
PLB-to-WB Bridge
Specification

Author: Christian Haettich
feddischson@opencores.org

Rev. 0.1

August 14, 2010

Revision History

Ref. Date Author Description

0.1 08.14.2010 Christian Haettich First Draft

3

Contents

Nomenclature 7

1. Introduction 9

1.1. Features . 10

2. IO Ports and Generics 11

2.1. Generics . 11

2.2. PLB signals . 12

2.3. WB signals . 13

2.4. Other signals . 14

3. Registers 15

4. Architecture 17

4.1. PLB2WB-Bridge Components . 19

4.1.1. Transfer Control Unit . 19

4.1.2. Address Management Unit . 23

4.1.3. Status Unit . 25

4.2. FIFOs . 26

4.3. Slice Logic Utilization . 28

4.3.1. Small setup without burst transfers, line transfers and pipelining . . 28

4.3.2. Small setup with burst transfers, line transfers and pipelining 30

4.3.3. Medium setup with burst transfers, line transfers and pipelining . . . 31

4.3.4. Large setup with burst transfers, line transfers and pipelining 32

5. RTL Simulation 33

5.1. Bus Functional Model . 33

5.2. WB Test-Memory (Test-RAM) . 35

5.3. Test Structure . 35

5.3.1. Structure of a Test System . 37

6. C-Driver 39

6.1. Functions . 39

5

Contents

6.2. Example . 42

A. FIFO-Generator Script 45

A.1. fifo_generator.rb . 45

A.2. setup file . 47

Bibliography 49

6

Nomenclature

List of Abbreviations

BFC Bus Functional Compiler

BFL Bus Functional Language

PLBFM Processor Local Bus Functional Model

EDK Embedded Development Kit

FPGA Field-Programmable Gate Array

IP Intelligent Peripheral

PLB2WB PLB-to-WB

PLB Processor Local Bus

SoC Systems on Chip

WB Wishbone Bus

XPS Xilinx Platform Studio

7

1. Introduction

The intention of the project is the development of a bus bridge, which enables the usage

of WB compliant IP cores in a system, which uses the PLB as system and peripheral bus.

Figure 1 shows the intended system, which contains a PLB and WB. The PLB-to-WB

Master

Master

Slave

Slave

Slave

Slave

W
 i
 s

 h
 b

 o
 n

 e

 B

 u
 s

P
 r

 o
 c

 e
 s

 s
 o

 r

 L

 o
 c

 a
 l

 B

 u
 s

PLB

to

WB

Bridge

Figure 1.1.: System with a PLB and WB, connected via PLB2WB-Bridge.

(PLB2WB) Bridge enables the access to slaves on the WB side for masters on the PLB

side. Such a bus bridge enables the usage of free1 IP cores together with the proprietary

MicroBlaze.

1Mostly distributed under LGPL licence.

9

1 Introduction

1.1. Features

• separate clock domains for PLB and WB

• separate resets for PLB and WB possible

• PLB address pipelining (optional)

• PLB fixed length burst transfers (only words, optional)

• PLB line transfers (optional)

• WB B.3 classic cycles (block and single, block cycles are optional)

• flexible address offset

• handling of delayed write errors on WB side

• transfers interrupts to PLB side

10

2. IO Ports and Generics

2.1. Generics

Name Description

C_BASEADDR PLB base address

C_HIGHADDR PLB high address

C_SPLB_AWIDTH PLB address bus width

C_STATUS_BASEADDR PLB base address of status registers

C_STATUS_HIGHADDR PLB base address of status registers

C_SPLB_DWIDTH PLB data bus width

C_SPLB_NUM_MASTERS PLB Number of masters

C_SPLB_MID_WIDTH Master ID bus width

C_SPLB_NATIVE_DWIDTH Internal native data bus width

C_SPLB_SUPPORT_BUR_LINE Defines if PLB burst and line transfers are supported

C_SPLB_SUPPORT_ADR_PIPE Defines if PLB address pipelining is supported

WB_ADR_OFFSET Address offset: is added to every address on WB side

WB_ADR_OFFSET_NEG Defines if WB_ADR_OFFSET is added or subtracted

WB_PIC_INTS Number of WB interrupt lines

WB_PIC_INT_LEVEL Interrupts are active high or acrive low

WB_SUPPORT_BLOCK Defines if WB block transfers are supported

WB_DAT_W WB data bus width

WB_ADR_W WB address bus width

WB_TIMEOUT_CYCLES Watchdog timer cycles

11

2 IO Ports and Generics

2.2. PLB signals

Name Description

SPLB_Clk bus clock

SPLB_Rst bus reset

PLB_ABus address bus

PLB_UABus upper address bus

PLB_PAValid primary address valid indicator

PLB_SAValid secondary address valid indicator

PLB_rdPrim secondary to primary read request indicator

PLB_wrPrim secondary to primary write request indicator

PLB_masterID current master identifier

PLB_abort abort request indicator

PLB_busLock bus lock

PLB_RNW read/not write

PLB_BE byte enables

PLB_MSize master data bus size

PLB_size transfer size

PLB_type transfer type

PLB_lockErr lock error indicator

PLB_wrDBus write data bus

PLB_wrBurst burst write transfer indicator

PLB_rdBurst burst read transfer indicator

PLB_wrPendReq write pending bus request indicator

PLB_rdPendReq read pending bus request indicator

PLB_wrPendPri write pending request priority

PLB_rdPendPri read pending request priority

PLB_reqPri current request priority

PLB_TAttribute transfer attribute

Sl_addrAck slave address acknowledge

Sl_SSize slave data bus size

Sl_wait slave wait indicator

Sl_wrDAck slave write data acknowledge

12

2.3 WB signals

Sl_rearbitrate slave re-arbitrate bus indicator

Sl_wrComp slave write transfer complete indicator

Sl_wrBTerm slave terminate write burst transfer

Sl_rdDBus slave read data bus

Sl_rdWdAddr slave read word address

Sl_rdDAck slave read data acknowledge

Sl_rdComp slave read transfer complete indicator

Sl_rdBTerm slave terminate read burst transfer

Sl_MBusy slave busy indicator

Sl_MWrErr slave write error indicator

Sl_MRdErr slave read error indicator

Sl_MIRQ slave bus interrupt indicator (not used by xilinx)

2.3. WB signals

Name Description

wb_clk_i bus clock

wb_rst_i bus reset

wb_dat_i read data bus

wb_dat_o write data bus

wb_adr_o address bus

wb_sel_o byte enables

wb_we_o write enable (’0’ when read)

wb_cyc_o bus cycle indicator

wb_stb_o strobe output

wb_ack_i acknowledge input

wb_err_i error input

wb_rty_i retry input

wb_lock_o bus lock

13

2 IO Ports and Generics

2.4. Other signals

Name Description

PLB2WB_IRQ slave interrupt out (PLB size)

wb_pic_int_i interrupt input (WB side)

14

3. Registers

The PLB2WB-Bridge contains four status registers, which are listed in Table 3.1.

Name Address Width Access Description

WB_STAT Base + 0x0 32 bit R/W Read access: WB status

Write access: clear Interrupt

WB_DAT Base + 0x4 32 bit R/W Read access: contains datum of failed write

transfer

Write access: retry and continue WB transfer

WB_ADR Base + 0x8 32 bit R/W Read access: contains address of failed write

transfer

Write access: abort WB transfer

WB_IRQ Base + 0xc 32 bit R/W Read access: WB interrupt source

Write access: soft reset

Table 3.1.: List of all software accessible status registers

WB_STAT

Writing any value to this register clears the PLB2WB-Interrupt. Reading from this register

returns a 32-bit value:

Bit 0 1 2 3 .. 31

WB interrupt WB reset WB write error reserved

WB_DAT

If a WB write error occurs, this register provides the datum which failed to write. Writing

any value to this register causes the bridge to retry and continue a failed WB write transfer.

15

3 Registers

WB_ADR

If a WB write error occurs, this register provides the address (without offset) of the datum

which failed to write. Writing any value to this register causes the bridge to abort a failed

WB write transfer.

WB_IRQ

If a WB interrupt occurs, this register holds the information about the periphery, which

generated the interrupt. Writing any value to this register causes a soft reset.

16

4. Architecture

From the PLB side, the bridge looks like a slave device. On the WB side, the bridge im-

plements a master device. Figure 4.1 shows the bridge with its main components. Because

Address Management Unit

Transfer Control Unit

W
 i
 s

 h
 b

 o
 n

 e

 B

 u
 s

P
 r

 o
 c

 e
 s

 s
 o

 r

 L

 o
 c

 a
 l

 B

 u
 s

Write Buffer

Read BufferRead Buffer

Status Unit

Figure 4.1.: Basic Bridge Architecture

of the two clock domains, the whole data flow is buffered with first in first out buffers

(FIFOs). In a write transfer (Figure 4.2(a)), data crosses the bridge in one direction: An

address together with a datum from the PLB to the WB side. In a read transfer (Figure

4.2(b)), the address crosses the bridge from the PLB to the WB side and after this, a

datum crosses the bridge back from the WB to the PLB side. This has an huge impact for

PLB masters. Writing through the bridge can be done very fast, because a PLB master

don’t have to wait until the transfer is finished. But a PLB master has to wait for the

datum while reading through the bridge.

The bridge consists of two address spaces on the PLB side. One address space is used

for status registers and another address space is mapped to the WB side. In addition, a

negative or positive offset can be added to the address space, which is mapped to the WB

17

4 Architecture

AMU

TCU

P
L
B

WBF

RBF

STU

(a) Write transfer

AMU

TCU

P
L
B

WBF

RBF

STU

(b) Read transfer

Figure 4.2.: Transfer flows

PLB
address space

WB
address space

0x00000000

0xffffffff

0x00000000

0xffffffff

Status-Regs.

(a) No offset

PLB
address space

WB
address space

0x00000000

0xffffffff

0x00000000

0xffffffff

Status-Regs.

(b) Positive offset

PLB
address space

WB
address space

0x00000000

0xffffffff

0x00000000

0xffffffff

Status-Regs.

(c) Negative offset

Figure 4.3.: Address spaces examples with no offset, positive offset and negative offset

18

4.1 PLB2WB-Bridge Components

side. This offset allow a more flexible system design. Figure 4.3(a) shows a system with

no offset, Figure 4.3(b) and Figure 4.3(c) show examples for a system with positive and

negative offset.

4.1. PLB2WB-Bridge Components

4.1.1. Transfer Control Unit

The Transfer Control Unit (TCU) is connected to all components and both buses, in

intention to interact with them. It controls whether something is read from a or written

to a buffer, it controls the address and pipe-management and it is responsible for handling

the most of the control signals of both buses.

Because of the two clock domains, the TCU is also divided into two clock domains. In

addition, the PLB side of the TCU is divided into a separate read and write part. This

necessary, because PLB write and PLB read transfers can be done overlapped. Under

the line, there are three parts: a WB, PLB-Read and PLB-Write part. Each part is

implemented in a state machine.

PLB Write-FSM

Table 4.1 shows all PLB write states. If the write and address buffer is not full, a single

State Description

plb_widle No transfer in process

plb_write Single write or line write transfer in process

plb_burst_write Burst transfer in process

Table 4.1.: PLB write state machine: states description

write transfer is done in one clock cycle, which means that the machine doesn’t change the

state. If one of the buffers is full and the arbiter requests a write transfer, the machine

switches to plb_write.

If the PLB arbiter requests a line-write transfer, the machine switches to plb_write.

If the PLB arbiter requests a burst-write transfer, the machine switches to plb_burst_write.

After finishing a write transfer, the machine switches back to plb_widle.

In addition to the current state, the machine manages a counter (plb_wtrans_state_type-

.transfer_count) and a size (plb_wtrans_state_type.transfer_size) value for burst and line

transfers.

Because a write transfer to the internal status registers are handled different, an additional

flag (plb_wtrans_state_type.status_transfer) in the state machine is used to determine, if

19

4 Architecture

the target is the WB side or a internal status register.

In case of a pipelined write transfer, PLB_wrPrim goes high and the machine remembers this

with plb_wtrans_state_type.w_secondary. This enables doing a write transfer directly after

the current write transfer. These transitions are shown in Figure 4.4 with dashed lines.

plb_widle

plb_writeplb_burst_write

Figure 4.4.: PLB write states

PLB Read-FSM

The read machine is more complicated than the write machine. Table 4.2 lists all states

of this machine. If the PLB arbiter requesta a read transfer, the address is added to

State Description

plb_ridle No transfer in process

plb_read Single read transfer in process

plb_read_ack Last cycle of a single read transfer

plb_line_read Line read transfer in process

plb_wait_line_read Wait cycle of a line read transfer

plb_line_read_ack Last cycle of a line read transfer

plb_wait_burst_read Wait cycle of a burst read

plb_burst_read Burst read transfer in process

plb_burst_read_ack Last cycle of a burst read transfer

Table 4.2.: PLB read state machine: states description

the address buffer and the machine switches from the plb_ridle to one of the the following

states: plb_wait_line_read, plb_wait_burst_read or plb_read. The wait states (dotted states

is Figure 4.5) are necessary and the PLB specification says: In case of a line read or burst

read, the first datum must be assigned and acked at least two clock cycles after Sl_addrAck

20

4.1 PLB2WB-Bridge Components

was high. After one clock of a wait state, the machine continues with plb_line_read or

plb_burst_read. Such a wait cycle is not necessary for a single read transfer, because only

one ack is generated in plb_read_ack.

In a single transfer, the machine waits until the WB side has added the datum to the read

buffer. If this is the case, the machine drives Sl_rdComp high and swiches from plb_read to

plb_read_ack. The machine remains for one clock cycle in plb_read_ack and switches back

to plb_ridle (it is assumed, that there is no pending secondary request).

In a line read or burst read transfer, the machine uses RBF_almostEmpty signal, which indicates,

that two data is in the FIFO if the signal is low. This information is necessary, because

after acknowledging the penultimate datum, the last datum must be acknowledged and

read from the FIFO in the next clock cycle.

Because a read transfer to the internal status registers are handled different, an additional

flag (plb_rtrans_state_type.status_transfer) in the state machine is used to determine, if the

target is the WB side or a internal status register.

In case of a pipelined read transfer, PLB_rdPrim goes high and the machine remembers this

with plb_rtrans_state_type.r_secondary. This enables doing a read transfer directly after

the current read transfer. These transitions are shown in Figure 4.5 with dashed lines. The

wait cycles are not used in this case (this is the benefit of pipelining).

WB State Machine

Table 4.3 lists the states of the WB state machine. Figure 4.6 shows a graph of the WB

State Description

wb_idle No transfer in process

wb_write Write transfer in process

wb_read Read transfer in process

wb_write_rty Write was not successful: wb_rty_i was high and the machine switched for

one cycle to this state.

wb_read_rty Read was not successful: wb_rty_i was high and the machine switched for

one cycle to this state.

wb_write_stall Write was not successful: wb_err_i was high and the machine switched to

this state. The machine remains in this state until the STU defines with

the signals STU_abort and STU_continue what to do next.

Table 4.3.: WB state machine: states description

states. The machine switches from wb_idle to wb_read or wb_write if the AMU has a

address for the WB side. The states wb_write_rty and wb_read_rty are used if the WB

slave wants to have a retry. That means the machine switches to a retry state and switches

21

4 Architecture

plb_ridle

plb_read

plb_read_ack

plb_wait_line_read

plb_line_read_ack

plb_wait_burst_read

plb_burst_read

plb_burst_read_ack

plb_line_read

Figure 4.5.: PLB read states

22

4.1 PLB2WB-Bridge Components

back to wb_read or wb_write after one clock cycle.

If the WB slave indicates an error while doing a write transfer, the machine switches

to wb_write_stall. The machine switches from wb_write_stall back to to wb_write if

STU_abort=’1’ or STU_continue=’1’. If STU_abort=’1’, the machine reads and empties the write

buffer without writing to the WB bus. IF STU_continue=’1’, the machine continues reading

from the write buffer and writing to the WB bus.

Such a stall state does not exist for read transfer. If a read transfer fails, a flag is set in

the read buffer and the PLB read machine shows the PLB master, that the read transfer

failed.

wb_idle

wb_write

wb_write_rty

wb_read

wb_read_rty

wb_write_stall

Figure 4.6.: WB state machine

4.1.2. Address Management Unit

The Address Management Unit (AMU) is responsible for the address management. This

includes a pipelining mechanism, buffering the addresses and a simple address translation.

This results to a design (Figure 4.7) which consists three FIFOs. One FIFO buffers the

transfer qualifiers to the WB side. The read-signals are clocked with the WB clock and the

write signals are clocked with the PLB clock. The other two FIFOs are used for pipe-lining.

They are very small and completely clocked with the PLB clock.

Pipelines

The following signals are buffered with the pipelines:

• PLB_ABus

• PLB_size

• PLB_BE

• PLB_masterID

23

4 Architecture

R
e

a
d

-P
ip

e
lin

e

W
rite

-P
ip

e
lin

e

P
L

B
_

S
A

V
a

lid

A
M

U
_

a
d

d
rA

c
k

AMU_pipe_rmID

A
M

U
_

b
u

f_
a

d
r

+
/-

Address-Offset

w
b

_
s
e

l_
o

AMU_bufEmpty

TCU_adrBufREn

w
b

_
c
lk

_
i

P
L

B
_

A
B

u
s

P
L

B
_

B
E

P
L

B
_

R
N

W

P
L

B
_

s
iz

e

AMU_bufFull

TCU_adrBufWEn

&

pipe_full

pipe_write

AMU_deviceSelect

P
L

B
_

C
lk

A
d
d

re
s
s
-B

u
ffe

r (F
IF

O
)

A
M
U

Figure 4.7.: Address Management Unit
24

4.1 PLB2WB-Bridge Components

• statusSelect

The signal statusSelect is generated internally and says, if this transfer addresses the WB-

side (statusSelect = ’0’) or the status registers (statusSelect = ’1’).

Address Buffer

The following signals are buffered with the address buffer

• PLB_ABus

• PLB_size

• PLB_BE

• PLB_masterID

Note: PLB_BE is assigned to the WB select signals wb_sel_o if we don’t have a burst transfer.

The WB select signals wb_sel_o are all ’1’ if we have a burst transfer. (In this case, the

signals PLB_BE define the length of the burst transfer.)

Operations

If the PLB arbiter initiates a transfer with driving PLB_PAValid high and the TCU wants to

add the address to the address buffer, the PLB side of the TCU sets TCU_adrBufWEn to ’1’. If

the WB side of the TCU detects a AMU_bufEmpty = ’0’, it starts with a WB transfer. After

finishing the transfer, the WB side drives TCU_adrBufREn high to read from the address buffer.

If the AMU gets a PLB_SAValid = ’1’, the pipe automatically adds the address to the FIFO.

The PLB side of the TCU defines, when to read from the pipe. If the TCU wants to

transfer the data from the pipe to the address buffer, it drivers TCU_rpipeRdEn or TCU_wpipeRdEn

high and TCU_adrBufWEn high (this is the case, when a transfer addresses the WB side). If

the TCU wants to only read from a pipe, it drivers TCU_rpipeRdEn or TCU_wpipeRdEn high (this

is the case, when a transfer addresses status registers).

Address Offset of the WB Side

It is possible to add an optional positive or negative offset the addresses. This is configured

statically with generics: WB_ADR_OFFSET defines the offset value and WB_ADR_OFFSET_NEG defines if

the offset is positive WB_ADR_OFFSET_NEG=’0’ or negative WB_ADR_OFFSET_NEG=’1’

4.1.3. Status Unit

The Status Unit has the following tasks:

• Detect interrupts on WB side and transfer information to the PLB side

• Transfer information about write errors to the PLB side

25

4 Architecture

• Detect bus resets on the WB side and transfer this information to the PLB side

Figure 4.8 shows the internal structure of the STU. There are two FIFOs to transfer data

from WB to PLB (Status-to-PLB-FIFO) or from PLB to WB (Status-to-WB-FIFO). In

addition, the STU contains 4 software accessible registers (read only). In case of a write

access to the status address space, the TCU indicates this with driving TCU_stuWritePA or

TCU_stuWriteSA high (depending if it is a pipelined transfer or not). Some decoding is used

to clear the interrupt (if the address is "00"), do a soft reset (if the address is "11") or to

continue/abort a failed write transfer (address is "01" or "10").

In case of read access, the address is latched into a address-register. After latching the

address, STU_rdDBus contains the required register value. On the WB side, TCU_stat2plb_en is

used to add information about failed write transfer, resets and interrupts to the Status-

to-PLB-FIFO. If something is in the Status-to-WB-FIFO, the value is automatically read

and STU_abort or STU_continue is driven high.

4.2. FIFOs

There are seven FIFOs in the PLB2WB-Bridge. Table 4.4 shows the filename, in which

part it is used and a description. The first five entries are FIFOs, which are used to

separate the two clock domains and to buffer data and addresses. The the first five files

Number Filename

Separate
R/W
Clock Used in Description

1 fifo_adr.vhd X AMU buffers address: flow from PLB

to WB

1 fifo_rdat.vhd X RBF buffers data: flow from WB to

PLB

1 fifo_wdat.vhd X WBF buffers data: flow from PLB to

WB

1 fifo_stat2plb.vhd X STU buffers status information: flow

from WB to PLB

1 fifo_stat2wb.vhd X STU buffers status information: flow

from PLB to WB

2 plb2wb_fifo AMU buffers addresses: for pipelining

Table 4.4.: FIFO overview

in Table 4.4 are wrapper files. They are including device-dependet FIFOs, which must be

created by the developer or system designer. If the target is a Xilinx FPGA, there exists

26

4
.2

F
IF

O
s

Registers

Status to PLB

Status to WB

STU_abort

STU_continue
rd

_
e

n

e
m

p
ty

&
&

d
e

c
o
d

in
g

PLB_ABus(28 to 29)

STU_rdDBus

S
T

U
_
s
o

ft
R

e
s
e
t

AMU_buf_adr_wo

TCU_stat2plb_en

w
r_

e
n

SPLB_Rst>
1internal

reset

hold-counter

TCU_WritePA

TCU_WriteSA

address-reg. TCU_stuLatchSA

TCU_stuLatchPA

reset
internal

AMU_buf_masterID

TCU_wb_status_info

TCU_wb_irq_info

gray code is used

F
ig

u
re

4.
8.

:
S
ta

tu
s

U
n
it

27

4 Architecture

a Fifo-Generator script (see A). The situation of the last entry in Table 4.4 is different.

These two FIFOs are very small and they don’t need to work with two independent clock

domains which means, that they are implemented with some simple VHDL code.

4.3. Slice Logic Utilization

This section shows the slice logic utilization caused by the PLB2WB-Bridge. Four example

setups are used to show, how the parameters impact the utilization. Table 4.5 shows the

general setup, which is used for all systems.

Name Value

Toolchain Xilinx ISE 11

Device Family virtex5

Device xc5vlx50

Package ff676

Speedgrade -2

Optimization Goal Area

Optimization Effort Normal

FSM Style LUT

FSM Encoding Algorithm Auto

Place and Route Effort Level High

Place and Route Mode Route Only

PLB data bus width 128

WB data bus width 32

WB address bus width 32

Table 4.5.: General setup to test the slice logic utilization.

4.3.1. Small setup without burst transfers, line transfers and pipelining

Table 4.6 shows the setup and Table 4.7 the result after placing and routing.

28

4.3 Slice Logic Utilization

Name Value

Masters 1

Wishbone timeout cycles 4

Address offset no offset

WB interrupts 0

Master id buffer size 16

Address buffer size 16

Read buffer size 16

Write buffer size 16

Status to WB buffer size 16

Status to PLB buffer size 16

Table 4.6.: Small setup without burst transfers, line transfer and pipelining.

Synchron Asynchron

LUTs 443 594

Flipflops 416 564

BRAMs/FIFOs 0 0

Table 4.7.: Result of small setup without burst transfers, line transfer and pipelining.

29

4 Architecture

4.3.2. Small setup with burst transfers, line transfers and pipelining

Table 4.8 shows the setup and Table 4.9 the result after placing and routing.

Name Value

Masters 1

Wishbone timeout cycles 4

Address offset no offset

WB interrupts 0

Master id buffer size 16

Address buffer size 16

Read buffer size 16

Write buffer size 16

Status to WB buffer size 16

Status to PLB buffer size 16

Table 4.8.: Small setup with burst transfers, line transfer and pipelining.

Synchron Asynchron

LUTs 447 598

Flipflops 416 564

BRAMs/FIFOs 0 0

Table 4.9.: Result of small setup with burst transfers, line transfer and pipelining.

30

4.3 Slice Logic Utilization

4.3.3. Medium setup with burst transfers, line transfers and pipelining

Table 4.10 shows the setup and Table 4.11 the result after placing and routing.

Name Value

Masters 4

Wishbone timeout cycles 8

Address offset with offset

WB interrupts 4

Master id buffer size 512

Address buffer size 512

Read buffer size 512

Write buffer size 512

Status to WB buffer size 16

Status to PLB buffer size 16

Table 4.10.: Medium setup with burst transfers, line transfer and pipelining.

Synchron Asynchron

LUTs 378 423

Flipflops 213 328

BRAMs/FIFOs 3 3

Table 4.11.: Results of medium setup with burst transfers, line transfers and pipelining.

31

4 Architecture

4.3.4. Large setup with burst transfers, line transfers and pipelining

Table 4.12 shows the setup and Table 4.13 the result after placing and routing.

Name Value

Masters 8

Wishbone timeout cycles 32

Address offset with offset

WB interrupts 32

Master id buffer size 4096

Address buffer size 4096

Read buffer size 4096

Write buffer size 4096

Status to WB buffer size 64

Status to PLB buffer size 64

Table 4.12.: Large setup with burst transfers, line transfer and pipelining.

Synchron Asynchron

LUTs 485 572

Flipflops 400 433

BRAMs/FIFOs 13 13

Table 4.13.: Results of large setup with burst transfers, line transfers and pipelining.

32

5. RTL Simulation

The main development of the PLB2WB-Bridge is done with the Processor Local Bus Func-

tional Model (PLBFM). The PLBFM is developed by IBM and Xilinx offers an adapted

and a XPS-integrated version for developing PLB masters and slaves.

For this project, there exists one folder for developing a new functionality and one folder

which contains several test-systems and test-cases. This chapter explains first the PLBFM

and how it is used. The second part explains the test-structure for this project.

5.1. Bus Functional Model

The PLBFM contains three components

• PLBFM Master

• PLBFM Slave

• PLBFM Monitor

and a Bus Functional Compiler. Instances of these three components can be added to the

system like normal IP cores in XPS. The PLBFM is used to generate bus stimulus without

BFM

Master

BFM

Master
Test-

Memory

Test-

Memory

W
 i
 s

 h
 b

 o
 n

 e

 B

 u
 s

P
 r

 o
 c

 e
 s

 s
 o

 r

 L

 o
 c

 a
 l

 B

 u
 s

PLB

to

WB

Bridge

BFM

Monitor

Figure 5.1.: Example for a PLB2WB-Bridge test system

simulating a processor and without writing any C or Assembler code. Instead of C or

33

5 RTL Simulation

Assembler code, some code with the Bus Functional Language (BFL) has to be written.

So the PLBFM Master initiates the bus cycles and the PLBFM Slave can respond to it.

The PLBFM Monitor is used to check the behavior of all PLB signals. If any signal of the

PLB behaves wrong, an error message is printed.

Thereby, the whole PLBFM simplifies the development and verification of PLB peripheries

like the PLB2WB-Bridge. The list of features of the PLBFM can be found in [plb01,

Chapter 1.1/1.2].

A typical test setup is shown in Figure 5.1. The system contains two PLBFM Masters, a

PLBFM Monitor and the PLB2WB-Bridge at the PLB. At the WB, there is the PLB2WB-

Bridge and some instances of a WB Test-Memory, which is explained in Section 5.2. The

PLBFM Masters generate read and write cycles to and from the WB Test-Memories,

whereas the PLB2WB-Bridge must translate these transfers from the PLB to WB. In ad-

dition to these components, there exists a synchronization signal (not shown in Figure

5.1). This signal can be used for communication between PLBFM components. Because

the PLB2WB-Bridge is not a PLBFM component, the testbench of this system interacts

with this synchronization signal.

For example, the synchronization signal can be used to wait for something, like the slave

has finished some processing. For testing the PLB2WB-Bridge, the synchronization signal

is only used make breaks between bus transfers.

set_device(

path=/system_tb

3 /dut

/plb_bfm_master_32

/plb_bfm_master_32

6 /master,device_type=plb_master)

configure(msize=00)

9 mem_update(addr=f2000000,data=01112233)

mem_update(addr=f2000004,data=44556677)

mem_update(addr=f2000008,data=8899aabb)

12 mem_update(addr=f200000c,data=ccddeeff)

mem_update(addr=f3000000,data=01112233)

15 mem_update(addr=f3000004,data=44556677)

mem_update(addr=f3000008,data=8899aabb)

mem_update(addr=f300000c,data=ccddeeff)

18

write(addr=f2000000,size=0001, be=0001)

write(addr=f3000000,size=1010, be=0011)

21 read (addr=f2000000,size=0000, be=1111)

read (addr=f3000000,size=0000, be=0011)

Listing 5.1: PLBFM example for a PLB Master

34

5.2 WB Test-Memory (Test-RAM)

To setup and control the PLBFM peripherals, the BFL is used to describe their behavioral.

The BFL source file is compiled with the BFC, which creates a script file. This script file

has to be executed by the simulator before running the simulation. An example for a

PLBFM master is shown in Listing 5.1. Line one to seven sets the path to the instance

and makes some general configuration (in this case, only the size of the device is set:

msize=00 =̂32 bit). Line nine to 17 initializes the memory of the PLBFM Master device.

This is used in line 19 to 22 to for some bus transfers. First, the data is written to the

slave and after that, the data is read from the same address. If the data is not the same,

which was written, an error message is printed. This allows to test the functionality of the

PLB2WB-Bridge. If something goes wrong with a datum, which writing or reading to or

from an address, an error message is printed. The type of the transfer is defined with the

argument size and be. A detailed description of all BFL commands and all functionality

is provided in [plb01].

5.2. WB Test-Memory (Test-RAM)

To simulate different devices with different behavior of a slave device at the WB, a WB

Test-Memory was developed for this project. The following list shows the features, which

can be configured via XPS:

• Memory initialization with a file

• Variable size

• Configurable read and write delay

• Simulation of WB retries

• Simulation of WB errors

This WB Test-Memory makes it easy to add several WB slaves with different behavior the

WB without integrating a real IP core to XPS.

5.3. Test Structure

As mentioned above, there exists two folders. The first folder proj_dir/systems/dev_-

system contains a development system. New functionality is developed with this system.

The folder contains the XPS project files and a simulation folder, which contains all nec-

essary files for simulating the system.

The second folder proj_dir/systems/test_system_sim contains several test systems,

whereas each test system contains one or more than one test-cases. Table 5.1 gives an

overview about the existing test systems with all test cases.

35

5
R
T

L
S
im

u
la

ti
o
n

Test-System folder System Description Test-Cases Test-Case Description

32bit_on_128bitPLB_asyn

3 PLBFM Masters, 1 PLBFM Monitor, 4

Test-Memories, PLB2WB-Bridge works

asynchronous with block/burst transfers and

pipelining

simple_burst_rw Simple burst transfers without pipelining

simple_line_rw Simple line transfers without pipelining

simple_read_write Simple single transfers without pipelining

stressfull_read_write All types of transfers mixed with pipelining

32bit_on_128bitPLB_syn

3 PLBFM Masters, 1 PLBFM Monitor, 4

Test-Memories, PLB2WB-Bridge works

synchronous with block/burst transfers and

pipelining

simple_burst_rw Simple burst transfers without pipelining

simple_line_rw Simple line transfers without pipelining

simple_read_write Simple single transfers without pipelining

stressfull_read_write All types of transfers mixed with pipelining

simple 3 PLBFM Masters, 1 PLBFM Monitor,

4 Test-Memories, PLB2WB-Bridge works

asynchronous without block/burst transfers

and without pipelining

stressfull_read_write All types of transfers mixed with pipelining

wb_err_and_rst
3 PLBFM Masters, 1 PLBFM Monitor, 4

Test-Memories which generate errors, one

Test-Memory has very long r/w delay,

PLB2WB-Bridge works asynchronous with

block/burst transfers and pipelining,

testbech generates reset

errors_and_rst Tests right behavior of bridge after WB er-

rors and WB resets, interaction with status

registers and PLB2WB IRQ

timeouts Tests the watchdog timer

wb_irqs 1 PLBFM Master, 1 PLBFM Monitor, 1 WB-

Test Memory, IRQs are generated by test-

bench

wb_irqs Test handling of IRQs on WB side, interac-

tion with status registers and PLB2WB_IRQ

wb_retries 1 PLBFM Master, 1 PLBFM Monitor, 3 WB-

Test Memories which generate retries

simple_retries Test right behavior of bridge after WB retries

Table 5.1.: All test systems with all test cases

36

5.3 Test Structure

5.3.1. Structure of a Test System

There exists a common folder, which contains a common makefile. This common makefile

is used by all test systems to compile peripherals, which are used by all test systems.

In addition, there is a makefile for every test system in the folder simulation. This

makefile is dedicated for a test system and is responsible to create and compile the test

system (which depends on system.mhs ect.). The test cases can be found in the folder

simulation/test_cases. Every test case folder contains a makefile and some script files.

The makefile generates the PLBFM script files and calls the simulator. And last but not

least, there exists a top-level makefile in the test_system_sim folder which is responsible

to call all makefiles and run all tests.

To run all tests, the user must run make compile, which causes to compile all test systems.

After that, all test-cases can be run with make all. It is also possible to use the -j option

of make to increase the performance on multicore workstations. An example for a Intel

Core-i7 with 8 virtual cores is make all -j 9.

Note: It is not suggested to run make compile with the j option, because in some rare

cases, the compilation fails.

After running make all, the three files error.log simulation.log and assert.log are

generated which contains information about the simulation and the result.

37

6. C-Driver

There exists a C-Driver in

systems/EDK_Libs/WishboneIPLib/drivers/plb2wb_bridge_v1_00_a/

which is used for

• handling multiple PLB2WB-Bridge instances

• manage interrupt request handler table

• continue and abort failed write transfers

• software resets

This software interface is very similar to the software interface of the Xilinx XPS Interrupt

Controller.

6.1. Functions

PLB2WB_Bridge_Initialize

int PLB2WB_Bridge_Initialize(PLB2WB_Bridge * InstancePtr, u16 DeviceId, XIntc* xintcInstancePtr, u8 irqID)

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

u16 DeviceId ID of the device (from xparamters.h)

XIntc* xintcInstancePtr Pointer to XIntc instance

u8 irqID ID of the Interrupt (from xparamters.h)

Return value

int XST_DEVICE_NOT_FOUND if device

was not found, else XST_SUCCESS

This function initializes the PLB2WB_Bridge instance. It needs a pointer the pointer

xintcInstancePtr because the interrupt handler needs to acknowledge the interrupt in the

XIntc. The irqID is the interrupt ID of the bridge.

In addition, the IRQ handler table is initialized with stub handlers.

39

6 C-Driver

PLB2WB_Bridge_Connect

int PLB2WB_Bridge_Connect(PLB2WB_Bridge*, u8 Id, XInterruptHandler Handler, void* CallBackRef);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

u8 Id Interrupt ID

XInterruptHandler Handler Handler, which is connected

void* CallBackRef Reference to callback argument

Return value

int XST_SUCCESS

This function adds an interrupt handler to the IRQ handler table. If an interrupt with the

Id Id occurs, the handler Handler with CallBackRef as argument is called.

PLB2WB_Bridge_Disconnect

void PLB2WB_Bridge_Disconnect(PLB2WB_Bridge * InstancePtr, u8 Id);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

u8 Id ID of the Interrupt, which is disconnected

Return value

int XST_SUCCESS

This function disconnects an interrupt handler with the id Id and overwrites the entry in

the IRQ handler table with the stub handler.

PLB2WB_Bridge_Connect_WBWrErrHandler

int PLB2WB_Bridge_Connect_WBWrErrHandler(PLB2WB_Bridge* InstancePtr, XInterruptHandler Handler, void* CallBackRef);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

XInterruptHandler Handler Handler, which is connected

void* CallBackRef Reference to callback argument

Return value

int XST_SUCCESS

This function connects the interrupt handler Handler which is called with CallBackRef as

argument, when a write error occurs.

40

6.1 Functions

It is important, that there exists such a handler, the stub handler never returns if a write

error occurs.

PLB2WB_Bridge_Connect_WBRstHandler

int PLB2WB_Bridge_Connect_WBRstHandler(PLB2WB_Bridge* InstancePtr, XInterruptHandler Handler, void* CallBackRef);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

XInterruptHandler Handler Handler, which is connected

void* CallBackRef Reference to callback argument

Return value

int XST_SUCCESS

This function connects the interrupt handler Handler which is called with CallBackRef as

argument, when a WB reset occurs.

It is important, that there exists such a handler, the stub handler never returns if a WB

reset occurs.

PLB2WB_Bridge_WBContinue

void PLB2WB_Bridge_WBContinue (PLB2WB_Bridge* InstancePtr);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

Return value

void

This function continues a failed WB cycle.

PLB2WB_Bridge_WBAbort

void PLB2WB_Bridge_WBAbort(PLB2WB_Bridge* InstancePtr);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

Return value

void

This function aborts a failed WB cycle.

41

6 C-Driver

PLB2WB_Bridge_SoftReset

void PLB2WB_Bridge_SoftReset(PLB2WB_Bridge* InstancePtr);

Arguments

PLB2WB_Bridge* InstancePtr Instance of the bridge

Return value

void

This function does a software reset of the PLB2WB-Bridge.

6.2. Example

Listing 6.1 shows, how the driver can be used.

#include "xstatus.h"

#include "xbasic_types.h"

3 #include "xstatus.h"

#include "xio.h"

#include "xintc.h"

6 #include "plb2wb_bridge.h"

static XIntc intc_instance;

9 static PLB2WB_Bridge plb2wb_bridge_instance;

static struct someData{

12 int a;

int b;

} handlerData;

15

void IRQ_HandlerOfAPeriphery(void* args)

18 {

handlerData* data = (hanlderData*) args;

21 // do something

clear_irq_in_periphry();

24 }

27 void IRQ_wb_write_error(void* args)

{

// do something, like

30 PLB2WB_Bridge_WBContinue(plb2wb_bridge_instance);

// or

PLB2WB_Bridge_WBAbort(plb2wb_bridge_instance);

33 }

42

6.2 Example

36 void IRQ_wb_reset(void* args)

{

// do something, like

39 PLB2WB_Bridge_SoftReset(plb2wb_bridge_instance);

}

42 int main(void)

{

XStatus status;

45

// initialize bridge and xintc instance

if((status = XIntc_Initialize(&intc_instance, INTC_DEVICE_ID)) != XST_SUCCESS)

48 return status;

if((status = PLB2WB_Bridge_Initialize(

51 &plb2wb_bridge_instance,

PLB2WB_BRIDGE_DEVICE_ID,

&intc_instance,

54 PLB2WB_IRQ_ID)

) != XST_SUCCESS)

return status;

57

// connect bridge irq handler (−> xintc)

status = XIntc_Connect(&intc_instance,

60 PLB2WB_IRQ_ID,

(XInterruptHandler)PLB2WB_Bridge_DeviceInterruptHandler,

(void*) &plb2wb_bridge_instance);

63 if (status != XST_SUCCESS)

return status;

66 // connect periphery irq handler (−> plb2wb_bridge)

status = PLB2WB_Bridge_Connect(&plb2wb_bridge_instance,

IRQ_ID_OF_A_PERIPHERY,

69 (XInterruptHandler)IRQ_HandlerOfAPeriphery,

(void*) &handlerData

);

72 if (status != XST_SUCCESS)

return status;

75 // connect wb write error handler (−> plb2wb_bridge)

status = PLB2WB_Bridge_Connect_WBWrErrHandler(&plb2wb_bridge_instance,

IRQ_wb_write_error,

78 (void*)0

);

if (status != XST_SUCCESS)

81 return status;

// connect wb reset handler (−> plb2wb_bridge)

84 status = PLB2WB_Bridge_Connect_WBRstHandler(&plb2wb_bridge_instance,

IRQ_wb_reset,

(void*)0

87);

if (status != XST_SUCCESS)

return status;

90

// enalbe the bridge irq (−> xintc)

43

6 C-Driver

XIntc_Enable(&intc_instance, PLB2WB_IRQ_ID);

93

// start irq controller (−> xintc)

if((status = XIntc_Start(&intc_instance, XIN_REAL_MODE)) != XST_SUCCESS)

96 return status;

// enable irq (−> microblaze)

99 microblaze_enable_interrupts();

while(1)

102 {

// do something

}

105 }

Listing 6.1: Example usage of the bridge driver

44

A. FIFO-Generator Script

Because a lot of FIFOs are needed, the generation of this FIFOs might be done with a

script1. Table A.1 shows all FIFOs, which are generated with this script. Because some text

processing is needed, Ruby as modern highlevel programming languate is choosen. Due to

the fact that the generation of the FIFOs depend on parameters, a setup file is necessary.

The next section explains the usage and the functionallity of the FIFO-Generator script

and Section A.2 explains the parameters and lists an example setup file.

A.1. fifo_generator.rb

The ruby script file fifo_generator.rb can be found in proj_dir/coregen/fifo_generator/.

Usage: ruby fifo_generator [OPTIONS]... setup-file

OPTIONS:

-c --no-coregen do not run coregen (Only creates *.xco command_files)

-v --cp-vhdl-to-lib copy vhdl-files to library folder

(path is set in ’setup-file’)

-n --cp-ngc-to_imp copy netlist-files to implementation folder

(path is set in ’setup_file’)

-? --help display this message

If you run the script without any option, all files (*.vhd files and *.ngc files) are created,

but nothing more is done. There are two options to copy the *.vhd files and *.ngc files to

the desired folders. The *.vhd files are only needed for simulations in contract to the *.ngc

files, which are used in the synthesis.

If you have multiple systems, you can run the script one time without any options and

then several times with the -c and -n flags with different paths. This copies the file into

the desired folders.

1Only for Xilinx FPGAs

45

A FIFO-Generator Script

Filename Wrapper Description

fifo_adr_cc_1.vhd

fifo_adr.vhd

Common clocks, 1 master

fifo_adr_cc_2.vhd Common clocks, 2-4 masters

fifo_adr_cc_3.vhd Common clocks, 5-8 masters

fifo_adr_cc_4.vhd Common clocks, 9-16 masters

fifo_adr_ic_1.vhd Independet clocks, 1 master

fifo_adr_ic_2.vhd Independet clocks, 2-4 masters

fifo_adr_ic_3.vhd Independet clocks, 5-8 masters

fifo_adr_ic_4.vhd Independet clocks, 9-16 masters

fifo_rdat_cc_32.vhd
fifo_rdat.vhd

Common clocks

fifo_rdat_ic_32.vhd Independet clocks

fifo_stat2plb_cc_1.vhd

fifo_stat2plb.vhd

Common clocks, 1 master

fifo_stat2plb_cc_2.vhd Common clocks, 2-4 masters

fifo_stat2plb_cc_3.vhd Common clocks, 5-8 masters

fifo_stat2plb_cc_4.vhd Common clocks, 9-16 masters

fifo_stat2plb_ic_1.vhd Independet clocks, 1 master

fifo_stat2plb_ic_2.vhd Independet clocks, 2-4 masters

fifo_stat2plb_ic_3.vhd Independet clocks, 5-8 masters

fifo_stat2plb_ic_4.vhd Independet clocks, 9-16 masters

fifo_stat2wb_cc.vhd
fifo_stat2wb.vhd

Common clocks

fifo_stat2wb_ic.vhd Independet clocks

fifo_wdat_cc_32.vhd
fifo_wdat.vhd

Common clocks

fifo_wdat_ic_32.vhd Independet clocks

Table A.1.: All FIFOs, which are generated by the FIFO-Generator script

46

A.2 setup file

A.2. setup file

Parameter name Range Description

Device_Family The FPGA device family

Device The FPGA device

Package The FPGA package

Speedgrade The speedgrade, used for synthesis

PLB2WB_Bridge_VHDL_DIR 16 ... 4194304 Destination directory for VHDL files

PLB2WB_Bridge_NGC_DIR 16 ... 4194304 Destination directory for NGC files

Address_Buffer_Size 16 ... 4194304 Size of the address buffer

Read_Buffer_Size 16 ... 4194304 Size of the read buffer

Write_Buffer_Size 16 ... 4194304 Size of the write buffer

Stat2WB_Buffer_Size 16 ... 4194304 Size of the status-to-plb buffer

Stat2PLB_Buffer_Size 16 ... 4194304 Size of the status-to-wb buffer

WB_Clk_Frequency WB clock frequency

PLB_Clk_Frequency PLB clock frequency

Address_Buffer_minDWidth 42 (constant) Minimum width of the address buffer

Read_Buffer_DWidth 33 (constant) Width of the read buffer

Write_Buffer_DWidth 32 (constant) Width of the write buffer

Stat2PLB_Buffer_minDWidth 100 (constant) Width of the status-to-plb buffer

Stat2WB_Buffer_DWidth 1 (constant) Width of the status-to-wb buffer

Table A.2.: All parameters, which are used by the FIFO-Generator script

Listing A.1 shows an example, how a setup file for the FIFO-Generator script can look

like. The first word in every line is the name of the option, followed by a equal sign and the

value. It doesn’t matter, how much spaces or tabs are between the names and equal signs

and between the equal signs and values. The order of the parameters doesn’t matter, too.

Important is, that every parameter is defined with a valid value and the name is written

right (case sensitive). It is also possible to use comments: everything behind a hash sign

is ignored by the script. The parsing of this file is done with regular expressions.

Device_Family = virtex5

Device = xc5vlx50

3 Package = ff676

Speedgrade = -2

47

A FIFO-Generator Script

6 # Path to the vhdl and implementation directory

PLB2WB_Bridge_VHDL_DIR = ../../systems/EDK_Libs/WishboneIPLib/pcor\

es/plb2wb_bridge_v1_00_a/hdl/vhdl/

9 PLB2WB_Bridge_NGC_DIR =../../systems/adv_system_fpga/implementation/

Address_Buffer_Size = 16

12 Read_Buffer_Size = 16

Write_Buffer_Size = 16

Stat2WB_Buffer_Size = 16

15 Stat2PLB_Buffer_Size = 16

WB_Clk_Frequency = 66

PLB_Clk_Frequency = 100

18

################################

Do not change below unless

21 # you know what you are doing

Address_Buffer_minDWidth = 42

Read_Buffer_DWidth = 33

24 Write_Buffer_DWidth = 32

Stat2PLB_Buffer_minDWidth = 100

Stat2WB_Buffer_DWidth = 1

Listing A.1: Example of a setup file for the FIFO-Generator script

Table A.2 lists all parameters, which must be defined in the setup file

48

Bibliography

[plb01] Processor Local Bus Functional Model Toolkit - User’s Manual. Version 4.3.

Research Triangle Park, NC : IBM, 2001

49

	Nomenclature
	1 Introduction
	1.1 Features

	2 IO Ports and Generics
	2.1 Generics
	2.2 PLB signals
	2.3 WB signals
	2.4 Other signals

	3 Registers
	4 Architecture
	4.1 PLB2WB-Bridge Components
	4.1.1 Transfer Control Unit
	4.1.2 Address Management Unit
	4.1.3 Status Unit

	4.2 FIFOs
	4.3 Slice Logic Utilization
	4.3.1 Small setup without burst transfers, line transfers and pipelining
	4.3.2 Small setup with burst transfers, line transfers and pipelining
	4.3.3 Medium setup with burst transfers, line transfers and pipelining
	4.3.4 Large setup with burst transfers, line transfers and pipelining

	5 RTL Simulation
	5.1 Bus Functional Model
	5.2 WB Test-Memory (Test-RAM)
	5.3 Test Structure
	5.3.1 Structure of a Test System

	6 C-Driver
	6.1 Functions
	6.2 Example

	A FIFO-Generator Script
	A.1 fifo_generator.rb
	A.2 setup file

	Bibliography

