus targets or masters to generate error terminations.
Terminations from the PCI bus must be propagated to the WISHBONE bus to let the WISHBONE
master know what happened to the transaction it initiated.

The WISHBONE Slave Unit’s PCI Master handles the following terminations during completion of
Delayed Read requests on the PCI bus:

 Retry

 Disconnect with data

 Disconnect without data

 Target Abort

The Retry termination is not propagated back to the WISHBONE bus. The PCI Initiator simply
retries the transaction.

Disconnect is treated as normal termination. The PCI Master does not retry the reads terminated
with disconnect, even if the full sized burst was not complete yet. It provides the data fetched before
(or/and during) the Disconnect termination to the WISHBONE Master.

Target Abort is an error termination propagated back to the WISHBONE bus. The WISHBONE
Slave module will provide any data fetched before Target Abort termination to the WISHBONE
Master normally. When the WISHBONE Master initiates a read from the location that was

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

terminated with Target Abort on the PCI bus, WISHBONE Slave module terminates the transfer
with an error. It is possible that WISHBONE Master will not access the Target Aborted location. In
this case, the error will not be signaled.

Master Abort is an error termination. When the WISHBONE master retries the read request
terminated with Master Abort on the PCI bus, the WISHBONE Slave module will terminate the
cycle with an error.

3.3.5. WISHBONE SoC Interconnection Rev. B3 support

The WISHBONE Slave unit’s WISHBONE Slave interface can be configured before synthesis to
support the Registered Feedback cycles defined in WISHBONE bus specification Rev. B3.. See
Appendix A for more information regarding hardware configuration. When you configure the
hardware parameters properly, a special logic internal to the PCI Bridge translates Registered
Feedback cycles to Single, Block or serial Block transfer cycles.

The following table describes the WISHBONE Rev. B3 cycle type translation for WISHBONE Slave
Interface.

WISHBONE Rev. B3
Cycle Type

Starting address WISHBONE
Slave Internal
Cycle type

PCI Master initiated
transaction(s)

“Classic” X Single or Block One or multiple single

“Constant Address Burst X Block Multiple single

“Incrementing Linear Burst X serial Block Burst transfer.

wbs_adr_i[3:2] == 0x0 serial Block Burst transfer. “Incrementing Wrap 4
wbs_adr_i[3:2] != 0x0 Block Multiple single

wbs_adr_i[4:2] == 0x0 serial Block Burst Transfer. “Incrementing Wrap 8
wbs_adr_i[4:2] != 0x0 Block Multiple single

wbs_adr_i[5:2] == 0x0 serial Block Burst Transfer. “Incrementing Wrap 16
wbs_adr_i[5:2] != 0x0 Block Multiple single

“Reserved” X Single or Block One or multiple single

“End-Of-Burst” X Single Single Transfer.

transfers.

Cycle” transfers.

Cycle”

Burst Cycle”
transfers.

Burst Cycle”
transfers.

Burst Cycle”
Transfers.

transfers.

Table 3.4 - WISHBONE Slave Registered feedback cycle translation

http://www.opencores.org Rev 1.2 27

OpenCores PCI IP Core Specification 16.7.2004

Note that during burst cycles that decode to serial Block cycles each write transfer takes 3
WISHBONE clock cycles to complete (if WBW_FIFO is not full), while each read transfer takes 1
WISHBONE clock cycle (if read data is present in the WBR_FIFO) to complete.

3.4. PCI Target Unit
The PCI target unit connects to PCI initiators acting as a target. This section describes the basic
functionality of the PCI target unit and is divided into subsections, each of them defining what a PCI
initiator needs to do to initiate PCI to WISHBONE transactions.

3.4.1. PCI Target Unit Functionality
This part gives a functional overview of the PCI target unit. Detailed description is provided in the
following sections.

PCIW_FIFO
Parameterized

depth

PCIR_FIFO
Parameterized

depth WISHBONE
MASTER
MODULE

PCI
TARGET
MODULE

PCI
BUS

PCI
INITIATOR

WISHBONE
SLAVE

PCI target unit

Address

Write Data

Read Data

Master control

Slave control

Figure 3.5: PCI target unit architecture overview

The PCI target unit consists of several functional parts allowing PCI initiators to perform
Read/Write access to the WISHBONE bus.

3.4.1.1 PCI Target Module
The PCI target module is a 32-bit/66MHz (33MHz for FPGA implementation) PCI Local Bus
Specification Rev. 2.2 compliant target interface. It handles Read/Write cycles to images of
WISHBONE address space and configuration space accesses.

3.4.1.2 PCIW_FIFO
The PCI target module uses PCIW_FIFO (PCI Write FIFO) for posting Memory and I/O Write
cycles performed by the PCI initiator. PCIW_FIFO also performs a different bus clock adaptation.

http://www.opencores.org Rev 1.2 28

OpenCores PCI IP Core Specification 16.7.2004

3.4.1.3 PCIR_FIFO
The WISHBONE master module uses PCIR_FIFO (PCI Read FIFO) for storing data read from
WISHBONE slaves. PCIR_FIFO performs a different bus clock adaptation.

3.4.1.4 WISHBONE Master Module
The WISHBONE master module is a 32-bit WISHBONE master interface as defined in
WISHBONE Specification Rev. 1B. The core requests the WISHBONE bus through its WISHBONE
master module. Chapter WISHBONE Slave Interface, describes in detail the WISHBONE interface
of the core.

3.4.2. Addressing and Images of the PCI Target Unit
As mentioned above, the PCI target unit incorporates 1 to 5 configurable PCI address space images
(The Design Document and Implementation Notes discuss in detail how to define the number of images)
and one special image used for configuration space accesses from the PCI bus with a configurable
base address. In host bridge implementations, this special image can be configured to provide access
to normal address space or can be canceled – therefore configuration space would not be accessible
(see also Configuration Space Access for Host Bus Bridges and Register List and Description).

The behavior of each image is controlled by its PCI Base Address (P_BA0 – P_BA5), PCI
Translation Address (P_TA0 – P_TA5), PCI Image Control (P_IMG_CTRL0 – P_IMG_CTRL5),
and PCI Address Mask (P_AM0 – P_AM5) registers. Status, errors, and interrupts for each image are
recorded in the Status registers described later in this document. The PCI target module claims the
transaction started by the initiator on the PCI bus if one of the PCI images is selected and enabled.
An image is enabled if the IMG_EN bit of its P_AM register is set to 1. An image is selected when
the address provided during the address phase on the PCI bus is within the memory or I/O range of
that image. The range is determined with values of P_BA and P_AM registers. Each image can
represent 4KB to 2GB of the WISHBONE address space.

Each image can be mapped to memory or I/O space, determined by the address space-mapping bit
(ASM) of the image’s P_BAx register (bit 0). If the ASM bit is 0, the image maps to memory space,
and otherwise to I/O space. For host bridge implementations, the predefined values can later be
changed by writing an appropriate value, but for guest bridge implementations, the predefined values
are fixed (hardwired), because device independent software must know in advance where to map
each PCI Base Address.

http://www.opencores.org Rev 1.2 29

OpenCores PCI IP Core Specification 16.7.2004

How to specify a 1MB image of WISHBONE address space with an address range of 0x10100000
– 0x101FFFFF?

Software must write a value of 0x10100XX0 to the Base Address register of an image (the LSB of
this register is set to 0 to indicate memory space mapping). This way, the base address is set at
0x10100000. Twelve LS bits are marked as Don’t Cares. The minimum block size is 4KB.
Software writes a value of 0xFFF00XXX into the P_AM register of the corresponding image. The
MS bit is the IMG_EN bit, which is set to a value of 1. It is also used for address masking, i.e. how
we limit a maximum image size to 2GB. Each bit in the P_AM register corresponds to one address
line. If the bit is 1, then this address line is used in address comparison, and otherwise it is not. A
value of 0xFFF00000 in the P_AM register means that AD[31:20] signals received during the
address phase are compared with a P_BA[31..20] value. If values match, the image is selected. In
this case, AD[19..0] lines define an offset in an address range of 1MB.

Example 3-3: Address range of PCI Target Image

If address translation is enabled for a selected image (AT_EN bit of P_IMG_CTRLx is 1), it is
performed between PCI and WISHBONE address. Address translation is done by replacing the
masked part of the PCI address with the corresponding bits from the P_TA register. This provides
very flexible address mapping (off course address translation must be implemented).

Let’s assume that base address and address mask are set as described in previous example. We
want a PCI address range of 0x10100000 – 0x101FFFFF to be mapped elsewhere on the
WISHBONE bus, e.g. at 0x01000000 – 0x010FFFFF. To achieve this, we need a translation of
addresses coming from the PCI initiator. The AT_EN bit of the corresponding P_IMG_CTRL
register is set to a value of 1 and of the corresponding P_TA register to a value of 0x01000XXX,
respectively. The P_AM register is already set, so address translation replaces AD(31..20) provided
by the PCI initiator with a 0x010 value set in the P_TA register for accesses on the WISHBONE
bus. This way, we have a WISHBONE address range of 0x01000000 – 0x010FFFFF, accessible
on the PCI bus in a range of 0x10100000 – 0x101FFFFF.

Example 3-4: Address translation

3.4.3. PCI to WISHBONE Write Cycles
The previous section described how a PCI target unit knows if it is the target of a current cycle
initiated by a PCI initiator. In this section, Write accesses are described in detail, assuming that a PCI
target unit decodes an address to fall within a range of one of its enabled images.

The PCI target module is capable of handling Single and Burst Write transfers through one of its PCI
target images.

Note:

http://www.opencores.org Rev 1.2 30

OpenCores PCI IP Core Specification 16.7.2004

The WISHBONE Master module performs burst transfers as Block Cycles, described in the
WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores Specification. It
implements a special CAB_O signal, outside the scope of WISHBONE bus specification, to identify
them.

All Write cycles, originating on the PCI bus and ending on the WISHBONE bus are handled as
Posted Writes. Due to this, the WISHBONE Master Module does not support Read Modify Write
cycle. Write cycles are claimed on the PCI bus immediately after receiving a request and are stored in
PCIW_FIFO. Each image can be mapped to I/O or memory space, which is determined by a value
of the address space-mapping bit (ASM) in the P_BAx register of the corresponding image (for guest
bridges ASM bit is fixed, for host bridges ASM bit can be changed, see chapter 3.3.2).

If an image maps to I/O space, AD(1:0) lines indicate the least significant valid byte for the
transaction. The byte enable lines BE#(3:0) indicate the size of the transfer within the DWORD.
They must be consistent with AD(1:0) as seen in Table 3.5. All other combinations are invalid.
Invalid access is terminated with Target Abort on the PCI bus.

All PCI bursts to I/O space are treated as Single Posted Writes; therefore, Burst transfers are broken
into single transfers. The PCI Target module posts only one 32 bit word and responds with
disconnect on subsequent data phases.

Value on AD(1:0) lines Starting Byte Valid BE#(3:0) encoding
00 Byte 0 xxx0
01 Byte 1 xx01
10 Byte 2 x011
11 Byte 3 0111

Table 3.5: Valid AD(1:0) and BE# (3:0) combinations for I/O mapped address space accesses

If an image maps to memory space, 30 AD lines (the AD(31:2)) provide a DWORD-aligned address.
The AD(1:0) lines indicate the burst mode, as seen in Table 3.6. The Linear Incrementing Burst
mode is fully supported, while the Cache-line Wrap and reserved mode writes are broken into single
transfers The PCI Target module posts a single 32 bit word and responds with disconnect on
subsequent data phases, if unsupported burst mode is requested.

Value on AD(1:0) lines Burst Ordering encoding
00 Linear Incrementing
01 Reserved (disconnect after first data phase)
10 Cache-line Wrap mode (disconnect after first data phase)
11 Reserved (disconnect after first data phase)

Table 3.6: Burst Ordering combinations for memory mapped address space accesses

http://www.opencores.org Rev 1.2 31

OpenCores PCI IP Core Specification 16.7.2004

The PCI target unit terminates a write transaction with Disconnect, when the following conditions
apply:

 The external PCI Master initiates a burst write transaction to I/O mapped PCI Target Image.

 The external PCI Master initiates a burst write transaction to memory mapped PCI Target Image
with unsupported burst mode.

 The target is temporarily unable to continue bursting when PCIW_FIFO is filled during the
current Burst Write.

The PCI target unit abnormally terminates a transfer with Target Abort when it detects a fatal error
of the following kind (otherwise it would not be able to complete the requested transfer):

 The master initiates a non-valid combination of AD(1:0) and BE#(3:0) when accessing I/O
mapped image space (as mentioned above).

When it is busy and temporarily unable to process the transaction, the PCI target unit terminates a
transfer with Retry before any data is transferred. This applies to the following situations:

 The PCIW_FIFO is full or cannot provide enough space to accommodate another burst
transfer.

 A Delayed Read request is pending in the PCI target unit (Write cycles cannot be posted until a
Read cycle finishes on the WISHBONE bus).

 A Delayed Read Completion is present in the WISHBONE Slave unit.

The WISHBONE master module initiates a write cycle on the WISHBONE bus after a complete
PCI write transaction has been stored in the PCIW_FIFO of the PCI Target unit. The module uses
Single Write or Block Write WISHBONE cycles. The Block Write cycles on the WISHBONE bus
are of the same length as write bursts accepted on the PCI bus.

All Write cycles are handled as posted writes and are therefore immediately accepted by the PCI
Target module. The PCI Bridge implements an error reporting mechanism for write cycles, that were
already accepted on the PCI bus but later terminated with an error on the WISHBONE bus. Error
Reporting registers provide an Error Reporting mechanism. Error Reporting must be enabled by the
errors enable (ERR_EN) bit of the PCI Error Control and Status (P_ERR_CS) register. When
enabled, errors can generate interrupts if the error interrupt enable (EINT_EN) bit of the
P_ERR_CS register is 1. Each of the Error Reporting registers stores a part of information about the
Posted Write transaction on the WISHBONE bus that was terminated with an error.

 A value of 1 in the error signaled bit (ERR_SIG) of the P_ERR_CS register indicates that an
error has been recorded. The Field Bus Command (BC) of this register stores the bus command
used on the PCI bus for the access that terminated with an error on the WISHBONE bus while
the field Byte Enables (BE) stores the value of byte enables (SEL_O(3:0) lines) during the
transfer.

 P_ERR_ADDR stores the 32-bit address the WISHBONE master module tried to access when
the error occurred.

 P_ERR_DATA stores the 32 bits of data used in the transfer on the WISHBONE bus that
terminated with an error.

http://www.opencores.org Rev 1.2 32

OpenCores PCI IP Core Specification 16.7.2004

The remainder of the write transaction that generated an error is discarded, any subsequent
transactions are processed normally.

3.4.4. PCI to WISHBONE Read Cycles
Read transactions initiated by the external PCI master are handled as Delayed Read transactions.
Delayed Read transactions must be completed on the WISHBONE bus before they can complete on
the PCI bus. The PCI Bridge supports only one Delayed Read request at a time. The Read
transaction starts when the external PCI master initiates a read transaction within an address range of
one of the Target images. The PCI Target module terminates it with Retry and stores address and
byte enable information. The WISHBONE master module performs a Single or Block Read cycle on
the WISHBONE bus and stores the data in the PCIR_FIFO. When external PCI master repeats the
read request, the PCI Target unit provides the data stored in the PCIR_FIFO.

Above, the section on addressing and images described how the PCI target unit decodes an address
to find out if it is the target for current read transaction. Handling Read transactions is encoded in
the PCI Image Control register (P_IMG_CTRLx). Several options exist to define the PCI target
unit’s behavior when images mapped to memory space are accessed:

 The PREF_EN bit indicates that the address range of the image is prefetchable regardless of the
Memory Read command used to access it. The PCI Bridge will prefetch data from the
WISHBONE bus when an image with PREF_EN bit set is accessed.

 If the PCI Target is accessed using the Memory Read Line or Memory Read Multiple commands,
the memory space is assumed to be prefetchable. The PCI Bridge will prefetch the read data
from the WISHBONE bus regardless of the value of PREF_EN bit.

 Non-prefetchable address space is assumed for the following conditions:

 Read accesses to I/O mapped address space are always non-prefetched.

 The PCI initiator requests a Single Read transaction (Memory Read command), and the
PREF_EN bit is cleared.

The following table shows the PCI Target unit’s response to different PCI Read commands and
PREF_EN bit settings.

Address space
mapping of image

Bus command initiated
by PCI initiator

PREF_EN
bit value

Used cycle by
WISHBONE master

I/O I/O Read X Single Read
Memory Read 0 Single Read
Memory Read 1 Block Read (1 cache line)
Memory Read Line X Block Read (1 cache line)

Memory

Memory Read Multiple X Block Read (full FIFO)

Table 3.7: Bus command encoding for Read cycles through PCI target module

http://www.opencores.org Rev 1.2 33

OpenCores PCI IP Core Specification 16.7.2004

Single Read cycles are performed in one data phase on the WISHBONE bus. The WISHBONE
Master module reads only the bytes requested by the external PCI Master – it activates only those
SEL_O(3:0) lines that correspond to active (BE#) lines during the read request on the PCI bus.

All prefetchable Delayed Read transactions from memory address space are performed as Block
Read cycles. All byte enable lines are active during Block Read cycles on the WISHBONE bus. The
WISHBONE master module reads data from the external WISHBONE slave and puts it into
PCIR_FIFO. It finishes a Block Read cycle and releases the WISHBONE bus if any of the following
conditions occurs:

 The requested quantity of data was stored in the PCIR_FIFO.

 PCIR_FIFO is full.

 The WISHBONE slave terminates the cycle with Error or Retry.

When the PCI initiator retries this Read transaction, data is ready and the PCI target module pulls out
data from PCIR_FIFO and provides it on the PCI bus.

Any data not read from the PCIR_FIFO is flushed immediately after the read transaction is finished
on the PCI bus.

If PCIR_FIFO becomes empty while the read transaction is completing on the PCI bus, the PCI
Target module terminates with Target Disconnect. The external PCI Master must repeat the read
request if it wants to read more data.

WISHBONE Slave terminations during read transfers are handled in the following manner:

 Acknowledge is a normal termination during which the transfer occurs. The read data is stored
in the PCIR_FIFO and waits to be fetched by external PCI Master.

 Retry is a normal termination during which the transfer does not occur. If the Retry termination
is received during the first attempted read transfer, then the WISHBONE Master module retries
until some other termination is received.

 Error termination is stored in the PCIR_FIFO. The read cycle is not retried on the
WISHBONE bus. When the external PCI Master repeats the read request on the PCI Bus, the
PCI Target module terminates with Target Abort.

The PCI target unit abnormally terminates a read transfer with Target Abort without any access to
the WISHBONE bus, if the external PCI master initiates a read transaction with non-valid
combination of AD(1:0) and BE#(3:0) when accessing the I/O mapped image.

3.4.5. WISHBONE SoC Interconnection Rev. B3 support

Since the release of WISHBONE SoC bus specification Rel. B3, the out of specification
identification of serial Block cycles is no longer necessary. The following table specifies what kind of
Registered Feedback cycle the WISHBONE Master Interface initiates on the WISHBONE bus for
different kinds of PCI transactions.

PCI Bus Transaction WISHBONE Master Cycle Type

http://www.opencores.org Rev 1.2 34

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 35

PCI Bus Transaction WISHBONE Master Cycle Type
Single Write Transfer “End-Of-Burst”
Burst Write Transfer “Incrementing Linear Burst Cycle” – see Note below
Single Read Request “End-Of-Burst”
Prefetched Read Request “Incrementing Linear Burst Cycle”

Table 3.8 - WISHBONE Master Registered Feedback cycle support

Note: It is not common for PCI devices to change byte enable (BE#) lines during burst write
transfers, but it is allowed. The WISHBONE Registered Feedback cycles’ specification does not
allow the byte enable (SEL_O(3:0)) lines to change between transfers in the same burst cycle.
Therefore, the WISHBONE Master interface breaks up the PCI burst write transactions into smaller
burst or single cycles on the WISHBONE bus, if the byte enables change between the dataphases of
the PCI burst write transfer.

3.5. Transaction Ordering
In order to satisfy PCI transaction ordering rules, the following functionality is implemented:

1. When the WISHBONE slave unit receives a Read request and no other Delayed Read request or
completion is pending, it latches address and byte enable information and terminates the cycle
with Retry.

2. After receiving a Read request, the WISHBONE slave unit locks out any non-configuration
space access. (All requests to the WISHBONE slave unit are terminated with Retry.)

3. The PCI master module processes Posted Write cycles until WBW_FIFO is empty.

4. The PCI master module performs a requested Read transaction on the PCI bus.

5. When a Read transaction is finished on the PCI bus, it becomes a Delayed Read completion and
WISHBONE Slave unit can accept Posted Write cycles.

6. The PCI target module retries all non-configuration space accesses from the PCI bus.

7. The WISHBONE Master module processes all Posted Writes until PCIW_FIFO is empty.

8. The WISHBONE slave unit allows a Delayed Read completion to finish on the WISHBONE
bus.

9. When the PCI Target unit receives a Read request and no other Delayed Read request or
completion is pending, it latches address and byte enable information and terminates the cycle
with Retry.

10. After receiving a Read request, the PCI target unit locks out any non-configuration space access.
(All requests to the PCI target unit are terminated with Retry.)

11. The WISHBONE master module processes Posted Write cycles until PCIW_FIFO is empty.

12. The WISHBONE master module performs a requested Read transaction on the WISHBONE
bus.

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

13. When a Read transaction is finished on the WISHBONE bus, it becomes a Delayed Read
completion and PCI target unit can accept Posted Write cycles.

14. The WISHBONE slave module retries all non-configuration space accesses from the
WISHBONE bus.

15. The PCI Master module processes all Posted Writes until WBW_FIFO is empty.

16. The PCI target unit allows a Delayed Read completion to finish on the PCI bus.

3.6. PCI Bus Parity generation and checking
Parity monitoring and generation is required by all PCI agents according to the PCI Local Bus
Specification. The PCI Bridge core generates even parity across AD, C/BE# and PAR signals during:

 the address phase initiated by the internal PCI master module.

 all of the data phases of the internal PCI master module initiated write transactions.

 all of the data phases of the external PCI master initiated read transactions.

The PCI Bridge core monitors for even parity across AD, C/BE# and PAR signals during:

 the first or second address phase initiated by the external PCI master.

 all of the data phases of the internal PCI master module initiated read transactions.

 all of the data phases of the external PCI master initiated write transactions.

The PCI Bridge responds to detected or reported parity errors as specified in the PCI Local Bus
Specification. It does not implement any additional functionality, such as terminating the transactions
etc..

3.7. Interrupts
The PCI IP core is capable of generating interrupts in response to different events. Interrupt Control
and Interrupt Status registers control the generation of interrupt requests. If the core is implemented
as a guest bridge, interrupts are requested on the PCI bus through assertion of the INTA# pin; if it is
implemented as a host, they are reported on the WISHBONE bus through assertion of the INTA_O
pin. The Interrupt Control register is used for enabling/disabling interrupts originating from
different sources. The Interrupt Status register is used to determine the source of an interrupt and to
clear interrupt requests.

The software must locate and clear the source of an interrupt request before clearing status bits in the
Interrupt Status register.

http://www.opencores.org Rev 1.2 36

OpenCores PCI IP Core Specification 16.7.2004

3.8. Compact PCI Hot Swap support
The support for Hot Swap is currently supported for GUEST implementations only.

The I/O signal and register interface for the Compact PCI Hot Swap support is designed in
accordance to the CompactPCI Hot Swap Specification R2.0. The PCI Bridge RTL design includes the
following additional I/O signals required by the Hot Swap specification:

 LED# output – controlled by pci_cpci_hs_led_o and pci_cpci_hs_led_oe_o.

 ENUM# output – controlled by pci_cpci_hs_enum_o and pci_cpci_hs_enum_oe_o.

 Handle Switch input – connected to pci_cpci_hs_es_i.

The PCI Bridge implements Programming Interface 0, as specified in the CompactPCI Hot Swap
Specification.

The PCI Bridge also supports the register interface required by the CompactPCI Hot Swap Specification.
The required register interface is implemented in the first 256 bytes of the bridge’s configuration
space – accessible via configuration transactions or memory transactions using PCI Base Address 0
range. The following changes in the Configuration Space can be observed, when the Hot Swap
functionality is implemented:

 Bit 4 in the Status register of PCI configuration header (offset 0x6) is hardwired to value of 1.

 Capabilities Pointer in the PCI configuration header is set to the value of 0x80.

 The Hot Swap Control and Status Register is implemented on offset 0x80.

3.8.1. LED# output functional description
This is active low output signal with output enable. The PCI Bridge never drives this signal to
inactive state – e.g. pci_cpci_hs_led_o is hardwired to the value of 0, while the PCI Bridge controls the
value of pci_cpci_hs_led_oe_o to turn the blue led on or off. Open drain or output pad with output
enable control can be used to drive the LED# signal. The active value for the pci_cpci_hs_led_oe_o is
selected via the pci_user_constants.v file. See Appendix A for more information.

The PCI Bridge will activate the LED# output signal by asserting pci_cpci_hs_led_oe_o on the
following conditions:

 pci_rst_i input signal is asserted (low).

 pci_rst_i input signal is de-asserted (high) and the power on configuration is in progress (when
Serial Power On Configuration Interface is implemented).

 pci_rst_i input signal is de-asserted (high) and software writes a value of 1 to the LOO bit, located
in the Hot Swap Control and Status Register.

http://www.opencores.org Rev 1.2 37

OpenCores PCI IP Core Specification 16.7.2004

3.8.2. ENUM# output functional description
This is active low output signal with output enable. The PCI Bridge never drives this signal to
inactive state – e.g. pci_cpci_hs_enum_o is hardwired to the value of 0, while the PCI Bridge controls
the value of pci_cpci_hs_enum_oe_o to assert or tri-state the ENUM# output signal. The active value
for the pci_cpci_hs_enum_oe_o is selected via the pci_user_constants.v file. See Appendix A for more
information. The PCI Bridge will activate the ENUM# output signal by asserting
pci_cpci_hs_enum_oe_o if both of the following conditions apply:

 pci_rst_i input signal is de-asserted (high).

 either INS or EXT bit in the Hot Swap Control and Status Register is set (1) and EIM bit is
cleared(0).

3.8.3. Handle Switch input functional description
The PCI Bridge constantly monitors the pci_cpci_hs_es_i input signal for any changes after pci_rst_i is
de-asserted (high). The PCI Bridge interprets the low value on this signal as Handle Switch Unlocked
indication and a high value as Handle Switch Locked indication. The state of the Handle Switch
input does not influence the PCI Bridge’s response to PCI bus transactions in any way. The assumed
state of the switch after the PCI reset is Unlocked state. The signal must remain in the same state for
at least 2^^16 clock cycles for 33MHz implementation and 2^^17 clock cycles for 66MHz
implementation in order for PCI Bridge to process the switch state change. This accounts for the
required de-bounce period for handle switch signal, specified in the CompactPCI Hot Swap Specification.

The PCI Bridge handles the Handle Switch input signal values in the following manner:

 During the insertion process (after the pci_rst_i is de-asserted)

o the PCI Bridge performs a power on configuration, if the Serial Power On
Configuration Interface is implemented. It does not respond to any PCI bus
transactions during this time. It also does not respond to pci_cpci_hs_es_i value
change. The de-bounce circuitry for pci_cpci_hs_es_i is enabled.

o the power on configuration completes or is not implemented – the PCI Bridge waits
for handle switch to go into Locked position (pci_cpci_hs_es_i high) or for the de-
bounce period to expire (see text above). The PCI Bridge responds to valid PCI bus
transactions during this time.

o the pci_cpci_hs_es_i has been in high state (switch Locked) for at least the de-bounce
period – the PCI Bridge sets the INS bit in the Hot Swap Control and Status
Register to the value of 1. It ignores any further changes on the pci_cpci_hs_es_i until
the INS bit is cleared.

 During the extraction process (the pci_rst_i is de-asserted, software has already cleared the INS
bit)

o if the pci_cpci_hs_es_i signal has been low (Handle Switch Unlocked) for at least the
de-bounce period, the PCI Bridge sets the EXT bit in the Hot Swap Control and
Status Register.

http://www.opencores.org Rev 1.2 38

OpenCores PCI IP Core Specification 16.7.2004

o if EXT bit in the Hot Swap Control and Status Register is set, the PCI Bridge
ignores any changes on the pci_cpci_hs_es_i signal. The de-bounce circuitry is active
and the PCI Bridge responds to any valid PCI bus transaction.

o if software clears the EXT bit in the Hot Swap Control and Status Register and
Handle Switch has been Locked for at least the de-bounce period (pci_cpci_hs_es_i
high), the PCI Bridge sets the INS bit in the same register.

3.8.4. PCI Device Status Register
Bit 4 in this register, located in the PCI Configuration Header, is hardwired to the value of 1, when
Hot Swap implementation is selected. This indicates to the device independent software that
Capabilities Pointer and Capabilities List are implemented.

3.8.5. Capabilities Pointer
When the device independent software determines the presence of the Capabilities List, it reads the
Capabilities List Pointer register, to obtain the offset of the first item in the linked list of additional
capabilities of the device. The PCI Bridge hardwires the value of Capabilities List Pointer to the value
of 0x80, which is an offset of the Hot Swap Control and Status Register.

3.8.6. Hot Swap Control and Status Register
The register is implemented in the Configuration Space as part of the Capability List, specified in the
PCI Local Bus Specification, Revision 2.2. It is located on the offset 0x80 and pointed to by Capabilities
Pointer.

Pointer to Next Capability

INS

0x00

Capability ID

07

815

EXT PI LOO 0 EIM 0

1617181920212223

2431

Figure 3.6: Hot Swap Control and Status Register layout

Bit # Name Description
31 – 24 HS_CSR Reserved Reserved field. Write as zeros, reads return zeros.

http://www.opencores.org Rev 1.2 39

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 40

Bit # Name Description
23 ENUM# Status –

Insertion
If set, it indicates that the PCI Bridge has been plugged into

It is set after the PCI reset is released, PCI Bridge has

is in the Locked position. It is also set when EXT bit has

locked position. This bit triggers the assertion of the ENUM#
output, if EIM bit is 0.

22 ENUM# Status –
Extraction

If set, it indicates that the operator wishes to unplug the PCI
Bridge from the system. Cleared with writing a 1 to its
position.
This bit is set after the software clears the INS bit and the

of the ENUM# output, if EIM bit is 0.

21 – 20 Programming Since the PCI Bridge implements Programming Interface 0,
this field is hardwired to 0b00.

19 Led On/Off Turns the blue led on or off during normal operation.
1 – LED# output active (LED on)
0 – LED# output inactive (LED off)

18 Reserved Write as 0, reads return 0.
17 ENUM# signal mask Prevents the assertion of ENUM# output, even if one of INS

or EXT bits is set.
16 Reserved Write as 0, reads return 0.
15 – 8 Next Item 0x00 – Pointer to the next capability. A value of 0 means no

other capabilities implemented.
7 – 0 Capability ID 0x06 – This ID number is assigned to CompactPCI Hot

Swap capability.

the system. Cleared with writing a 1 to its position.

finished the configuration procedure and the Handle Switch

been cleared by software and the Handle Switch returned to

Handle Switch is in open state. This bit triggers the assertion

Interface

Table 3.9: Hot Swap Control and Status Register field descriptions

3.9. Serial Power On Configuration Interface
The Serial Power On Configuration Interface is currently implemented only for the GUEST
implementations of the PCI Bridge. This is a simple 2 wire serial interface used after local PCI bus
reset is released. The PCI Bridge Core reads configuration data from the external serial EPROM and
loads it into the configuration registers. While configuration loading procedure is in progress, the PCI
Bridge does not respond to any PCI transactions, not even the configuration cycles. This qualifies the
PCI Bridge as the Initially not Responding Device by the CompactPCI Hot Swap Specification. All of the PCI
output pads are in HighZ state during the configuration loading procedure – e.g. all pci_*_oe_o signals
are driven to their inactive state.

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

The Serial Power On Configuration Interface supports read and write operations to I2C compatible
serial EPROM devices. The interface cannot be connected to the I2C bus, since it does not support
arbitration and synchronization between multiple master devices. You can connect serial EPROMs
with sizes ranging from 2 to 16 kbits. Both 66 and 33 MHz implementations have the transfer rate of
100kbps. In case of 66MHz implementation operating at 33MHz clock, the transfer rate will be
50kbps.

3.9.1. Serial EPROM Configuration Data Organization
When using Serial Power On Configuration Interface, the external serial EPROM must be
programmed as described in this chapter, otherwise the PCI Bridge will not function properly. The
configuration data must start at address 0. The following figure depicts how the PCI Bridge
interprets the bytes read from the serial EPROM.

http://www.opencores.org Rev 1.2 41

OpenCores PCI IP Core Specification 16.7.2004

REGISTER NUMBER 0

DATA BYTE 0

DATA BYTE 1

DATA BYTE 2

DATA BYTE 3

REGISTER NUMBER 1

DATA BYTE 0

DATA BYTE 1

DATA BYTE 2

DATA BYTE 3

.

.

.

.

.

REGISTER NUMBER m

DATA BYTE 0

DATA BYTE 1

DATA BYTE 2

DATA BYTE 3

REGISTER NUMBER n = 0xFF

X

REGISTER NUMBER 2

0x0

0x1

m * 5

0xA

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

m * 5 + 1

m * 5 + 2

m * 5 + 3

m * 5 + 4

n * 5

Figure 3.7: Serial EPROM Data organization

During the Power On Configuration Sequence the PCI Bridge reads bytes from sequential addresses,
starting at address 0x0. The first byte read is treated as the register number byte, followed by four
data bytes, followed by second register number byte, followed by four data bytes and so on, until the
register number byte with the value of 0xFF is read from the EPROM. When the PCI Bridge
encounters the REGISTER NUMBER byte with the value of 0xFF, it stops the Power On
Configuration Sequence. The value of 0xFF on the address 0x0 is valid and means that configuration

http://www.opencores.org Rev 1.2 42

OpenCores PCI IP Core Specification 16.7.2004

sequence will complete successfully without configuring any of the PCI Bridge Configuration
registers’.

The bytes of REGISTER NUMBER type are used to identify the configuration space DWORD
offset, to which the following four bytes of DATA type will be written to. For example, if you want
to load a value into the P_AM1 register (offset 0x118) during power up, you have to program the
REGISTER NUMBER byte to the value of 0x46 and the following four bytes to the value you want
for P_AM1 register to have after power up. Basically, you have to shift the register offset by two bits
to the right, to get the correct register number for it.

The bytes of DATA type are used to write the initial value to the configuration register selected by
the REGISTER NUMBER byte in the following manner:

 DATA BYTE 0 is used to write bits [7:0] of the selected register.

 DATA BYTE 1 is used to write bits [15:8] of the selected register.

 DATA BYTE 2 is used to write bits [23:16] of the selected register.

 DATA BYTE 3 is used to write bits [31:24] of the selected register.

Make sure to program a value of 0x0 for reserved bits (or bytes) of the selected register. Even though
most of the registers don’t need all four bytes to be programmed, you must program all four bytes in
the EPROM. This way the programming structure of the EPROM is maintained for the complete
configuration space.

3.9.2. Power On Configuration Sequence
After PCI Reset signal is de-asserted, the following Sequential Read sequence can be observed on the
Serial Power On Configuration Interface, if implemented:

1. The PCI Bridge transmits the control byte with value 0b10100000, MSB first. If acknowledge
condition is not received, the sequence stops and NO_ACK bit in the Serial EPROM Control
and Status Register is set.

2. The PCI Bridge transmits the data byte with value 0x00. If acknowledge is not received, the
sequence stops and NO_ACK bit in the Serial EPROM Control and Status Register is set. This
sets EPROM’s address counter to the value of 0.

3. After acknowledge in step 2 is received, the PCI Bridge immediately sends another control byte,
before generating the stop condition on the interface. The value of the control byte is
0b10100001. The EPROM must acknowledge this byte, otherwise the sequence is stopped and
NO_ACK bit in the Serial EPROM Control and Status Register is set. This puts the serial
EPROM into the read mode.

4. The EPROM starts transmitting the REGISTER NUMBER and DATA bytes and the PCI
Bridge receives them and writes the data into the configuration registers. The PCI Bridge
acknowledges all bytes until the REGISTER NUMBER byte with the value of 0xFF is read from
the EPROM. The PCI Bridge does not acknowledge this byte and generates the stop condition,
which signals to external EPROM that it must stop transmitting the data. The configuration
sequence has now successfully completed.

http://www.opencores.org Rev 1.2 43

OpenCores PCI IP Core Specification 16.7.2004

After the completion of the configuration sequence (successful or unsuccessful), the PCI Bridge
starts responding to valid PCI transactions.

3.9.3. Serial EPROM Control and Status Register
This register is used to determine the result of the latest serial EPROM operation as well as for
initiating read and write operations to/from external EPROM during normal operation.

Address[7:0]

0x00

Read/Write Data

07

815

2430

Read

1618

0x00

1923

25

Write

Address[10:8]

2631

NO
ACK

Figure 3.8: 3.9.3. Serial EPROM Control and Status Register layout

The register is located at the offset 0x3FC (register number 0xFF), which prevents the register to be
accessed during the power on configuration sequence. Reset value is 0x00000000. When initialization
completes and the PCI Bridge starts responding to the PCI bus transactions, the NO ACK bit can be
set, which means that the Power On Configuration Sequence was not completed successfully. The
register cannot be accessed using the PCI Configuration Read/Write commands. The PCI Target
Base Address 0 must first be configured to enable accesses to this register.

Bit # Name Description
31 NO ACK Set when serial EPROM does not send the acknowledge bit

that serial EPROM is not present, is busy during write or
erase operation or is write protected. The bit is cleared with
writing a 1 to its location.

30-26 Reserved Write as 0, reads return 0.
25 Write Software sets this bit when it wants to initiate the byte write

sequence to the external serial EPROM. The bit is cleared
automatically when the write sequence is completed. Do not

after control or data byte is transmitted. This could mean

http://www.opencores.org Rev 1.2 44

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 45

Bit # Name Description
change the contents of the register while this bit is set.

24 Read Software sets this bit when it wants to initiate the random
read sequence to the external serial EPROM. The bit is
cleared automatically when the read sequence is completed.
Do not change the contents of the register while this bit
is set.

23-19 Reserved Write as 0, reads return 0.
18-8 Byte Address Software sets this field to the address of the byte in the

serial EPROM it wants to read or write.
7-0 Byte Value Software puts the byte value to this field when initiating the

write sequence. The data retrieved during the read

sequence completes.
sequence can be obtained from this field, after the read

Table 3.10: Serial EPROM Control and Status Register fields

You must not set Write and Read bits to the value of 1 simultaneously, otherwise undefined
behaviour can occur.

3.9.4. Initiating EPROM Byte Write Sequence
The software must follow this steps to program a single byte in the serial EPROM attached to the
PCI Bridge:

1. Write appropriate value into the Serial EPROM Control and Status Register (byte value into the
Byte Value field, byte address into the Byte Address field and Write bit set to 1).

2. Poll the Write bit in the Serial EPROM Control and Status Register until it is clear (0). When
Write and NO ACK bits are both read as 0, the write sequence completed successfully.

After Write bit in the Serial EPROM Control and Status Register is set, the PCI Bridge performs the
following sequence:

1. Transmits a START condition on the serial interface.

2. Transmits 0b1010 sequence, followed by the 3 most significant bits of the Byte Address,
followed by 0 (write). If the EPROM responds with the ACK condition, the PCI Bridge
continues with step 3, otherwise it stops transmitting, sets the NO ACK bit and clears the Write
bit, both located in Serial EPROM Control and Status Register.

3. Transmits 8 least significant bits of the Byte Address. If the EPROM responds with the ACK
condition, the PCI Bridge continues with step 4, otherwise it stops transmitting, sets the NO
ACK bit and clears the Write bit, both located in Serial EPROM Control and Status Register.

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

4. Transmits 8 bits of the Byte Value. If the EPROM responds with the ACK condition, the PCI
Bridge continues with step 5, otherwise it stops transmitting, sets the NO ACK bit and clears the
Write bit, both located in Serial EPROM Control and Status Register.

5. Transmits the STOP condition, clears Write bit in the Serial EPROM Control and Status
Register. The write sequence completed successfully.

Usually, it takes some time for EPROMs to program a new byte value into their array. During this
time, they do not respond to accesses. Therefore, you will probably have to initiate a write sequence
more that once, when programming multiple bytes in the EPROM. You have to repeat a write until it
finishes successfully (Write bit clear, NO ACK bit clear) or wait appropriate amount of time, before
initiating subsequent byte write sequence.

3.9.5. Initiating EPROM Byte Read Sequence
The software must follow this steps to read a single byte from the serial EPROM attached to the PCI
Bridge:

1. Write appropriate value into the Serial EPROM Control and Status Register (byte address into
the Byte Address field and Read bit set to 1).

2. Poll the Read bit in the Serial EPROM Control and Status Register until it is clear (0). When
Read and NO ACK bits are both read as 0, the Byte Value field contains the data read from the
external serial EPROM.

After Read bit in the Serial EPROM Control and Status Register is set, the PCI Bridge performs the
following sequence:

1. Transmits a START condition on the serial interface.

2. Transmits 0b1010 sequence, followed by the 3 most significant bits of the Byte Address,
followed by 0 (write). If the EPROM responds with the ACK condition, the PCI Bridge
continues with step 3, otherwise it stops transmitting, sets the NO ACK bit and clears the Read
bit, both located in Serial EPROM Control and Status Register.

3. Transmits 8 least significant bits of the Byte Address. If the EPROM responds with the ACK
condition, the PCI Bridge continues with step 4, otherwise it stops transmitting, sets the NO
ACK bit and clears the Read bit, both located in Serial EPROM Control and Status Register.

4. Transmits a START condition on the serial interface.

5. Transmits 0b1010 sequence, followed by the 3 most significant bits of the Byte Address,
followed by 1 (read). If the EPROM responds with the ACK condition, the PCI Bridge
continues with step 6, otherwise it does not receive any data, sets the NO ACK bit and clears the
Read bit, both located in Serial EPROM Control and Status Register.

http://www.opencores.org Rev 1.2 46

OpenCores PCI IP Core Specification 16.7.2004

6. Shifts in 8 bits transmitted by the serial EPROM and stores them into the Byte Value field in the
Serial EPROM Control and Status Register.

7. Transmits a NO ACK condition.

8. Transmits a STOP condition and clears the Read bit in the Serial EPROM Control and Status
Register. The read sequence completed successfully.

http://www.opencores.org Rev 1.2 47

OpenCores PCI IP Core Specification 16.7.2004

4.
Registers

This section describes all Control and Status registers inside the PCI core, also called configuration
space. It consists of the PCI Configuration Space Header (Type 00h) and device specific
Configuration Space registers. The Width field specifies the number of bits in the register, Access
specifies the valid access types, R/W stands for Read and Write access, and R for Read Only access.

4.1. Register List and Description

Name Address Width Access Description
PCI Configuration Space 0x000 – 0x0FF PCI Specification Rev. 2.2

configuration space
P_IMG_CTRL0* 0x100 32 R/W PCI Image0 Control register
P_BA0* 0x010 and

0x104
32 R/W PCI Image0 Base Address

register
P_AM0* 0x108 32 R/W PCI Image0 Address Mask

register
P_TA0* 0x10C 32 R/W PCI Image0 Translation

Address register
P_IMG_CTRL1 0x110 32 R/W PCI Image1 Control register
P_BA1 0x014 and

0x114
32 R/W PCI Image1 Base Address

register
P_AM1 0x118 32 R/W PCI Image1 Address Mask

register
P_TA1 0x11C 32 R/W PCI Image1 Translation

Address register
P_IMG_CTRL2 0x120 32 R/W PCI Image2 Control register
P_BA2 0x018 and

0x124
32 R/W PCI Image2 Base Address

register
P_AM2 0x128 32 R/W PCI Image2 Address Mask

register

http://www.opencores.org Rev 1.2 48

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 49

Name Address Width Access Description
P_TA2 0x12C 32 R/W PCI Image2 Translation

Address register
P_IMG_CTRL3 0x130 32 R/W PCI Image3 Control register
P_BA3 0x01C and

0x134
32 R/W PCI Image3 Base Address

register
P_AM3 0x138 32 R/W PCI Image3 Address Mask

register
P_TA3 0x13C 32 R/W PCI Image3 Translation

Address register
P_IMG_CTRL4 0x140 32 R/W PCI Image4 Control register
P_BA4 0x020 and

0x144
32 R/W PCI Image4 Base Address

register
P_AM4 0x148 32 R/W PCI Image4 Address Mask

register
P_TA4 0x14C 32 R/W PCI Image4 Translation

Address register
P_IMG_CTRL5 0x150 32 R/W PCI Image5 Control register
P_BA5 0x024 and

0x154
32 R/W PCI Image5 Base Address

register
P_AM5 0x158 32 R/W PCI Image5 Address Mask

register
P_TA5 0x15C 32 R/W PCI Image5 Translation

Address register
P_ERR_CS 0x160 32 R/W PCI Error Control and

Status register
P_ERR_ADDR 0x164 32 R PCI Erroneous Address

register
P_ERR_DATA 0x168 32 R PCI Erroneous Data

register

WB_CONF_SPC_BAR
(Base for WISHBONE bus)

0x180 32 R WISHBONE Configuration
Space Base Address

W_IMG_CTRL1 0x184 32 R/W WISHBONE Image1
Control register

W_BA1 0x188 32 R/W WISHBONE Image1 Base
Address register

W_AM1 0x18C 32 R/W WISHBONE Image1
Address Mask register

W_TA1 0x190 32 R/W WISHBONE Image1
rTranslation Address registe

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 50

Name Address Width Access Description
W_IMG_CTRL2 0x194 32 R/W WISHBONE Image2

Control register
W_BA2 0x198 32 R/W WISHBONE Image2 Base

Address register
W_AM2 0x19C 32 R/W WISHBONE Image2

Address Mask register
W_TA2 0x1A0 32 R/W WISHBONE Image2

r
W_IMG_CTRL3 0x1A4 32 R/W WISHBONE Image3

Control register
W_BA3 0x1A8 32 R/W WISHBONE Image3 Base

Address register
W_AM3 0x1AC 32 R/W WISHBONE Image3

Address Mask register
W_TA3 0x1B0 32 R/W WISHBONE Image3

r
W_IMG_CTRL4 0x1B4 32 R/W WISHBONE Image4

Control register
W_BA4 0x1B8 32 R/W WISHBONE Image4 Base

Address register
W_AM4 0x1BC 32 R/W WISHBONE Image4

Address Mask register
W_TA4 0x1C0 32 R/W WISHBONE Image4

r
W_IMG_CTRL5 0x1C4 32 R/W WISHBONE Image5

Control register
W_BA5 0x1C8 32 R/W WISHBONE Image5 Base

Address register
W_AM5 0x1CC 32 R/W WISHBONE Image5

Address Mask register
W_TA5 0x1D0 32 R/W WISHBONE Image5

r
W_ERR_CS 0x1D4 32 R/W WISHBONE Error Control

and Status register
W_ERR_ADDR 0x1D8 32 R WISHBONE Erroneous

Address register
W_ERR_DATA 0x1DC 32 R WISHBONE Erroneous

Data register
CNF_ADDR 0x1E0 32 R/W Configuration Cycle

register
CNF_DATA 0x1E4 32 R/W Configuration Cycle

Generation Data register

Translation Address registe

Translation Address registe

Translation Address registe

Translation Address registe

Generation Address

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 51

Name Address Width Access Description
INT_ACK 0x1E8 32 R Interrupt Acknowledge

register
ICR 0x1EC 32 R/W Interrupt Control register
ISR 0x1F0 32 R/W Interrupt Status register
* − For GUEST implementation of the bridge, only P_BA0 is implemented, since image 0 is used to
access the configuration registers. In HOST implementation, image 0 can be used to access
WISHBONE address space. If so, all PCI Target image 0 registers are implemented.

4.1.1. WISHBONE Slave Unit Control & Status
The registers of the WISHBONE slave unit start at offset 0x180.

4.1.1.1 WISHBONE Configuration Space BAR

Bit # Access Reset Description
32 R * This register stores the base address to access core registers

from the WISHBONE bus. It is read only.

* − Value at reset is defined before implementation in parameter file

Table 4.1: WISHBONE configuration space Base Address register

Register layout:
31 24

BA
23 16

BA
15 12 11 8

BA 0x0
7 0

0x00

Figure 4.1: WISHBONE configuration space Base Address register layout

The register is read only. Bits 31 – 12 define the WISHBONE configuration space base address. Bits
11 – 0 are always 0 because the minimum image size is 4KB.

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

4.1.1.2 WISHBONE Image Control and Address Registers
Five configurable WISHBONE slave images can be implemented. Each of these images implements
its own set of registers. Image Control and Address registers are the same for all five images.

Image Control registers: W_IMG_CTRL1 - W_IMG_CTRL5

Bit # Access Reset Description
32 RW 0x00000000 The register value controls the WISHBONE slave unit

behaviour when an image is selected and enabled.

Table 4.2: WISHBONE Image Control register

Register layout:
31 24

0x00
23 16

0x00
15 8

0x00
7 4 3 2 1 0

0x0 0 AT_EN PREF_EN MRL_EN

Figure 4.2: WISHBONE Image Control register layout

Bit descriptions:

Bit # Name Description
31 – 3 N/A Not used
2 Address Translation

Enable
If this bit is set, address translation for the corresponding
image is enabled.

1 Prefetch enable This bit marks address space occupied by an image as
prefetchable. Don’t care for I/O mapped images.

0 Memory Read Line
Enable

When set, this bit enables the usage of memory access
lock

read requests. If the prefetch enable bit is also set, read will
be performed using Memory Read Multiple command,

this bit is cleared, the PCI Master always uses the Memory

optimizing commands for WISHBONE Slave unit serial b

otherwise the Memory Read Line command will be used. If

Read command for serial block read requests.

Table 4.3: WISHBONE Image Control register bit descriptions

Base Address registers: W_BA1- W_BA5

http://www.opencores.org Rev 1.2 52

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 53

Width Access Reset Description
32 RW 0x00000000 Each of these registers stores the base address of

on the type of address space it is mapped to.
corresponding WISHBONE image and the information

Table 4.4: WISHBONE Base Address register

Register layout:
31 24

BA
23 16

BA
15 12 11 8

BA 0x0
7 4 3 2 1 0

0x0 0 0 0 ASM

Figure 4.3: WISHBONE Base Address register layout

Bit descriptions:

Bit # Name Description
31 – 12 Base Address Image’s base address.
11-1 N/A Because the minimum block size is 4KB, this field is

reserved.
0 Address Space

Mapping
This bit defines to which address space an image is
mapped:
0 – Memory space mapping
1 – I/O space mapping

Table 4.5: WISHBONE Base Address register bit descriptions

Address Mask registers: W_AM1 – W_AM5

Width Access Reset Description
32 RW 0x00000000 The Address Mask selects the bits of the incoming

the corresponding W_BA register when decoding an

bits of the incoming WISHBONE address that are

register before accessing the PCI bus, if address
translation is enabled.

WISHBONE address that are compared to the value in

access to the WISHBONE Slave unit. It also selects the

replaced with the value in the corresponding W_TA

Table 4.6: WISHBONE Address Mask register

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

Register layout:
31 30 24

IMG_EN AM
23 16

AM
15 12 11 8

AM 0x0
7 0

0x00

Figure 4.4: WISHBONE Address Mask register layout

Bit descriptions:

Bit # Name Description
31 Image Enable &

Address Mask (31)
This bit must be set to enable an image. If 0, the
corresponding WISHBONE image is disabled.

30 – 12 Address Mask The remainder of the Address Mask.
11-0 N/A Because the minimum block size is 4KB, this field is always

0x000 (the twelve lower address lines are never compared
with the W_BAx register value).

Table 4.7: WISHBONE Address Mask register bit descriptions

Translation Address registers: W_TA1 – W_TA5

Width Access Reset Description
32 RW 0x00000000 If address translation is enabled, the incoming

corresponding W_AM register are replaced with the
WISHBONE address bits selected with the value in the

value in this register.

Table 4.8: WISHBONE Translation Address register

Register layout:
31 24

TA
23 16

TA
15 12 11 8

TA 0x0
7 0

0x00

http://www.opencores.org Rev 1.2 54

OpenCores PCI IP Core Specification 16.7.2004

Figure 4.5: WISHBONE Translation Address register layout

Bit descriptions:

Bit # Name Description
31 – 12 Translation Address This register value is used when address translation is enabled.

11-0 N/A Because the minimum block size is 4KB, this field is always
0x000 (the twelve lower address lines are never replaced).

Table 4.9: WISHBONE Translation Address register bit descriptions

4.1.2. PCI Target Unit Control & Status
Guest bridge implementation always provides R/W access to Configuration space by configuring the
Base Address 0 register. Other PCI agents are responsible for this by performing a Type 0
configuration cycle. Host bridge implementation can provide read-only access to Configuration
Space or can be set not to do that at all. This way, all six PCI Base Addresses can be used for
accessing the WISHBONE address space (see PCI IP Core Design document and chapter A.1,
which images are implemented in current design).

http://www.opencores.org Rev 1.2 55

OpenCores PCI IP Core Specification 16.7.2004

Device ID Vendor ID

Status Command

Class Code Revision ID

BIST Header Type Latency Timer Cache Line Size

Base Address Register #0

Base Address Register #1

Base Address Register #2

Base Address Register #3

Base Address Register #4

Base Address Register #5

CardBus CIS Pointer

Subsystem ID Subsystem Vendor ID

Expansion ROM Base Address

Cap List PointerReserved

Reserved

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

31 16 15 0

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Figure 4.6: PCI Configuration Space Header (Header type 00h)

All PCI-compliant devices must support Vendor ID, Device ID, Command, Status, Revision ID,
Class Code, and Header Type. The Header Type is type 00h, which defines the header structure of
Figure 4.6.

The configuration space header used for device identification includes the following:

 Vendor ID: This field identifies the manufacturer of the device. To ensure uniqueness, the PCI
SIG allocates valid vendor identifiers. 0xFFFFh is an invalid value for the Vendor ID.

 Device ID: This field identifies the particular device. It is allocated by the vendor.

 Revision ID: This register specifies a device specific revision identifier whose value is chosen by
the vendor. An acceptable value is zero. This field should be viewed as a vendor-defined
extension to the Device ID.

 Header Type: This byte identifies the layout of the second part of the predefined header
(beginning at byte 10h in configuration space) and also whether or not the device contains
multiple functions. Bit 7 in this register is used to identify a multi-functional device. If the bit is
0, the device is single-functional. If the bit is 1, it has multiple functions. Bits 6 through 0 identify
the layout of the second part of the predefined header.

http://www.opencores.org Rev 1.2 56

OpenCores PCI IP Core Specification 16.7.2004

 Class Code: The Class Code register is read only. It is used to identify the generic function of
the device and, in some cases, a specific register-level programming interface (see the PCI 2.2
Specification for detailed description).

The Command register serves device control functions. When 0, the device is logically disconnected
from the bus (except for configuration accesses). The following table shows bit descriptions.

Bit # Implemented Description
15 – 10 – Reserved
9 NO Fast Back-to-Back Enable. This optional Read/Write bit

transactions to different devices. A value of 1 indicates that
the master is allowed to generate fast back-to-back

back-to-back transactions are allowed only to the same
agent. The state after RST# is 0.

8 √ SERR# enable. A value of 0 disables the SERR# driver, a
value of 1 enables it. The state of this bit after RST# is 0.
Address parity errors are reported only if this bit and bit 6 are
1.

7 NO Stepping control. This bit is used to control whether or not a
device does address/data stepping. Devices that never do
stepping must hardwire this bit to 0.

6 √ Parity Error Response. This bit controls the device’s

normal action when a parity error is detected. If the bit is 0,
the device sets its detected parity error status bit (bit 15 in the
Status register) when an error is detected but does not assert
PERR# and continues normal operation. The state after
RST# is 0.

5 NO VGA Palette Snoop. This bit controls how VGA compatible
devices and graphics devices handle access to the VGA
Palette registers. When this bit is 1, palette snooping is

Write cycles and snoops the data).
4 NO Memory Write and Invalidate. This is an enable bit for using

1, masters may generate the command. When it is 0,
is

0.
3 NO Special cycles. Controls a device’s action on Special Cycle

operations. A value of 0 causes the device to ignore all

monitor Special Cycle operations. The state after RST# is 0.
2 √ Bus master. This bit controls the device’s ability to act as a

generating PCI accesses. A value of 1 allows the device to

controls whether or not a master can do fast back-to-back

transactions to different agents. A value of 0 means that fast

response to parity errors. If set, the device must take its

enabled (i.e. the device does not respond to Palette Register

the Memory Write and Invalidate command. When this bit is

Memory Write must be used instead. The state after RST

Special Cycle operations. A value of 1 allows the device to

master on the PCI bus. A value of 0 disables the device from

http://www.opencores.org Rev 1.2 57

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 58

Bit # Implemented Description
behave as a bus master. The state after RST# is 0.

1 √ Memory space. This bit controls the response to memory

value of 1 allows responding to memory space access. The
state after RST# is 0.

0 √ I/O space. This bit controls the response to I/O space access.
A value of 0 disables the device response. A value of 1

after RST# is 0.

space access. A value of 0 disables the device response. A

allows the device to respond to I/O space access. The state

Table 4.10: Command register of PCI configuration header

The Status register notes the device status. Reserved bits are read only and return 0 after reading. A 1
bit is reset whenever a 1 is written to a corresponding bit location. The following table provides a
description of the corresponding bits.

Bit descriptions:

Bit # Implemented Description
15 √ Detected Parity Error. The device must set this bit

whenever it detects a parity error, even if parity error

register).
14 √ Signaled System Error. This bit must be set whenever the

device asserts SERR#.
13 √ Received Master Abort. A master device must set this bit

whenever its transaction (except for special cycles) is
terminated with Master Abort. All master devices must
implement this bit.

12 √ Received Target Abort. A master device must set this bit
whenever its transaction is terminated with Target Abort.

11 √ Signalled Target Abort. A target device must set this bit
whenever it terminates a transaction with Target Abort.

10 – 9 √ DEVSEL timing: 00 – fast; 01 – medium; 10 – slow. These
bits are read-only and must indicate the slowest time that a

except Configuration Read and Configuration Write.
8 √ Master Data Parity Error. This bit is implemented by bus

masters only. It is set when three conditions are met: 1) The

observed PERR# asserted (on a Write cycle). 2) The agent
setting the bit acted as the bus master for the operation
during which the error occurred. 3) The parity error response
bit (Command register) is set.

handling is disabled (as controlled by bit 6 in the Command

device needs to assert DEVSEL# for any bus command,

bus agent asserted PERR# itself (on a Read cycle) or

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 59

Bit # Implemented Description
7 √ Fast Back-to-Back Capable. This optional read only bit

fast back-to-back transactions when the transactions do not
refer to the same agent.

6 – Reserved
5 √ 66 MHz capable. This optional read only bit indicates

A value of 1 indicates that the device is 66 MHz capable.
4 NO List of compatibilities. A value of zero indicates that no new

capabilities’ linked list is available. A value of one indicates
that the value read at offset 34h is a pointer in configuration
space to a linked list of new capabilities.

3 – 0 - Reserved

indicates whether or not the target is capable of accepting

whether or not this device is capable of running at 66 MHz.

Table 4.11: Status register of PCI configuration header

The following descriptions include only miscellaneous (device independent), already implemented
registers:

 The Cache Line Size register is used by WISHBONE Slave and PCI Target units for
prefetched read transactions. Valid values for this register are multiples of 4 (including 1). If
invalid value is written (including 0), then the value of 1 is assumed by both units and burst reads
are not performed.

 The Latency Timer register specifies the timer value in units of PCI bus clocks. After RST#,
the register value is 0.

 The Interrupt Line register tells to which input of the system interrupt controller(s) the
device’s interrupt pin is connected (the Design Document describes in detail how it is
implemented).

 The Interrupt Pin register tells which interrupt pin the device uses. A value of 1 corresponds to
INTA# and so on. The values from 05h to FFh are reserved.

 There are 6 Base Address registers in Configuration space Header. This registers can be
accessed in the PCI part of the Configuration space also. Each one of them consists of a 28-bit
base address for MEMORY mapping or a 30-bit base address for I/O mapping. Other bits are
control bits and described in the following table.

Bit descriptions:

Bit # Description
31 – 4 Base address (only the 20 MS bits can be implemented as R/W in the PCI Bridge

core)
3 Prefetchable
2 –1 Type: 00 – 32-bit address space; 01 – reserved; 10 – 64-bit address space; 11 –

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 60

Bit # Description
reserved

0 Memory space indicator = ‘0’ (always for MEMORY mapped space)!!!

Table 4.12: Base Address register of PCI configuration header for memory mapped space

Bit descriptions:

Bit # Description
31 – 2 Base address (only the 20 MS bits can be implemented as R/W in the PCI Bridge

core)
1 Reserved
0 I/O space indicator = ‘1’ (always for I/O mapped space)

Table 4.13: Base Address register of PCI configuration header for I/O mapped space

4.1.2.1 PCI Image Control and Address Registers
There are six possible configurable PCI target images. Each of these images implements its own set
of registers.

The only exception is the set of 4 PCI Image0 Control and Address registers, which is implemented
only when the PCI bridge is implemented as HOST and Image0 is used to access WB bus (see Table
4.15, Table 4.17, Table 4.19 and Table 4.21). Otherwise, there are five possible configurable PCI
target images (PCI Image1 – PCI Image5), while PCI Image0 Base Address register (P_BA0) is
implemented and used for access to the entire Configuration Space (see Table 4.14 and Figure 4.7).
The other 3 registers are not implemented and therefore cannot be written to (see also Configuration
Space Access for Host Bus Bridges and Addressing and Images of the PCI Target Unit).

Base Address Registers: P_BA0

Table 4.14: PCI Image0 Base Address register

Register layout:
31 24

BA

Width Access Reset Description
32 RW 0x00000000 This register stores the base address for accessing core

registers from the PCI bus.

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

23 16
BA

15 12 11 8
BA 0x0

7 0
0x00

Figure 4.7: PCI Image0 Base Address register layout – Image0 used for accessing the PCI
Configuration Space

Image Control registers: P_IMG_CTRL0 (P_IMG_CTRL1) – P_IMG_CTRL5

Width Access Reset Description
32 RW 0x00000000 The register value controls the PCI target unit behavior when

an image is selected and enabled.

Table 4.15: PCI Image Control Register

Register layout:
31 24

0x00
23 16

0x00
15 8

0x00
7 4 3 2 1 0

0x0 0 AT_EN PREF_EN 0

Figure 4.8: PCI Image Control register layout

Bit descriptions:

Bit # Name Description
31 – 3 N/A Not used
2 Address

Translation Enable
If this bit is set, address translation for the corresponding
image is enabled.

1 Pre-fetch enable This bit marks address space occupied by an image as
prefetchable.

0 N/A Not used

Table 4.16: PCI Image Control Register bit descriptions

http://www.opencores.org Rev 1.2 61

OpenCores PCI IP Core Specification 16.7.2004

Base Address Registers: P_BA0 (P_BA1) - P_BA5

Width Access Reset Description
32 RW 0x00000000 The register value holds the PCI bus base address of an

image.

Table 4.17: PCI Base Address register

Register layout:
31 24

BA
23 16

BA
15 12 11 8

BA 0x0
7 4 3 2 1 0

0x0 0 0 0 ASM

Figure 4.9: PCI Base Address Register Layout

Bit descriptions:

Bit # Name Description
31 – 12 Base Address Image base address. The corresponding Address Mask

register selects bits from this field that are compared to the
incoming PCI address.

11-1 N/A Because the minimum block size is 4KB, this field is
reserved.

0 Address Space
Mapping

This bit defines to which address space an image maps on
the PCI bus.
Predefined value can be changed later for HOST bridges.
Predefined value can NOT be changed for GUEST bridges

0 – Memory space mapping
1 – I/O space mapping

(see Addressing and Images of the PCI Target Unit).

Table 4.18: PCI Base Address register bit descriptions

Address Mask registers: P_AM0 (P_AM1) – P_AM5

http://www.opencores.org Rev 1.2 62

OpenCores PCI IP Core Specification 16.7.2004

 Rev 1.2 63

Width Access Reset Description
32 RW 0x00000000 The Address Mask selects the bits of the incoming PCI

address that are compared to the value in the
corresponding P_BA register when decoding an access to

PCI address that are replaced with the value in the

WISHBONE bus, if address translation is enabled.

the PCI Target unit. It also selects the bits of the incoming

corresponding P_TA register before accessing the

Table 4.19: PCI Address Mask register

Register layout:
31 30 24

IMG_EN AM
23 16

AM
15 12 11 8

AM 0x0
7 0

0x00

Figure 4.10: PCI Address Mask register layout

Bit descriptions:

Bit # Name Description
31 Image Enable &

Address Mask(31)
This bit must be set for an image to be enabled. If the bit is
0, the corresponding image is not enabled.

30 – 12 Address Mask Remainder of the address mask.
11-0 N/A Because the minimum block size is 4KB, this field is always

0x000 (the twelve lower address lines are never compared
with the BA register value).

Table 4.20: PCI Address Mask register bit descriptions

Translation Address registers: P_TA0 (P_TA1) – P_TA5

Width Access Reset Description
32 RW 0x00000000 If address translation is enabled, compared address lines

corresponding values in this register for WISHBONE bus
accesses.

from the PCI bus (specified with AM value) are replaced by

Table 4.21: PCI Translation Address register

http://www.opencores.org

OpenCores PCI IP Core Specification 16.7.2004

Register layout:
31 24

TA
23 16

TA
15 12 11 8

TA 0x0
7 0

0x00

Figure 4.11: PCI Translation Address register layout

Bits descriptions:

Bit # Name Description
31 – 12 Translation

Address
This register value is used when address translation is
enabled.

11-0 N/A Because the minimum block size is 4KB, this field is always
0x000 (the twelve lower address lines are never replaced).

Table 4.22: PCI Translation Address register bit descriptions

4.1.3. Reporting Registers
Error Reporting registers are provided because of Posted Write cycles, which are always
acknowledged on the WISHBONE bus before they actually complete on the PCI bus, and vice-
versa, so errors detected on PCI or WISHBONE buses cannot be reported back to WISHBONE
master or PCI initiator using the standard bus protocol.

4.1.3.1 WISHBONE Slave Unit Error Reporting Registers
WISHBONE Error Control and Status register: W_ERR_CS

Width Access Reset Description
32 RW 0x00000000 Part of this register is used for controlling the Error

and additional information about an error that occurred

bus.

Reporting mechanism, another part for reporting statuses

during the completion of a Posted Write cycle on the PCI

Table 4.23: WISHBONE Error Control and Status register

http://www.opencores.org Rev 1.2 64

OpenCores PCI IP Core Specification 16.7.2004

Register layout:
31 28 27 24

BE BC
23 16

0x00
15 12 11 10 9 8

0x0 0 RTY_EXP ES ERR_SIG
7 4 3 2 1 0

0x0 0 0 0 ERR_EN

Figure 4.12: WISHBONE Error Control and Status register layout

Bit descriptions:

Bit # Name Description
31 – 28 Byte Enables The field value reports the state of BE# signals used in the

Posted Write cycle that terminated with an error.
27-24 Bus Command This field value reports a bus command used for the Posted

Write cycle that terminated with an error.
16 – 11 N/A Not used
10 Retry Counter

Expired
THIS BIT IS RESERVED FOR FUTURE USE! It’s function is
to report that a Posted Write cycle has been retried
MAX_RETRY times. The PCI Local Bus Specification requires
any transaction terminated with Retry to be repeated
unconditionally, so this bit is not implemented at this time.

9 Error Source The ES bit indicates that the master terminated the transaction
with Master Abort. Software can distinguish between two
kinds of Master Abort terminations the PCI master module
performs: If the RTY_EXP bit is cleared, Master Abort was
performed because no target claimed the transaction; if the
RTY_EXP is set, the target signaled too many Retry
terminations.
A cleared ES bit indicates that the target of the transaction
signaled Target Abort.

8 Error Signaled If set, this bit indicates that an error has been reported. This
bit is cleared by writing 1 to its location.

7-1 N/A Not used
0 Error Enable Setting this bit enables the Error Reporting mechanism.

Clearing this bit means that Error Reporting is not performed.

Table 4.24: WISHBONE Error Control and Status register bit descriptions

http://www.opencores.org Rev 1.2 65

OpenCores PCI IP Core Specification 16.7.2004

WISHBONE Erroneous Address Register: W_ERR_ADDR

Width Access Reset Description
32 R 0x00000000 When Error Reporting is enabled and an error is signaled,

this register stores the address of the transaction on the
PCI bus that caused an error.

Table 4.25: WISHBONE Erroneous Address register

WISHBONE Erroneous Data: W_ERR_DATA

Width Access Reset Description
32 R 0x00000000 When Error Reporting is enabled and an error is signaled,

this register stores data of the transaction on the PCI bus
that caused an error.

Table 4.26: WISHBONE Erroneous Data register

4.1.3.2 PCI Target Unit Error Reporting Registers
PCI Error Control and Status register: P_ERR_CS

Width Access Reset Description
32 RW 0x00000000 Part of this register is used for controlling the Error

and additional information about an error that occurred

WISHBONE bus.

Reporting mechanism, another part for reporting statuses

during the completion of a Posted Write cycle on the

Table 4.27: PCI Error Control and Status register

Register layout:
31 28 27 24

BE BC
23 16

0x00
15 12 11 10 9 8

0x0 RTY_EXP ES ERR_SIG 0

http://www.opencores.org Rev 1.2 66

OpenCores PCI IP Core Specification 16.7.2004

7 4 3 2 1 0
0x0 0 0 0 ERR_EN

Figure 4.13: PCI Error Control and Status register layout

Bit descriptions:

Bit # Name Description
31 – 28 Byte Enables This field value reports the state of byte enable signals

SEL_O(3:0) used in the Posted Write cycle that terminated
with an error on the WB bus.

27-24 Bus Command This field value reports a bus command from the PCI bus
used for a Posted Write cycle that terminated with an error
on the WB bus.

16 – 11 N/A Not used
10 Retry Counter

Expired
This bit reports that a Posted Write cycle has been retried
MAX_RETRY times or that there was no response on the

generated if the WISHBONE slave does not respond for 8
cycles).

9 Error Source The ES bit indicates that the WISHBONE Master Module of
the PCI Target Unit stopped (terminated) the write

Retry
terminations. In this case, the RTY_EXP bit is also set.
A cleared ES bit indicates that the WISHBONE Master

write transaction because of the WISHBONE slave: If the
RTY_EXP bit is cleared, the WISHBONE slave signaled an

WISHBONE slave did not respond to the initiated
transaction.

8 Error Signaled If set, this bit indicates that an error has been reported. The
bit is cleared by writing 1 to its location.

7-1 N/A Not used
0 Error Enable Setting this bit enables the Error Reporting mechanism.

performed – the transaction that caused an error is
discarded, other transactions continue normally.

WISHBONE bus for MAX_RETRY times (internal Retry is

transaction. The WISHBONE slave signaled too many

Module of the PCI Target Unit was not able to continue the

Error termination; if the RTY_EXP bit is set, the

Clearing this bit means that Error Reporting will not be

Table 4.28: PCI Error Control and Status register Bit Descriptions

PCI Erroneous Address Register: P _ERR_ADDR

http://www.opencores.org Rev 1.2 67

OpenCores PCI IP Core Specification 16.7.2004

Width Access Description
32 R 0x00000000 When Error Reporting is enabled and an error is

signaled, this register stores the address of the
transaction on the WISHBONE bus that caused an error.

Reset

Table 4.29: PCI Erroneous Address register

PCI Erroneous Data: P_ERR_DATA

Width Access Reset Description
32 R 0x00000000 When Error Reporting is enabled and an error is

the WISHBONE bus that caused an error.
signaled, this register stores data of the transaction on

Table 4.30: PCI Erroneous Data Register

4.1.3.3 Configuration Cycle Generation Registers
Two registers are provided for generating configuration cycles on the PCI bus. The WISHBONE
master initiates a configuration cycle in two steps:

1. It writes the appropriate value in the CNF_ADDR register and

2. Reads from or writes to the CNF_DATA register to generate a Configuration Read or Write
cycle respectively.

Configuration address: CNF_ADDR

Width Access Reset Description
32 RW 0x00000000 This register stores all information needed to drive

cycle.
address lines during the Address phase of a configuration

Table 4.31: Configuration Address register

Register layout:
31 24

Reserved
23 16

BUS NUMBER
15 11 10 8

DEVICE FUNCTION

http://www.opencores.org Rev 1.2 68

OpenCores PCI IP Core Specification 16.7.2004

7 2 1 0
OFFSET 0 TYPE

Figure 4.14: Configuration Address register layout

Bit descriptions:

Bit # Name Description
31 – 24 N/A A value in this field is ignored for any kind and type of

configuration cycle.
23 – 16 Bus number This field holds a bus number on which a target of the

configuration space access resides. It is only used in Type 1
configuration cycles (TYPE bit = 1).

15 – 11 Device number The value in this field represents a device number. This field

for Type1 (TYPE = 1) configuration cycle and is decoded for
Type0 configuration cycles (See Table 3.1 for Device number
decoding).

10 – 8 Function number The value in this field is a function number for multifunctional
devices.

7 –2 Register number This field holds the register offset for a device addressed with
configuration cycle.

1 N/A Not used—always 0
0 Type Type of configuration cycle

(0 – Type 0, 1 – Type 1)

is driven directly to AD(15:11) lines during the Address phase

Table 4.32: Configuration Address register bit descriptions

Configuration data: CNF_DATA

A Read cycle from or a Write cycle to this register will perform a configuration cycle on the PCI bus
using information written to the CNF_ADDR register.

Width Access Reset Description
32 RW 0x00000000 This register stores Read or Write data for configuration

cycles.

Table 4.33: Configuration Data Register

4.1.3.4 Interrupt Acknowledge Cycle Generation Register
A Read cycle from the INT_ACK register generates an Interrupt Acknowledge cycle on the PCI bus.

http://www.opencores.org Rev 1.2 69

OpenCores PCI IP Core Specification 16.7.2004

Width Access Reset Description
32 R 0x00000000 This register stores interrupt vector data returned during

an Interrupt Acknowledge cycle.

Table 4.34: Interrupt Acknowledge register

4.1.4. Interrupt Control & Status Registers
Interrupt Control register: ICR

Width Access Reset Description
32 RW 0x00000000 This register is used to enable/disable the generation of

interrupt requests from various sources.

Table 4.35: Interrupt Control register

Register layout:
31 3 2 1 0

SW_RS
T

0 0 0 0x00

23 16
0x00

15 8
0x00

7 5 4 3 2 1 0

0x0
SERR_
INT_EN

PERR_
INT_EN

PCI_
EINT_EN

WB_
EINT_EN

INT_
PROP_EN

Figure 4.15: Interrupt Control register layout

Bit descriptions:

Bit # Name Description
0 Interrupt

Propagation Enable
For Guest bridge implementation this bit indicates that INT_I
line assertion on the WISHBONE bus will generate an

INTA# pin.
For Host bridge implementation this bit indicates that an

interrupt request on the WISHBONE bus through an
assertion of the INT_O pin.

1 WISHBONE Error If set, this bit enables interrupt request generation when an

interrupt request on the PCI bus through an assertion of the

assertion of the INTA# pin on the PCI bus will generate an

http://www.opencores.org Rev 1.2 70

OpenCores PCI IP Core Specification 16.7.2004

Bit # Name Description
Interrupt Enable error is REPORTED during the execution of Posted Write

cycles through the WISHBONE slave unit. A cleared bit
disables these interrupts but does not disable Error Reporting

W_ERR_CS).**
2 PCI Error Interrupt

Enable
If set, this bit enables interrupt request generation when an

cycles through the PCI target unit. A cleared bit disables
these interrupts but does not disable Error Reporting (see
bits 0 and 8 of PCI Error Control and Status register –
P_ERR_CS).**

3 Parity Error
Interrupt enable

This bit enables/disables the generation of interrupt requests
when a parity error is detected by the PCI master module.
This interrupt is meaningful on Host Bridge Implementation
only.*

4 System Error
Interrupt Enable

This bit enables/disables the generation of interrupt requests
when a system error (address parity error) is detected by the
PCI master module.
This interrupt is decisive on Host Bridge Implementation
only.*

31 Software Reset Setting this bit causes software initiated reset. Host bridge
implementation uses this bit to reset the PCI bus, Guest
implementation uses it to reset the WISHBONE bus.

(see bits 0 and 8 of WB Error Control and Status register –

error is REPORTED during the execution of Posted Write

* Interrupt triggering upon PERR# and SERR# detection for Guest Implementation has no
meaning because Guest Implementation triggers interrupts on the PCI bus. An agent that is
responsible for routing interrupts to a host processor may trigger an interrupt when one of these
errors is detected.

** For reporting Error Interrupt, appropriate Error Reporting Enable bit must be SET (bit 0 of
P_ERR_CS and W_ERR_CS registers) besides Error Interrupt Enable bit (see also chapters 4.1.3.1
and 4.1.3.2).

Table 4.36: Interrupt Control Register bit descriptions

Interrupt Status Register: ISR

Width Access Reset Description
32 RW 0x00000000 This register is used to determine and clear the source of

the pending interrupt request.

Table 4.37: Interrupt Status register

Register layout:

http://www.opencores.org Rev 1.2 71

OpenCores PCI IP Core Specification 16.7.2004

31 24
0x00

23 16
0x00

15 8
0x00

7 5 4 3 2 1 0

0x0 SERR_INT PERR_INT PCI_EINT WB_EINT INT

Figure 4.16: Interrupt Status register layout

Bit descriptions:

Bit # Name Description
0 Interrupt For Guest bridge implementation this bit indicates that an

propagated to the INTA# pin on the PCI bus. This is to say
that some device on the WISHBONE bus generated an
interrupt request to the host processor.
For Host Bridge Implementation this bit indicates that the

propagated to the INT_O pin on the WISHBONE bus. This
means that some device residing on the PCI bus generated
an interrupt request to the host processor.

1 WISHBONE Error
Interrupt

If set, this bit indicates an interrupt request from the Error

execution of a Posted Write cycle through the WISHBONE

2 PCI Error Interrupt If set, this bit indicates an interrupt request from the Error

execution of a Posted Write cycle through the PCI target
unit. Only reported error causes this interrupt.**

3 Parity Error
Interrupt

This bit indicates that an interrupt request has been
generated due to a Parity Error on the PCI bus.
This interrupt has meaning only on Host Bridge
Implementation.*

4 System Error
Interrupt Enable

This bit indicates that an interrupt request has been

bus. This interrupt has meaning only on Host Bridge

INT_I input on the WISHBONE bus has been asserted and

INTA# pin on the PCI bus has been asserted and

Reporting mechanism, which detected an error during the

slave unit. Only reported error causes this interrupt.**

Reporting mechanism, which detected an error during the

generated due to System Error (Address Parity) on the PCI

Implementation.*

Table 4.38: Interrupt Status register bit descriptions

* Interrupt triggering upon PERR# and SERR# detection for Guest Implementation has no
meaning because Guest Implementation triggers interrupts on the PCI bus. In Guest
Implementation, these two bits will never be set.

http://www.opencores.org Rev 1.2 72

OpenCores PCI IP Core Specification 16.7.2004

** For reporting Error Interrupt, appropriate Error Reporting Enable bit must be SET (bit 0 of
P_ERR_CS and W_ERR_CS registers) besides Error Interrupt Enable bit (see also chapters 4.1.3.1
and 4.1.3.2).

http://www.opencores.org Rev 1.2 73

OpenCores PCI IP Core Specification 16.7.2004

5.
IO Ports

5.1. PCI Interface
The PCI interface contains all required pins.

Port

W
id

th

D
ire

ct
io

n Description

pci_clk_i 1 I PCI bus CLK signal input.
pci_rst_i 1 I PCI bus RST# input. Only used in GUEST

implementation. An active state on this input is

pci_rst_o 1 O PCI bus RST# output. Only used in HOST
 is

propagated to this output. The value is always 0. The

pci_rst_oe_o 1 O PCI bus RST# output enable. Only used in HOST
implementation. The PCI Bridge never drives the
RST# pin to inactive state. It enables the output

pci_inta_i 1 I PCI bus INTA# input. Only used in HOST
implementation. Used to propagate interrupt requests
from the PCI bus to the WISHBONE bus if enabled.

pci_inta_o 1 O PCI bus INTA# output. Only used in GUEST
implementation. Used to propagate interrupt requests
from the WISHBONE bus to the PCI bus if enabled.
The value is always 0. The assertion of interrupt
request is controlled with pci_inta_oe_o.

pci_inta_oe_o 1 O Only used in GUEST implementation. The PCI
Bridge never drives the INTA# signal to inactive
state. It enables the output driver if active INTA#

propagated to the wb_rst_o.

implementation. An active state on wb_rst_i

assertion of the RST# is controlled with pci_rst_oe_o.

driver when active reset is required.

http://www.opencores.org Rev 1.2 74

OpenCores PCI IP Core Specification 16.7.2004

Port

W
id

th

D
ire

ct
io

n Description

signal value is required.
pci_req_o 1 O PCI REQ# output signal. Used by the PCI Master

module to signal to the PCI arbiter that it needs a
mastership of the PCI bus.

pci_req_oe_o 1 O PCI REQ# output enable signal. This signal is

bus reset is released.
pci_gnt_i 1 I PCI GNT# input signal. The external arbiter grants

the bus to the PCI Master module when active.
pci_frame_i 1 I PCI FRAME# input signal.
pci_frame_o 1 O PCI FRAME# output signal.
pci_frame_oe_o 1 O PCI FRAME# output enable signal.
pci_irdy_i 1 I PCI IRDY# input signal.
pci_irdy_o 1 O PCI IRDY# output signal.
pci_irdy_oe_o 1 O PCI IRDY# output enable signal.
pci_devsel_i 1 I PCI DEVSEL# input signal.
pci_devsel_o 1 O PCI DEVSEL# output signal.
pci_devsel_oe_o 1 O PCI DEVSEL# output enable signal.
pci_trdy_i 1 I PCI TRDY# input signal.
pci_trdy_o 1 O PCI TRDY# output signal.
pci_trdy_oe_o 1 O PCI TRDY# output enable signal.
pci_stop_i 1 I PCI STOP# input signal.
pci_stop_o 1 O PCI STOP# output signal.
pci_stop_oe_o 1 O PCI STOP# output enable signal.
pci_ad_i 32 I PCI AD input bus.
pci_ad_o 32 O PCI AD output bus.
pci_ad_oe_o 32 O PCI AD bus output enable.
pci_cbe_i 4 I PCI C/BE# input bus.
pci_cbe_o 4 O PCI C/BE# output bus.
pci_cbe_oe_o 4 O PCI C/BE# bus output enable.
pci_idsel_i 1 I PCI IDSEL input signal.
pci_par_i 1 I PCI PAR input signal.
pci_par_o 1 O PCI PAR output signal.
pci_par_oe_o 1 O PCI PAR output enable signal.
pci_perr_i 1 I PCI PERR# input signal

inactive during PCI bus reset and enabled when PCI

http://www.opencores.org Rev 1.2 75

OpenCores PCI IP Core Specification 16.7.2004

Port

W
id

th

D
ire

ct
io

n Description

pci_perr_o 1 O PCI PERR# output signal.
pci_perr_oe_o 1 O PCI PERR# output enable signal.
pci_serr_o 1 O PCI SERR# output signal.
pci_serr_oe_o 1 O PCI SERR# output enable signal.
pci_cpci_hs_enum_o 1 O CompactPCI ENUM# output signal. Optional! See

Appendix A.
pci_cpci_hs_enum_oe_o 1 O CompactPCI ENUM# output enable signal. Optional!

See Appendix A.
pci_cpci_hs_led_o 1 O CompactPCI LED# output signal. Optional! See

Appendix A.
pci_cpci_hs_led_oe_o 1 O CompactPCI LED# output enable signal. Optional!

See Appendix A.
pci_cpci_hs_es_i 1 I CompactPCI Handle Switch state input signal.

Optional! See Appendix A.

Table 5.1: PCI interface

5.2. WISHBONE Slave Interface
The WISHBONE Slave interface is a WISHBONE Rev. B compliant slave interface.

Port

W
id

th

D
ire

ct
io

n Description

wb_clk_i 1 I WISHBONE bus CLK_I input signal.
wb_rst_i 1 I WISHBONE bus RST_I input signal. Only used in HOST

implementation. The active value on this signal enables the PCI
RST# signal via the activation of pci_rst_oe_o signal.

wb_rst_o 1 O WISHBONE bus RST_O output signal. Only used in GUEST
implementation. The assertion of RST# on the PCI is propagated to
this signal.

wb_int_i 1 I WISHBONE bus INT_I input signal. Only used in GUEST

assertion on the PCI bus, if enabled.
wb_int_o 1 O WISHBONE bus INT_O signal. Only used in HOST implementation.

The active value on the pci_inta_i propagates to this signal, if

implementation. The active value on this signal results in INTA

http://www.opencores.org Rev 1.2 76

OpenCores PCI IP Core Specification 16.7.2004

Port

W
id

th

D
ire

ct
io

n Description

enabled.
wbs_adr_i 32 I WISHBONE ADR_I(31:0) address bus input.
wbs_dat_i 32 I WISHBONE DAT_I(31:0) data bus input.
wbs_dat_o 32 O WISHBONE DAT_O(31:0) data bus output.
wbs_sel_i 4 I WISHBONE SEL_I(3:0) byte select bus input.
wbs_cyc_i 1 I WISHBONE CYC_I input signal.
wbs_stb_i 1 I WISHBONE STB_I input signal.
wbs_we_i 1 I WISHBONE WE_I input signal.
wbs_cab_i 1 I The serial Block cycle identifier input. Optional (see Appendix A and

Chapter 3.3.5).
wbs_cti_i 3 I WISHBONE Registered Feedback cycle identifier input. Optional

(see Appendix A and Chapter 3.3.5).
wbs_bte_i 2 I WISHBONE Registered Feedback burst type identifier input.

Optional (see Appendix A and Chapter 3.3.5).
wbs_ack_o 1 O WISHBONE ACK_O output signal.
wbs_rty_o 1 O WISHBONE RTY_O output signal.
wbs_err_o 1 O WISHBONE ERR_O output signal.

Table 5.2: WISHBONE Slave interface signals

5.3. WISHBONE Master Interface
The WISHBONE Master interface is a WISHBONE Rev. B compliant master interface. Clock, reset
and interrupt pins were described in the previous section.

Port

W
id

th

D
ire

ct
io

n Description

wbm_adr_o 32 O WISHBONE ADR_O(31:0) address bus output.
wbm_dat_i 32 I WISHBONE DAT_I(31:0) data bus input.
wbm_dat_o 32 O WISHBONE DAT_O(31:0) data bus output.
wbm_sel_o 4 O WISHBONE SEL_O(3:0) byte select bus output.
wbm_cyc_o 1 O WISHBONE CYC_O output signal.
wbm_stb_o 1 O WISHBONE STB_O output signal.

http://www.opencores.org Rev 1.2 77

OpenCores PCI IP Core Specification 16.7.2004

Port

W
id

th

D
ire

ct
io

n Description

wbm_we_o 1 O WISHBONE WE_O output signal.
wbm_cab_o 1 O The serial Block cycle identifier output. Obsolete!
wbm_cti_o 3 O WISHBONE Registered Feedback cycle type identifier.
wbm_bte_o 2 O WISHBONE Registered Feedback burst type identifier.
wbm_ack_i 1 I WISHBONE ACK_I input signal.
wbm_rty_i 1 I WISHBONE RTY_I input signal.
wbm_err_i 1 I WISHBONE ERR_I input signal.

5.4. Serial Power On Configuration Interface
The signals described in this chapter are implemented only if PCI_SPOCI macro is defined in the
pci_user_constants.v file. See Appendix A for more information.

Port

W
id

th

D
ire

ct
io

n Description

spoci_scl_o 1 O Serial clock output. (hardwired to 0)
spoci_scl_oe_o 1 O Serial clock output enable.
spoci_sda_i 1 I Serial data input.
spoci_sda_o 1 O Serial data output. (hardwired to 0)
spoci_sda_oe_o 1 O Serial data output enable.

http://www.opencores.org Rev 1.2 78

OpenCores PCI IP Core Specification 16.7.2004

6.
Waveforms

6.1. Wishbone Slave Unit
This section describes basic waveforms of various accesses to the core’s configuration space and
mapped PCI address space. Waveforms supplied have only informational purpose at this time.

6.1.1. WISHBONE Configuration Accesses
CLK_I

ADDR_I[31:0]

SDATA_I[31:0]

SDATA_O[31:0]

WE_I

SEL_I[3:0]

STB_I

ACK_O

CYC_I

ERR_O

RTY_O

Valid

Valid

Valid

Figure 6.1: WISHBONE configuration Read cycle

http://www.opencores.org Rev 1.2 79

OpenCores PCI IP Core Specification 16.7.2004

CLK_I

ADDR_I[31:0]

SDATA_O[31:0]

SDATA_I[31:0]

WE_I

SEL_I[3:0]

STB_I

ACK_O

CYC_I

ERR_O

RTY_O

Valid

Valid

Valid

Figure 6.2: WISHBONE Configuration Write cycle

CLK_I

ADDR_I[31:0]

SDATA_O[31:0]

SDATA_I[31:0]

WE_I

SEL_I[3:0]

STB_I

ACK_O

CYC_I

ERR_O

RTY_O

Valid Valid
Valid

Valid

Valid Valid

Figure 6.3: WISHBONE configuration RMW cycle

Wishbone masters will most commonly use Single Read cycles for accessing the core’s configuration
space as shown in Figure 6.1. A Write cycle to the core’s register space by the WISHBONE master is
shown in Figure 6.2. Writes to unimplemented configuration space have no effect while Read cycles
return all 0s. RMW cycles to the core’s configuration space are also accepted, as shown in Figure 6.3,
and are most commonly used for interrupt handling since a RMW cycle is defined as atomic
(indivisible) operation in the WISHBONE Bus Specification.

http://www.opencores.org Rev 1.2 80

OpenCores PCI IP Core Specification 16.7.2004

6.1.2. WISHBONE to PCI Accesses
CLK_I

ADDR_I[31:0]

SDATA_O[31:0]

SDATA_I[31:0]

WE_I

SEL_I[3:0]

STB_I

ACK_O

CYC_I

ERR_O

RTY_O

ADDR0 ADDR1 ADDRn ADDR_Del ADDR2 ADDR_Del

DATA_Del

DATA0 DATA1 DATAn DATA2

SEL0 SEL1 SELn SEL_Del SEL2 SEL_Del

Figure 6.4: WISHBONE access to PCI address space

Figure 6.4 shows how the WISHBONE master perceives cycles intended for PCI address space
traveling through the WISHBONE slave unit of the core. The first cycle in the figure initiated by the
WISHBONE master is a Block Write cycle. The WISHBONE slave module accepts Write cycles
until WBW_FIFO is full. Subsequent Write cycles in this block cycle are terminated with Retry
(RTY_O asserted on ADDRn, DATAn, SELn transfer). The second cycle in the figure is a Read
cycle. Read cycles from PCI address space are retried immediately (RTY_O asserted on first
ADDR_Del, SEL_Del transfer). Address, byte enable, and CAB_I information is latched by the
WISHBONE slave unit on the first rising edge of CLK_I where STB_I is asserted. The third cycle is
a Write cycle to the PCI address space and is retried, too. In this case, the WISHBONE slave unit
signals a Retry if one of the following possibilities occurs:

 WBW_FIFO is still full from previous transfers.

 A delayed Read cycle latched in a previous transfer has not completed on the PCI bus yet.

 A Delayed Read completion is present in the PCI target unit and has not been completed on the
PCI bus yet.

In the 4th cycle, the WISHBONE master retries a Read request initiated and latched by the
WISHBONE slave module in the 2nd cycle. Since the PCI master module has already performed a
Read cycle on the PCI bus and stored data in WBR_FIFO, the WISHBONE slave module takes data
from the FIFO and delivers it on the WISHBONE bus. The WISHBONE slave module can supply
data for the master as long as WBR_FIFO contains any data and Read addresses are serial and
DWORD aligned.

6.1.3. PCI Cycles
The WISHBONE slave unit incorporates a PCI master module that is capable of initiating various
types of PCI address space accesses.

http://www.opencores.org Rev 1.2 81

OpenCores PCI IP Core Specification 16.7.2004

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

ADDR DATA

C BE#

Figure 6.5: PCI Single Read cycle

Figure 6.5 shows a Single Read cycle on the PCI bus performed by the PCI master module. On the
first clock edge, the PCI master module samples its GNT# signal asserted and starts the bus cycle by
asserting FRAME# on the next rising edge of the clock. The 2nd clock cycle is an address phase, so
address and bus command information is provided on AD and C/BE# lines respectively. At the end
of an address phase, the master module de-asserts FRAME# and asserts IRDY#, indicating its wish
to perform a single data phase only. A device with medium decoding has been assumed for a
diagram, so nothing happens on the 3rd rising edge of clock. On the 4th clock, the target device claims
the transaction by asserting DEVSEL#. Target inserted a wait cycle by delaying assertion of
TRDY#. On the 5th clock, actual data transfer occurs, indicated by TRDY# and IRDY# being
asserted at the same time. Immediately afterwards, the master module de-asserts IRDY#, indicating
the end of transfer.

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

ADDR DATA

C BE#

Figure 6.6: PCI Single Write

Figure 6.6 shows a Single Write cycle on the PCI bus performed by the PCI master module. On the
first clock edge, the PCI master module samples its GNT# signal asserted and starts the bus cycle by
asserting FRAME# on the next rising edge of the clock. The 2nd clock cycle is also an address phase,
thus address and bus command information is provided on AD and C/BE# lines respectively. At the
end of an address phase, the master module de-asserts FRAME# and asserts IRDY#, indicating its
wish to perform a single data phase only. By asserting IRDY#, Write data and byte enables must be
driven on AD and C/BE# lines respectively. A device with medium decoding has been assumed for
a diagram, so nothing happens on the 3rd rising edge of the clock. On the 4th clock, the target device

http://www.opencores.org Rev 1.2 82

OpenCores PCI IP Core Specification 16.7.2004

claims access by asserting DEVSEL#. On this clock, actual data transfer occurs also, indicated by
TRDY# and IRDY# being asserted at the same time. Immediately afterwards, the master module
de-asserts IRDY#, indicating the end of transfer.

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

ADDR DATA1 DATA2 DATA3

C BE#

Figure 6.7: PCI Burst Read Cycle

Figure 6.7 shows how the PCI master module performs Burst Read transactions. The mechanism for
claiming the bus is the same as in previous diagrams. The main difference lies with the fact that
FRAME# stays asserted till the last data transfer. A medium decode target device is assumed for the
diagram that inserts a wait cycle on clock 4. The target also inserts one WS after each data phase.
Byte enables do not change during bursts. They are always 0000. The last data phase is phase 3,
which is indicated by FRAME# de-asserted and IRDY# asserted at the same clock edge.
Immediately after the master module latched data from the bus (clock edge when TRDY# is
asserted), it de-asserts IRDY# to indicate an end of the transfer.

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

LAST DATA PHASE

TRANSFER WAIT TRANSFER WAIT TRANSFER

ADDR DATA1 DATA2 DATA3

C BE#_1 BE#_2 BE#_3

Figure 6.8: PCI Burst Write cycle

Figure 6.8 shows PCI Burst Write cycles performed by the PCI master module. The mechanism for
claiming the bus is the same as in the previous diagrams. FRAME# stays asserted till the last data
transfer. A medium decode target device is assumed for a diagram that claims access and latches the
first data on clock 4. The target also inserts one WS after each data phase. The last data phase is
phase 3, which is indicated by FRAME# de-asserted and IRDY# asserted at the same clock edge.

http://www.opencores.org Rev 1.2 83

OpenCores PCI IP Core Specification 16.7.2004

Immediately after the target latched data from the bus (clock edge when TRDY# is asserted), the
master module de-asserts IRDY# to indicate an end of the transfer.

6.1.4. PCI Terminations

6.1.4.1 Master Initiated Terminations

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

ADDR DATA1

C BE#

Figure 6.9: Master Abort termination

The PCI master module terminates the transaction with Master Abort, as shown in Figure 6.9. What
happens? The master initiates a transaction starting with the address phase and waits for the target to
respond by asserting DEVSEL#. The master is only required to wait for the assertion of DEVSEL#
for 4 clocks. If DEVSEL# will not have been asserted by the 4th clock (subtractive decode devices),
the master de-asserts FRAME# and must hold IRDY# asserted for an additional clock cycle
indicating the end of the transaction.

If Error Reporting is enabled and the transaction is a Posted Write cycle, then address, bus
command, data, and byte enables are stored in corresponding registers (see chapter 3.3.3). The
current transaction is discarded (pulled out of WBW_FIFO) while any other Posted Write
transactions are not influenced by Error.

If the transaction is a Read cycle, the termination is signaled to the WISHBONE master with an
error on the WISHBONE bus when it retries a Read request.

http://www.opencores.org Rev 1.2 84

OpenCores PCI IP Core Specification 16.7.2004

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

LAST DATA PHASE

TRANSFER WAIT TRANSFER

ADDR DATA1 DATA2 DATA_N-1 DATA_N

C BE#_1 BE#_2 BE#_N-1 BE#_N

Figure 6.10: Timeout termination

The Timeout termination is specified in the PCI Local Bus Specification. It must be implemented in the
PCI master module. Timeout termination is not an abnormal termination; it is simply a means of
assuring other masters access to the PCI bus within a reasonable span of time. The master is
supposed to complete the transaction by the time the latency timer expires and its GNT# has been
removed by the PCI arbiter. In other words, when the master latency timer expires, the PCI master
module must sample its GNT# on every rising edge of clock. If it samples it in de-asserted state, it
must complete the transaction as soon as possible. As shown in Figure 6.10, the latency timer of the
master is assumed to expire and its grant to be removed by data phase N-1. The master module
samples GNT# de-asserted, thus it completes an access on the next clock cycle by de-asserting
FRAME#.

Timeout terminations are not signaled to the WISHBONE bus since the PCI master module can
resume transaction the next time it gains bus mastership.

Timeout detection is implemented with a counter and the Master Latency Timer register in the PCI
configuration space. The counter is enabled when the PCI master module asserts FRAME# and is
cleared and suspended as soon as FRAME# is de-asserted.

6.1.4.2 Target Terminations Handled by PCI Master Module

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

ADDR DATA1

C BE#

Figure 6.11: Target Abort

http://www.opencores.org Rev 1.2 85

OpenCores PCI IP Core Specification 16.7.2004

A target signals Target Abort to the master when it is and will be unable to complete the access
initiated by the master. The master should not attempt to retry accesses terminated with Target
Abort.

Posted Write cycles terminated with Target Abort are discarded. If Error Reporting is enabled, the
WISHBONE slave unit reports an error (see Chapter 3.3.3).

The Target Abort termination during Read cycles is signaled to the WISHBONE master when
retrying the request. Access to the address that resulted in Target Abort is terminated with an error
on the WISHBONE bus. If the WISHBONE master never accesses the address that resulted in
Target Abort, termination will not be signaled in any way (Target Abort can be signaled because
the PCI master module reads over address space boundaries of a specific target during a pre-fetched
Read transaction).

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

ADDR DATA1

C BE#

Figure 6.12: Target Retry

A target signals a Retry to the master when it is not ready to process the request. No data is
transferred during Retry. Nevertheless, the PCI master must still terminate normally by de-asserting
FRAME# and keeping IRDY# asserted for one PCI clock cycle to indicate the last data phase. The
master must relinquish the PCI bus for at least two cycles after it received a Target Retry by de-
asserting its REQ# line. It must also retry the same request at a later time.

Target Retry is not signaled on the WISHBONE bus. The PCI master module retries the
transaction transparently on the PCI bus.

http://www.opencores.org Rev 1.2 86

OpenCores PCI IP Core Specification 16.7.2004

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

ADDR DATA1

C BE#

Figure 6.13: Target Disconnect without data

CLK

REQ#

GNT#

FRAME#

IRDY#

TRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

ADDR DATA1

C BE#

Figure 6.14: Target Disconnect with data

A target signals Target Disconnect to the master when it is not capable of receiving or supplying
any more data from/to the master. Data must be transferred with (Disconnect with Data) or
before (Disconnect without Data) the target signals Target Disconnect. The master must
terminate the transaction normally by de-asserting FRAME# and keeping IRDY# asserted for one
clock cycle. If the target signals Target Disconnect with data on the last data phase (FRAME# de-
asserted, IRDY#, TRDY#, and STOP# asserted), the termination is treated as a normal master
termination. (e.g. STOP# is a Logical Don’t Care for a master when FRAME# is de-asserted and
IRDY# and TRDY# are asserted).

Target Disconnect is not an abnormal termination and will not be signaled to the WISHBONE
master in any way.

http://www.opencores.org Rev 1.2 87

OpenCores PCI IP Core Specification 16.7.2004

6.2. PCI Target Unit
This section describes basic waveforms of various accesses to core configuration space and mapped
WISHBONE address space. Waveforms supplied have only informational value at this time.

6.2.1. PCI Configuration Accesses

CLK

FRAME#

IRDY#

TRDY#

DEVSEL#

IDSEL

STOP#

AD[31:0]

C/BE#[3:0]

ADDR DATA

C BE#

Figure 6.15: PCI Configuration Read cycle

CLK

FRAME#

TRDY#

IRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

IDSEL

ADDR DATA DATA2

C BE# BE#_2

Figure 6.16: PCI Configuration Write cycle

PCI initiators will most commonly use Single Read cycles for accessing the core configuration space
as shown in Figure 6.15. A Write cycle to the register space of the core by the PCI initiator is shown
in Figure 6.16. Write cycles to unimplemented configuration space have no effect, while Read cycles
return all 0s.

http://www.opencores.org Rev 1.2 88

OpenCores PCI IP Core Specification 16.7.2004

6.2.2. PCI to WISHBONE Accesses With WISHBONE Cycles
The following figures show how the PCI initiator sees cycles intended for the WISHBONE address
space, traveling through the PCI target unit of the core. The first cycle in Figure 6.17, started by the
PCI initiator, is a Delayed Read request. The PCI target module accepts the Read request.
Subsequent Reads in this cycle are terminated with Retry. The next figure shows the previous
transaction transferred to the WISHBONE bus. The second cycle in the first figure is a Read from
the PCI master.

For reference: There are also burst accesses from the PCI through the PCI target module (Read and
Write) on Figure 6.19 and Figure 6.20. Last follows a diagram of a Write transfer on the
WISHBONE bus initiated by the PCI initiator.

CLK

FRAME#

IRDY#

TRDY#

DEVSEL#

STOP#

AD[31:0]

C/BE#[3:0]

ADDR_Delay ADDR_Delay DATA_1DATA_2

C_Delay BE#_Delay C_Delay BE#_Delay_1 BE#_Delay_2

Figure 6.17: PCI Target Read cycle

CLK_I

ADDR_O[31:0]

MDATA_O[31:0]

MDATA_I[31:0]

WE_O

SEL_O[3:0]

STB_O

ACK_I

CYC_O

ERR_I

RTY_I

ADDR0 ADDR1 ADDRn

DATA0 DATA1 DATAn

SEL0 SEL1 SELn

Figure 6.18: PCI to WISHBONE Read cycle

http://www.opencores.org Rev 1.2 89

OpenCores PCI IP Core Specification 16.7.2004

CLK

FRAME#

IRDY#

TRDY#

DEVSEL#

STOP#

AD[31:0]

C/BE#[3:0]

ADDR DATA1 DATA2 DATA3

C BE#

Figure 6.19: PCI Initiator to Target Burst Read cycle

CLK

FRAME#

TRDY#

IRDY#

DEVSEL#

AD[31:0]

C/BE#[3:0]

STOP#

LAST DATA PHASE

TRANSFER WAIT TRANSFER WAIT TRANSFER

ADDR DATA1 DATA2 DATA3

C BE#_1 BE#_2 BE#_3

Figure 6.20: PCI Initiator to Target Burst Write cycle

CLK_I

ADDR_O[31:0]

MDATA_I[31:0]

MDATA_O[31:0]

WE_O

SEL_O[3:0]

STB_O

ACK_I

CYC_O

ERR_I

RTY_I

ADDR0 ADDR1 ADDRn

DATA0 DATA1 DATAn

SEL0 SEL1 SELn

Figure 6.21: WISHBONE Write transfer caused by PCI to WISHBONE Write cycle

http://www.opencores.org Rev 1.2 90

OpenCores PCI IP Core Specification 16.7.2004

6.2.3. WISHBONE Terminations
Terminations on the WISHBONE bus are always performed by WISHBONE slaves. Chapters PCI
to WISHBONE Write Cycles and PCI to WISHBONE Read Cycles describe the causes of Retry or
Error on the WISHBONE bus.

CLK_I

ADDR_O[31:0]

MDATA_I[31:0]

MDATA_O[31:0]

WE_O

SEL_O[3:0]

STB_O

ACK_I

CYC_O

ERR_I

RTY_I

ADDR0

DATA0

SEL0

Figure 6.22: Retry on WISHBONE bus caused by PCI to WISHBONE transfer

CLK_I

ADDR_O[31:0]

MDATA_I[31:0]

MDATA_O[31:0]

WE_O

SEL_O[3:0]

STB_O

ACK_I

CYC_O

ERR_I

RTY_I

ADDR0

DATA0

SEL0

Figure 6.23: Error on WISHBONE bus caused by PCI to WISHBONE transfer

http://www.opencores.org Rev 1.2 91

OpenCores PCI IP Core Specification 16.7.2004

Appendix A
Core HW Configuration

This section summarizes parameters that are set by the system designer of the core and define cores
configuration, the user (e.g. programmer) must know. The system designer must set the parameters
before actually using the core in simulation or synthesis. For details read PCI IP Core design
document.

Configuration parameters are grouped into the pci_user_constants.v file, which can be edited by the
system designer, depending on the needs of the application (see chapters 2.4 and 2.5 of the PCI IP
Core Design document). Only parameters useful for the user of the core are summarized here. The
system designer should mark which parameters are defined (or the value of the parameter).

Parameter Defined value / Defined (yes,
no)

Description
HOST / GUEST
These two defines are mutually exclusive. Core will be implemented or simulated with HOST
or GUEST bridge features enabled (see chapter 3).
WBW_ADDR_LENGTH
If WB_RAM_DONT_SHARE is defined, this value must be less than or equal to
WB_FIFO_RAM_ADDR_LENGTH value. If WB_RAM_DONT_SHARE is not defined, this
value must be less than WB_FIFO_RAM_ADDR_LENGTH value.
WBR_ADDR_LENGTH
If WB_RAM_DONT_SHARE is defined, this value must be less than or equal to
WB_FIFO_RAM_ADDR_LENGTH value. If WB_RAM_DONT_SHARE is not defined, this
value must be less than WB_FIFO_RAM_ADDR_LENGTH value.
PCIW_ADDR_LENGTH
If PCI_RAM_DONT_SHARE is defined, this value must be less than or equal to
PCI_FIFO_RAM_ADDR_LENGTH value. If PCI_RAM_DONT_SHARE is not defined, this
value must be less than PCI_FIFO_RAM_ADDR_LENGTH value.
PCIR_ADDR_LENGTH
If PCI_RAM_DONT_SHARE is defined, this value must be less than or equal to
PCI_FIFO_RAM_ADDR_LENGTH value. If PCI_RAM_DONT_SHARE is not defined, this
value must be less than PCI_FIFO_RAM_ADDR_LENGTH value.

http://www.opencores.org Rev 1.2 92

OpenCores PCI IP Core Specification 16.7.2004

Parameter Defined value / Defined (yes,
no)

Description
Four values defined above define each FIFO’s size. Size is calculated as
2^^ADDR_LENGTH. Note that FIFO’s control logic is such, that one location in RAM is always
empty, so usable FIFO size is (2^^ADDR_LENGTH) – 1. Any value equal to or larger than 3 is
valid here – the only restriction is the size of RAMs instantiated for FIFO storage.
PCI_FIFO_RAM_ADDR_LENGTH
Address length of RAM instance used in pci_pci_tpram.v file.
WB_FIFO_RAM_ADDR_LENGTH
Address length of RAM instance used in pci_wb_tpram.v.
PCI_RAM_DONT_SHARE
Selects the type of implementation for PCI Target unit’s FIFOs. If defined, each FIFO in the
PCI Target unit uses its own RAM instance. If not defined, both FIFOs in the PCI Target unit
use the same RAM instance for their storage space.
WB_RAM_DONT_SHARE
Selects the type of implementation for WISHBONE Slave unit’s FIFOs. If defined, each FIFO
in the WISHBONE Slave unit uses its own RAM instance. If not defined, both FIFOs in the
WISHBONE Slave unit use the same RAM instance for their storage space.
ACTIVE_LOW_OE / ACTIVE_HIGH_OE
These two mutually exclusive defines select the active levels for pci_*_oe_o and
pci_cpci_*_oe_o signals.
REGISTER_WBS_OUTPUTS
If defined, WISHBONE Slave module registers all of its outputs on the WISHBONE bus.
Useful for applications with a lot of interconnection logic. The speed of the WISHBONE Slave
interface decreases if REGISTER_WBS_OUTPUTS is defined. If PCI_WB_REV_B3 is
defined, the outputs are already registered, so you need not to define this macro.
ADDR_TRAN_IMPL
If defined, address translation functionality is added to decoders for both, PCI and
WISHBONE accesses. Address translation implementation is useful when application uses
fixed address map, while PCI address map is configurable.
PCI_NUM_OF_DEC_ADDR_LINES
Number defined here is used for controlling implementation of PCI images’ decoders. It
defines how many MS address lines are used for decoding PCI Target accesses and
therefore defines what minimum image size can be. Maximum number allowed is 20 (4KB
minimum image size) and minimum is 1 (2GB minimum image size – this value implies that
more than two images cannot be enabled at the same time).
NO_CNF_IMAGE
If defined, it prevents Read-Only configuration image to be implemented. Read-Only
Configuration space access can be provided through PCI image 0 for HOST implementation

defined, then this image is not implemented (some additional space is saved).
PCI_IMAGE0 1

of the Core, and through WB image 0 for GUEST implementation. If NO_CNF_IMAGE is

http://www.opencores.org Rev 1.2 93

OpenCores PCI IP Core Specification 16.7.2004

Parameter Defined value / Defined (yes,
no)

Description
This define only has meaning when HOST and NO_CNF_IMAGE are defined also. This
enables usage of additional PCI Target image 0 (PCI_IMAGE0) for accessing WISHBONE
bus address space from PCI address space. Otherwise, PCI_IMAGE0 does not need to be
defined, since it is always used for accessing Configuration space.
PCI_IMAGE2 1
PCI_IMAGE3 1
PCI_IMAGE4 1
PCI_IMAGE5 1
If whichever defined, then that PCI Target image is implemented.
PCI_AM0 3
PCI_AM1
PCI_AM2 2
PCI_AM3 2
PCI_AM4 2
PCI_AM5 2
Numbers defined here are initial (reset) values of PCI address masks’ registers. These are
very important if the Core is implemented as GUEST, since configuration is done via PCI
Target state machine. If the designer wants an implemented PCI Target image to be detected
by device independent software at system power-up, he has to set initial masks to enabled
state – MS bit has to be 1. Other bits can have a value of 1 or zero, depending on what size of
an image has to be presented to the software. The masks can be set inactive also, but device
independent software won’t detect implemented PCI Target images and therefore not
configure them. Device specific software will then have to jump in to configure images with
inactive initial masks defined, which also means that it will probably have to rebuild PCI
address space map.
PCI_BA0_MEM_IO 3
PCI_BA1_MEM_IO
PCI_BA2_MEM_IO 2
PCI_BA3_MEM_IO 2
PCI_BA4_MEM_IO 2
PCI_BA5_MEM_IO 2
Numbers defined here are initial (reset) values of PCI Base Address registers’ bits 0. If the
Core is configured as HOST, this initial values can later be changed by writing appropriate
value to appropriate PCI Base Address register. If the core is GUEST, than this values are
hardwired, because device independent software must know in advance where to map each
PCI Base Address.
PCI_TA0 3
PCI_TA1
PCI_TA2 2

http://www.opencores.org Rev 1.2 94

OpenCores PCI IP Core Specification 16.7.2004

Parameter Defined value / Defined (yes,
no)

Description
PCI_TA3 2
PCI_TA4 2
PCI_TA5 2
The macros above must be defined as 20 bit values and specify the reset value of the
corresponding PCI Translation Address n register. The values are relevant only if
ADDR_TRAN_IMPL is also defined.
PCI_AT_EN0 3
PCI_AT_EN1
PCI_AT_EN2 2
PCI_AT_EN3 2
PCI_AT_EN4 2
PCI_AT_EN5 2
The macros above must be defined as 1 bit values and specify the reset value of the Address
Translation Enable bit in the corresponding PCI Image Control n register. The values are
relevant only if ADDR_TRAN_IMPL is also defined.
WB_NUM_OF_DEC_ADDR_LINES
Number defined here is used for controlling implementation of WISHBONE images’ decoders.
It defines how many MS address lines are used for decoding WISHBONE Slave accesses
and therefore defines what minimum image size can be. Maximum number allowed is 20 (4KB
minimum image size) and minimum is 1 (2GB minimum image size – this value implies that
more than two images cannot be enabled at the same time).
WB_IMAGE2
WB_IMAGE3
WB_IMAGE4
WB_IMAGE5
If whichever defined, then that WB Slave image is implemented. WISHBONE Image 1 is
always implemented.
WB_BA1
WB_BA2 4
WB_BA3 4
WB_BA4 4
WB_BA5 4
The macros above must be defined as 20 bit values and specify the reset value of the
corresponding WISHBONE Base Address n register.
WB_BA1_MEM_IO
WB_BA2_MEM_IO 4
WB_BA3_MEM_IO 4

http://www.opencores.org Rev 1.2 95

OpenCores PCI IP Core Specification 16.7.2004

Parameter Defined value / Defined (yes,
no)

Description
WB_BA4_MEM_IO 4
WB_BA5_MEM_IO 4
The macros above must be defined as 1 bit values and specify the reset value of the address
space mapping bit in the corresponding WISHBONE Base Address n register.
WB_AM1
WB_AM2 4
WB_AM3 4
WB_AM4 4
WB_AM5 4
The macros above must be defined as 20 bit values and specify the reset value of the
corresponding WISHBONE Address Mask n register.
WB_TA1
WB_TA2 4
WB_TA3 4
WB_TA4 4
WB_TA5 4
The macros above must be defined as 20 bit values and specify the reset value of the
corresponding WISHBONE Translation Address n register. The values are relevant only if
ADDR_TRAN_IMPL is also defined.
WB_AT_EN1
WB_AT_EN2 4
WB_AT_EN3 4
WB_AT_EN4 4
WB_AT_EN5 4
The macros above must be defined as 1 bit values and specify the reset value of the Address
Translation Enable bit in the corresponding WISHBONE Image Control n register. The values
are relevant only if ADDR_TRAN_IMPL is also defined.
WB_CONFIGURATION_BASE
Number defined here is a 20 bit value for WISHBONE configuration image address. Those
bits are compared to 20 MS bits of WB Slave address to decode Configuration accesses from
WB bus. This is constant value and cannot be changed after the Core is implemented, since
WB bus does not provide any special mechanism for device configuration.
WB_RTY_CNT_MAX
Number defined here is used to prevent deadlock in WB Master state machine for maximum
counting value of RTY terminations on WB bus, before ACK or ERR terminations. The last
two terminations reset the counter. This counter is also used, when no WB device responds
(e.g. if accessing to unused memory locations). In that case internal set_retry signal is set
every 8 WB clock periods and counter counts to maximum value defined.

http://www.opencores.org Rev 1.2 96

OpenCores PCI IP Core Specification 16.7.2004

Parameter Defined value / Defined (yes,
no)

Description
PCI_WBM_NO_RESPONSE_CNT_DISABLE
Disables the WISHBONE Master’s internal no response counter. Useful if the application
consists of one or more WISHBONE Slaves that will need a lot of cycles to respond.
PCI_WB_REV_B3
Enables the WISHBONE Rev. B3 to WISHBONE Rev. B2 translation logic for WISHBONE
Slave interface. You need to include the pci_wbs_wbb3_2_wbb2.v into the application, since it
contains the necessary logic. Since the outputs for WISHBONE Slave interface are registered
in this module, you do not need to define REGISTER_WBS_OUTPUTS.
PCI_WBS_B3_RTY_DISABLE
Disables the RTY termination generation for WISHBONE Rev. B3 Slave interface. If your
application contains WISHBONE B3 master cores that do not support RTY termination, you
have to define this macro to prevent non-linear incrementing bursts to be interpreted in the
wrong way.
PCI33 / PCI66
These two defines are mutually exclusive. They are used for simulation purposes (PCI clock
speed) and to set 66MHz Capable bit in PCI Device Status register, if PCI66 is defined.
There are no other features dependent on those defines.
HEADER_VENDOR_ID
Each PCI bus compatible hardware vendor gets its 16 bit hexadecimal ID from PCI SIG
organization. It should be specified in this define. This value shows up in Vendor ID register of
PCI Type0 Configuration Header.
HEADER_DEVICE_ID
Device ID is vendor specific, 16 bit hexadecimal value. It shows up in Device ID register of
PCI Type0 Configuration Header.
HEADER_REVISION_ID
Revision ID is vendor specific, 8 bit hexadecimal value, that shows up in Revision ID register
of PCI Type0 Configuration Header.
HEADER_SUBSYS_VENDOR_ID
Subsystem Vendor ID, 16 bit hexadecimal value. Shows up in the Subsystem Vendor ID
register in the PCI Type00 predefined configuration header.
HEADER_SUBSYS_ID
Subsystem ID, 16 bit hexadecimal value. Shows up in the Subsystem ID register in the PCI
Type00 predefined configuration header.
HEADER_MAX_LAT
MAX_LAT, 8 bit hexadecimal value. Shows up in the MAX_LAT register in the PCI Type00
predefined configuration header.
HEADER_MIN_GNT
MIN_GNT, 8 bit hexadecimal value. Shows up in the MIN_GNT register in the PCI Type00
predefined configuration header.

http://www.opencores.org Rev 1.2 97

OpenCores PCI IP Core Specification 16.7.2004

Parameter Defined value / Defined (yes,
no)

Description
PCI_CPCI_HS_IMPLEMENT
If defined, the RTL implementation of the PCI Bridge will have CompactPCI How Swap
functionality enabled. This feature is currently supported for GUEST bridge implementations
only. The enabled Hot Swap functionality provides additional pins on the top level of the
design (pci_bridge32.v) as well as a few changes in the core’s configuration space. See
Compact PCI Hot Swap support.
PCI_SPOCI
Only use this define for GUEST implementations of the PCI Bridge. If this Macro is defined,
the Serial Power On Configuration Interface logic will be implemented in the final design,
enabling the PCI Bridge to configure its registers from the data in the serial EPROM device,
without external intervention.

1 − PCI image 1 is always implemented, without any exceptions
2 − This value is significant only if appropriate PCI image is implemented
3 − This value is significant only if PCI image 0 is implemented to access WB bus for HOST
implementation

4 – This value is significant only if appropriate WISHBONE image is implemented.

Table 6.1: User Useful HARDWARE Configuration Parameters

http://www.opencores.org Rev 1.2 98

OpenCores PCI IP Core Specification 16.7.2004

Index

address translation logic

address mask register, setting rule............. 10
address range .. 10
architecture ... 11
registers ... 10

ation logic 10–11
clocks ... 8
FIFO..8–9
PCI bridge, general overview....................... 3
PCI target unit..................................... 6–8, 28

clocks ..8, 9
compliances

PCI interface .. 3
WISHBONE.. 3

configuration cycles................................... 17–20

field values ... 18–19
generating.. 18
PCI, waveforms ... 88
registers .. 68–69
WISHBONE, waveforms 79–80

configuration space 12–20
access for guest bus bridges....................... 16
access for host bus bridges 15
access to configuration cycles.................... 17
access, general .. 14

header
class code ... 57
device ID.. 56
header type... 56
registers ... 57–60

vendor ID .. 56
interrupt acknowledge cycles 20

configuration write cycles..........................80, 88
decoder... 4
device identificationSee configuration space

header

expansion bus bridges See guest bus bridges
features, PCI IP core 1–2
field values, configuration cycles18–19
FIFO .. 8–9

architechture ...9

PCI read FIFO .. 7, 29
PCI write FIFO....................................... 7, 28
register lines ..8
WISHBONE read FIFO...................5, 6, 21
WISHBONE write FIFO...................... 5, 21

identification See configuration space header
interrupt acknowledge cycles

.20
register..69

interrupts, generating and reporting36

address and data pins..............................76
operation

configuration space...............................12–20
interrupts ...36

transaction ordering.....................................35
parity ...36
PCI bridge, introduction

...3
function ...1

WISHBONE slave unit3
PCI target unit ...3

encoding ..26, 31, 33

architecture
address transl architecture..8

WISHBONE slave unit..................... 4–6, 21
First in First out8–9. See also FIFO

generating ...

access to configuration space 17
IO ports

PCI interface

configuration parameters................................. 92
parity ..36

architecture...
definition... 14

PCI target unit ..3

revision ID... 56

http://www.opencores.org Rev 1.2 99

OpenCores PCI IP Core Specification 16.7.2004

address space access
31

memory mapped..................................... 31

address translation, example 30
architecture .. 6–8, 28
basic functionality.. 28
configuration space header 56–60
encoding..31, 33

error reporting registers....................... 66–68
function ... 6
images mapped to memory space 33
images, configurable.................................... 29
images, selecting... 6

target module..7, 28
termination signals....................................... 26
waveforms.. 88–91
WISHBONE master module8, 29
write cycles to WISHBONE 30–33

read cycles
..25, 34

burst reads.. 26, 83, 90
delayed reads4, 24, 26, 32, 33, 34, 35, 36, 81

control & status.......................... 73
PCI target unit, configuration space header

.. 56–60
PCI target unit, control & status 64
reporting.. 70
WISHBONE slave unit, control & status55

84–87
WISHBONE.. 91

termination signals

disconnect ...26
disconnect with data 26, 87

disconnect without data 26, 87
error............................... 24, 34, 65, 67, 84, 91
master abort 19, 24, 27, 58, 65, 84
retry23, 24, 26, 32, 34, 35, 65, 67, 81, 86,

89, 91
system error...58

target disconnect with data............16, 17, 87
target disconnect without data87
target retry ...86
timeout termination85

waveforms
PCI target unit

burst read cycle, initiator to target........90
burst write cycles, initiator to target.....90
configuration read cycle88

error on WISHBONE bus91
read cycle to WISHBONE....................89
retry on WISHBONE bus.....................91
target read cycle 88, 89
write transfer, WISHBONE90

..................81
burst read cycle, PCI...............................83
burst write cycle, PCI83
configuration read cycle79
configuration read modify write cycle .80

master abort termination, PCI84
single read cycle, PCI..............................82
single writes, PCI82
target abort, PCI......................................85
target disconnect with data, PCI...........87

target retry, PCI.......................................86
timeout termination85

WISHBONE

I/O mapped ..
disconnect with/without data32

address space, non-prefetchable 33

error reporting mechanism 32–33 target abort 24, 26, 31, 32, 34, 58, 65, 85, 86
target disconnect24, 26, 87

read FIFO...7, 29 transaction ordering..35

write FIFO.. 28 configuration write cycle........................88

block reads

single reads....................14, 16, 33, 80, 82, 88
registers WISHBONE slave unit

interrupt, access to PCI address space

configuration write cycle........................80
termination cycles

PCI ..

target disconnect without data, PCI.....87

http://www.opencores.org Rev 1.2 2

OpenCores PCI IP Core Specification 16.7.2004

bus agents ... 4
slave module

slave unit
address range, example 22
address space, non-prefetchable 25
address translation, example 23
architecture ..4–6

encoding... 26
error reporting mechanism 24
error reporting registers.................. 64–66
function .. 4
images mapped to memory space 24

PCI master module6, 21

read cycles to PCI24
read FIFO ... 5, 21
slave module 5, 21
waveforms ...79–87

write FIFO .. 5, 21
write cycles

............................... 23, 24, 32, 81
burst writes... 32, 83
PCI to WISHBONE30–33

read modify writes (RMW)............16, 23, 80
single writes............14, 16, 23, 24, 30, 32, 82
WISHBONE to PCI23–24

read FIFO.. 6

decoder... 4

images, configurable...........................4, 22

write cycles to PCI23–24

block writes

posted writes 4, 6, 23, 24, 31, 32, 35, 36, 64,
84, 86

http://www.opencores.org Rev 1.2 3

	PCI IP Core�Specification
	
	What is a PCI Bridge?
	PCI IP Core Introduction
	PCI IP Core Features
	Overview
	WISHBONE Slave Unit
	WISHBONE Slave Unit Architecture
	WISHBONE Slave Module
	WBW_FIFO
	WBR_FIFO
	PCI Master Module

	PCI Target Unit
	PCI Target Unit Architecture
	PCI Target Module
	PCIR_FIFO
	WISHBONE Master Module

	Clocks
	FIFO
	Address Translation Logic
	Description of Address Translation Logic

	Initialization
	Initialization for GUEST implementation
	Initialization for HOST implementation
	Changing the configuration in operational mode

	Configuration Space
	Configuration Space Access for Host Bus Bridges
	Configuration Space Access for Guest Bridges
	Configuration Cycles
	Generating Configuration Cycles
	Generating Interrupt Acknowledge Cycles

	WISHBONE Slave Unit
	WISHBONE Slave Unit Functionality
	WISHBONE Slave Module
	WBW_FIFO
	WBR_FIFO
	PCI Master Module

	Addressing and Images of the WISHBONE Slave Unit
	WISHBONE to PCI Write Cycles
	WISHBONE to PCI Read Cycles
	WISHBONE SoC Interconnection Rev. B3 support

	PCI Target Unit
	PCI Target Unit Functionality
	PCI Target Module
	PCIW_FIFO
	PCIR_FIFO
	WISHBONE Master Module

	Addressing and Images of the PCI Target Unit
	PCI to WISHBONE Write Cycles
	PCI to WISHBONE Read Cycles
	WISHBONE SoC Interconnection Rev. B3 support

	Transaction Ordering
	PCI Bus Parity generation and checking
	Interrupts
	Compact PCI Hot Swap support
	LED# output functional description
	ENUM# output functional description
	Handle Switch input functional description
	PCI Device Status Register
	Capabilities Pointer
	Hot Swap Control and Status Register

	Serial Power On Configuration Interface
	Serial EPROM Configuration Data Organization
	Power On Configuration Sequence
	Serial EPROM Control and Status Register
	Initiating EPROM Byte Write Sequence
	Initiating EPROM Byte Read Sequence

	Register List and Description
	WISHBONE Slave Unit Control & Status
	WISHBONE Configuration Space BAR
	WISHBONE Image Control and Address Registers

	PCI Target Unit Control & Status
	PCI Image Control and Address Registers

	Reporting Registers
	WISHBONE Slave Unit Error Reporting Registers
	PCI Target Unit Error Reporting Registers
	Configuration Cycle Generation Registers
	Interrupt Acknowledge Cycle Generation Register

	Interrupt Control & Status Registers

	PCI Interface
	WISHBONE Slave Interface
	WISHBONE Master Interface
	Serial Power On Configuration Interface
	Wishbone Slave Unit
	WISHBONE Configuration Accesses
	WISHBONE to PCI Accesses
	PCI Cycles
	PCI Terminations
	Master Initiated Terminations
	Target Terminations Handled by PCI Master Module

	PCI Target Unit
	PCI Configuration Accesses
	PCI to WISHBONE Accesses With WISHBONE Cycles
	WISHBONE Terminations

	Core HW Configuration

