
Gisselquist
Technology, LLC

QUAD SPI FLASH
CONTROLLER

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

August 11, 2016

Gisselquist Technology, LLC Specification 2016/08/11

Copyright (C) 2016, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

www.opencores.com Rev. 0.3 ii

Gisselquist Technology, LLC Specification 2016/08/11

Revision History
Rev. Date Author Description

0.3 8/11/2016 Gisselquist Added information on the Extended Quad SPI
controller

0.2 5/26/2015 Gisselquist Minor spelling changes
0.1 5/13/2015 Gisselquist First Draft

www.opencores.com Rev. 0.3 iii

Gisselquist Technology, LLC Specification 2016/08/11

Contents

Page

1 Introduction . 1

2 Architecture . 2
2.1 QSPI Flash Architecture . 2
2.2 EQSPI Flash Architecture . 4

3 Operation . 7
3.1 High Level . 7
3.2 Low Level . 9

4 Registers . 10
4.1 QSPI Controller . 10

4.1.1 EREG Register . 10
4.1.2 Config Register . 12
4.1.3 Status Register . 13
4.1.4 Device ID . 13

5 Wishbone Datasheet . 14
5.1 EQSPI Controller . 15

5.1.1 EREG Register . 15
5.1.2 Status Register . 15
5.1.3 Non–Volatile Configuration Register . 15
5.1.4 Volatile Configuration Register . 15
5.1.5 Extended Volatile Configuration Register . 15
5.1.6 Sector Lock Register . 15
5.1.7 Flag Status Register . 15
5.1.8 Identification memory . 15
5.1.9 One–Time Programmable Memory . 15

6 Clocks . 16

7 I/O Ports . 17

www.opencores.com Rev. 0.3 iv

Gisselquist Technology, LLC Specification 2016/08/11

Figures

Figure Page

2.1. QSPI Architecture Diagram . 3
2.2. EQSPI Architecture Diagram . 5

www.opencores.com Rev. 0.3 v

Gisselquist Technology, LLC Specification 2016/08/11

Tables

Table Page

4.1. List of QSPI Registers . 10
4.2. EREG bit definitions . 11
4.3. Configuration bit definitions . 12
4.4. Status bit definitions . 13
4.5. Read ID bit definitions . 13

5.1. Wishbone Datasheet for the (E)QSPI Flash controller 14

6.1. List of QSPI Controller Clocks . 16
6.2. List of EQSPI Controller Clocks . 16

7.1. Wishbone I/O Ports . 17
7.2. List of Quad–SPI Flash I/O ports . 18
7.3. Other I/O Ports . 18

www.opencores.com Rev. 0.3 vi

Gisselquist Technology, LLC Specification 2016/08/11

Preface

The genesis of this project was a desire to communicate with and program an FPGA board without
the need for any proprietary tools. This includes Xilinx JTAG cables, or other proprietary loading
capabilities such as Digilent’s Adept program. As a result, all interactions with the board need to
take place using open source tools, and the board must be able to reprogram itself.

That was the beginning of the QSPI flash controller.
The EQSPI flash controller started from a similar need for a board that had an EQSPI flash.

That particular board was an Arty, and so the EQSPI flash controller has been designed around the
Arty platform.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.3 vii

Gisselquist Technology, LLC Specification 2016/08/11

1.

Introduction

This document discusses the design and usage of two cores: a Quad SPI flash controller, and a
newer Extended Quad SPI flash controller. In general, the two are very similar. However, their
construction and register usage are subtly different, so the user will need to pay attention to these
differences.

Both Flash controllers handle all of the necessary queries and accesses to and from a SPI Flash
device that has been augmented with an additional two data lines and enabled with a mode allowing
all four data lines to work together in the same direction at the same time. Since the interface was
derived from a SPI interface, most of the interaction takes place using normal SPI protocols and
only some commands work at the higher four bits at a time speed. This remains true, even though
the newer Extended SPI flash controller allows control accesses and Dual I/O and Quad I/O speeds:
control interactions remain at SPI speeds, and only data reads and writes take place at the Quad
I/O speed.

Both controllers attempt to mask the underlying operation of the Flash device behind a wishbone
interface, to make it so that reads and writes are as simple as using the wishbone interface. However,
the difference between erasing (turning bits from ’0’ to ’1’) and programming (turning bits from ’1’
to ’0’) breaks this model somewhat. Therefore, reads from the device act like normal wishbone
reads, writes program the device (if the write protect is properly removed) and sort of work with
the wishbone, while erase commands require another register to control. Please read the Operations
chapter for a detailed description of how to perform these relevant operations.

This QSPI controller implements the interface for the Quad SPI flash found on the Basys-3 board
built by Digilent, Inc, as well as their CMod-S6 board. A similar controller has been modified for
the flash on the XuLA2-LX25 SoC. It is possible that some portions of the interface may be specific
to the Spansion S25FL032P chip used on the Basys-3 board, and the 100 MHz system clock found
on the board, although there is no reason the controller needs to be limited to this architecture. It
just happens to be the one the QSPI controller was designed to and for.

The Extended QSPI controller, or EQSPI controller, was designed to control the Micron Serial
NOR Flash Memory, N25Q128A, found on Digilent’s Arty board. As with the Spansion chip, it is
possible that parts of the interface are specific to this board and this chip.

For a description of how the internal of each core work, feel free to browse through the Architec-
ture chapter.

The registers that control the cores are discussed in the Registers chapter.
As required, you can find a wishbone datasheet in Chapt. 5.
The final pertinent information for implementing the cores is found in the I/O Ports chapter,

Chapt. 7.
As always, write me if you have any questions or problems.

www.opencores.com Rev. 0.3 1

Gisselquist Technology, LLC Specification 2016/08/11

2.

Architecture

The internal architecture of each of these two cores is different, reflecting their different chips and
goals. The QSPI controller is designed to run using a 50 MHz SPI clock, generated from a 100 MHz
controller clock. The EQSPI controller, however, was designed to prove that a 100 MHz SPI clock
could be used to drive a flash controller from a 200 MHz controller clock. As a result of these
clocking differences, the architectures of each are quite different.

2.1 QSPI Flash Architecture

As built, the core consists of only two components: the wishbone quad SPI flash controller, wbqspiflash,
and the lower level quad SPI driver, llqspi. The controller issues high level read/write commands
to the lower level driver, which actually implements the Quad SPI protocol.

Pictorally, this looks something like Fig. 2.1. This is also what you will find if you browse through
the code.

While it isn’t relevant for operating the device, a quick description of these internal wires may
be educational. The lower level device is commanded by asserting a spi wr signal when the device
is not busy (i.e. spi busy is low). The actual command given depends upon the other signals.
spi len is a two bit value indicating whether this is an 8 bit (2’b00), 16 bit (2’b01), 24 bit (2’b10),
or 32 bit (2’b11) transaction. The data to be sent out the port is placed into spi in.

Further, to support Quad I/O, spi spd can be set to one to use all four bits. In this case,
spi dir must also be set to either 1’b0 for writing, or 1’b1 to read from the four bits.

When data is valid from the lower level driver, the spi valid line will go high and spi out will
contain the data with the most recently read bits in the lower bits. Further, when the device is idle,
spi busy will go low, where it may then read another command.

Sadly, this simple interface as originally designed doesn’t work on a device where transactions
can be longer than 32 bits. To support these longer transactions, the lower level driver checks the
spi wr line before it finishes any transaction. If the line is high, the lower level driver will deassert
spi busy for one cycle while reading the command from the controller on the previous cycle. Further,
the controller can also assert the spi hold line which will stop the clock to the device and force
everything to wait for further instructions.

This hold line interface was necessary to deal with a slow wishbone bus that was writing to the
device, but that didn’t have it’s next data line ready. Thus, by holding the i wb cyc line high, a
write could take many clocks and the flash would simply wait for it. (I was commanding the device
via a serial port, so writes could take many clock cycles for each word to come through, i.e. 1,500
clocks or so per word and that’s at high speed.)

www.opencores.com Rev. 0.3 2

Gisselquist Technology, LLC Specification 2016/08/11

i
w
b
c
y
c

i
w
b
d
a
t
a
s
t
b

i
w
b
c
t
r
l
s
t
b

i
w
b
w
e

i
w
b
a
d
d
r

i
w
b
d
a
t
a

o
w
b
a
c
k

o
w
b
s
t
a
l
l

o
w
b
d
a
t
a

wbqspiflash

s
p
i
w
r

s
p
i
h
o
l
d

s
p
i
i
n

s
p
i
l
e
n

s
p
i
s
p
d

s
p
i
d
i
r

s
p
i
o
u
t

s
p
i
v
a
l
i
d

s
p
i
b
u
s
y

llqspi

Quad SPI I/O lines

Figure 2.1: QSPI Architecture Diagram

www.opencores.com Rev. 0.3 3

Gisselquist Technology, LLC Specification 2016/08/11

The upper level component, the controller wbqspiflash, is little more than a glorified state
machine that interacts with the wishbone bus. From it’s idle state, it can handle any command,
whether data or control, and issue appropriate commands to the lower level driver. From any other
state, it will stall the bus until it comes back to idle–with a few exceptions. Subsequent data reads,
while reading data, will keep the device reading. Subsequent data writes, while in program mode,
will keep filling the devices buffer before starting the write. In other respects, the device will just
stall the bus until it comes back to idle.

While they aren’t used in this design, the wishbone error and retry signals would’ve made a lot
of sense here. Specifically, it should be an error to read from the device while it is in the middle
of an erase or program command. Instead, this core stalls the bus–trying to do good for everyone.
Perhaps a later, updated, implementation will make better use of these signals instead of stalling.
For now, this core just stalls the bus.

Perhaps the best takeaway from this architecture section is that the varying pieces of complexity
have each been separated from each other. There’s a lower level driver that handles actually toggling
the lines to the port, while the higher level driver maintains the state machine controlling which
commands need to be issued and when.

2.2 EQSPI Flash Architecture

The EQSPI flash architecture was an entire redesign. The reason for the redesign is quite simple:
the QSPI flash controller was just way to complex to run at a 200 MHz clock. This new and modified
architecture is shown in Fig. 2.2. All of the various modules of this architecture, save the lleqspi

and xioddr modules, are found in the eqspiflash.v file.
The goal of this architecture was to reduce the amount of logic necessary to process the many

various requests this controller allows.
At the top, all requests to the controller come from the bus straight into the qspibus module.

The purpose of this module is to parse the various commands to their respective modules. One
command, however, never gets parsed: the request to read from the erase register. This register
returns the status of the controller, and particularly whether or not it is still busy with the last erase
or write command.

The top level controller has the ability to latch a bus request. Such requests are then issued to
the lower level controllers. However, they remain latched in the top level controller until the lower
controller acknowledges them, at which point the bus may advance to its next request. Depending
on the lower level controller, this may not occurr until the lower level transaction is complete, or
nearly so.

The lower level controllers also communicate with the command multiplexer beneath them. Each
controller has a request line, whereby it requests access to the lowerest level controller. Once granted,
the controller maintains control of that lowest level until it is released. In this fashion, for example,
the readqspi controller implements the execute in place functionality: it reads from the interface,
then maintains the interface. If another driver requests the interface, the read controller reactivates
itself and returns the interface to a non–XIP mode.

Now, of these four controllers, the readqspi controller handles reads from the device. Reads
are always done in Quad SPI mode, if so enabled, and the device is left in XIP mode until another
controller requests the interface. XIP mode is left by reading a 32’bit value from the device at
address zero.

www.opencores.com Rev. 0.3 4

Gisselquist Technology, LLC Specification 2016/08/11

i
w
b
c
y
c

i
w
b
d
a
t
a
s
t
b

i
w
b
c
t
r
l
s
t
b

i
w
b
w
e

i
w
b
a
d
d
r

i
w
b
d
a
t
a

o
w
b
a
c
k

o
w
b
s
t
a
l
l

o
w
b
d
a
t
a

o
i
n
t

qspibus

readqspi writeqspi ctrlspi idotpqspi

Command Mux

s
p
i
w
r

s
p
i
h
o
l
d

s
p
i
i
n

s
p
i
l
e
n

s
p
i
s
p
d

s
p
i
d
i
r

s
p
i
w
o
r
d

s
p
i
o
u
t

s
p
i
v
a
l
i
d

s
p
i
b
u
s
y

lleqspi

b
m
o
d

d
a
t
[
0
]

d
a
t
[
1
]

d
a
t
[
2
]

d
a
t
[
3
]

c
l
k
/
c
s

Top level Interface Wires

x
i
o
d
d
r

x
i
o
d
d
r

x
i
o
d
d
r

x
i
o
d
d
r

x
i
o
d
d
r

Quad SPI I/O lines

Figure 2.2: EQSPI Architecture Diagram

www.opencores.com Rev. 0.3 5

Gisselquist Technology, LLC Specification 2016/08/11

The writeqspi controller handles both program and erase requests. Upon completion of either
request, the writeqspi controller holds on to the interface perpetually reading from the status
register until the device is no longer busy.

The ctrlspi controller handles requests to read and write the various control registers internal
to the device. These include the status register, the non–volatile configuration register, the volatile
configuration register, the extended volatile configuration register, the flags register, and the lock
registers associated with the most recently selected sector (set in the erase register). Writes to
these registers, though, aren’t quite so simple: One must first disable the write protect in the erase
control register, thus setting the Write Enable Latch of the device, before the device will accept
write requests.

Finally, the idotpqspi controller handles the logic associated with the ID memory internal to
the controller, as well as both reading and writing the One Time Programmable (OTP) registers,
and eventually locking the OTP registers so that they can no longer be read or written. As with the
writeqspi module, write requests do not release the port until the write has completed. Reading
the erase register will provide the status on this operation.

Moving down in the architecture to the command multiplexer, this portion is really not that
remarkable. It takes one clock for requests to go through the command multiplexer and get to the
lower level controller, and it grants and releases control to the various controllers.

The lleqspi controller is the lower level controller for this device. It’s operation mirrors that
of the llqspi lower–level controller from the QSPI flash. The biggest difference is that the Micron
chip requires a particular recovery time following any command other than a read command leaving
the chip in the XIP mode.

What is new in this controller is the requirement for the output ports to be connected to the I/O
banks via ODDR and IDDR modules. These are contained within the xioddr modules. Since the wires
can change direction, the bmod pair of wires provides an indication of which direction the various
bits of the port are moving–either as inputs or outputs.

www.opencores.com Rev. 0.3 6

Gisselquist Technology, LLC Specification 2016/08/11

3.

Operation

This implementation attempts to encapsulate (hide) the details of the chip from the user, so that
the user does not need to know about the various subcommands going to and from the chip. The
original goal was to make the chip act like any other read/write memory, however the difference
between erasing and programming a flash chip made this impossible. Therefore a separate register
is provided to control the erase any given sector, while reads and writes may proceed (almost) as
normal.

The wishbone bus that this controller works with, however, is a 32–bit bus. Address one on the
bus addresses a completely different 32–bit word from address zero or address two. Bus select lines
are not implemented, all operations are 32–bit. Further, the device is little–endian, meaning that
the low order byte is the first byte that will be or is stored on the flash.

3.1 High Level

From a high level perspective, this core provides read/write access to the device either via the
wishbone (read and program), or through a control register found on the wishbone (the EREG).
Programming the device consists of first clearing the write protect, and then erasing the region of
interest. This will set all the bits to ‘1’ in that region. After erasing the region, the write protect
may again be cleared, and then the region can then be programmed, setting some of the ‘1’ bits to
’0’s. When neither erase nor program operation is going on, the device may be read. The section
will describe each of those operations in detail.

To erase a sector of the device, two writes are required to the EREG register. The first write
turns off the write protect bit, whereas the second write commands the erase itself. The first write
should equal 0x1000 0000 for the QSPI controller and 0x4000 0000 for the EQSPI controller. After
this write, the EQSPI controller will issue a Write Enable command to the device. For the QSPI
controller, the second write should be any address within the sector to be erased together with
setting the high bit of the register. This is equivalent to setting it to 0x8000 0000 plus the address.
The EQSPI flash driver is subtly different in that it requires a key to erase. Hence, for the EQSPI
flash driver, one must write 0xc000 01be plus the first address in the sector to accomplish the same
result. Further, the EQSPI flash controller allows the erasing of 4 kB subsegments. To do this,
the second write must also set the subsector bit, so it looks like writing 0xd000 01be plus the first
address in the subsector. After this second write, the QSPI controller will issue a write–enable
command to the device (the EQSPI controller will have already issued the write–enable), followed
by a sector erase command. In summary, for the QSPI flash:

1. Disable write protect by writing 0x1000 0000 to the EREG register

www.opencores.com Rev. 0.3 7

Gisselquist Technology, LLC Specification 2016/08/11

2. Command the erase by writing 0x8000 0000 plus the device address to the EREG register.
(Remember, this is the word address of interest, not the byte address.)

and for the EQSPI flash:

1. Disable write protect by writing 0x4000 0000 to the EREG register

2. Command the sector (64 kB) erase by writing 0xc000 01be plus the first address in the segment
to the EREG register.

In the case of a subsegment (4 kB) erase command, write 0xd000 01be plus the first address
in the subsegment to the EREG register.

While the device is erasing, the controller will idle while checking the status register over and
over again. Should you wish to read from the EREG during this time, the high order bit of the
EREG register will be set indicating that a write is in progress (WIP). Once the erase is complete,
this bit will clear, the interrupt line will be strobed high, and other operations may take then place
on the part. Any attempt to perform another operation on the part prior to that time will stall the
bus until the erase is complete.

Once an area has been erased, it may then be programmed. To program the device, first dis-
able the write protect by writing a 0x1000 0000 to the EREG register for the QSPI controller, or
0x4000 0000 for the EQSPI controller. After that, you may then write to the area in question
whatever values you wish to program. One 256 byte (64 bus word) page may be programmed at a
time. Pages start on even boundaries, such as addresses 0x040, 0x080, 0x0100, etc. To program a
whole page at a time, write the 64 words of the page to the controller without dropping the i wb cyc

line. Attempts to write more than 64 words will stall the bus, as will attempts to write more than
one page. Writes of less than a page work as well. In summary,

1. Disable the write protect by writing a 0x1000 0000 to the EREG register when using the QSPI
flash controller, or 0x4000 0000 for the EQSPI flash controller.

2. Write the page of interest to the data memory of the device.

The first address should start at the beginning of a page (bottom six bits zero), and end at
the end of the page (bottom six bits one, top bits identical). Writes of less than a page are
okay. Writes crossing page boundaries will stall the bus, while waiting for the first write to
complete before attempting to start the second write.

While the device is programming a page, the controller will idle while checking the status register
as it did during an erase. During this idle, both the EREG register and the device status register
may be queried. Once the status register drops the write in progress line, the top level bit of the
EREG register will be cleared and the interrupt line strobed. Prior to this time, any other bus
operation will stall the bus until the write completes.

Reads are simple for the QSPI flash controller, you just read from the device and the device does
everything you expect. Reads may be pipelined. To use the QSPI mode of transferring 4–bits at a
time, when using the QSPI controller, you must first either read (or set) the quad mode bit in the
configuration register. This will enable Quad–I/O mode reads. Once enabled, reads will take place
four bits at a time from the bus.

Using the EQSPI flash controller, reads are almost as simple, but with a couple of caveats. The
first caveat is that the controller defaults to Quad I/O mode, and will not leave it. The problem

www.opencores.com Rev. 0.3 8

Gisselquist Technology, LLC Specification 2016/08/11

is that this mode depends upon a variable number of dummy cycles set to 8. Hence, before issuing
reads from the data section of the device, the number of dummy cycles will need to be set in either
the volatile or non–volatile configuration register.

Both controllers provide for a special mode following a read, where the next read may start
immediately in Quad I/O mode following a 12 clock setup for the QSPI controller, or 16 clocks
for the EQSPI controller. Both controllers leaves the device in this mode following any initial
read. Therefore, back to back reads as part of separate bus cycles will only take 20 clocks (24 for
EQSPI) to read the first word, and 8 clocks per word thereafter. Other commands, however, such
as erasing, writing, reading from the status, configuration, or ID registers, will require a 32 device
clock operation before entering.

3.2 Low Level

At a lower level, the QSPI core implements the following Quad SPI commands:

1. FAST READ, when a read is requested and Quad mode has not been enabled.

2. QIOR, or quad I/O high performance read mode. This is the default read command when
Quad mode has been enabled, and it leaves the device in the Quad I/O High Performance
Read mode, ready for a faster second read command.

3. RDID, or Read identification

4. WREN, or Write Enable, is issued prior to any erase, program, or write register (i.e. configu-
ration or status) command. This detail is hidden from the user.

5. RDSR, or read status register, is issued any time the user attempts to read from the status
register. Further, following an erase or a write command, the device is left reading this register
over and over again until the write completes.

6. RCR, or read configuration, is issued any time a request is made to read from the configuration
register. Following such a read, the quad I/O may be enabled for the device, if it is enabled
in this register.

7. WRR, or write registers, is issued upon any write to the status or configuration registers. To
separate the two, the last value read from the status register is written to the status register
when writing the configuration register.

8. PP, or page program, is issued to program the device in serial mode whenever programming
is desired and the quad I/O has not been enabled.

9. QPP, or quad page program, is used to program the device whenever a write is requested and
quad I/O mode has been enabled.

10. SE, or sector erase, is the only type of erase this core supports.

11. CLSR, or Clear Status Register, is issued any time the last status register had the bits P ERR

or E ERR set and the write to the status register attempts to clear one of these. This command
is then issued following the WRR command.

www.opencores.com Rev. 0.3 9

Gisselquist Technology, LLC Specification 2016/08/11

4.

Registers

4.1 QSPI Controller

The QSPI controller supports four control registers. These are the EREG register, the configuration
register, the status register, and the device ID, as shown and listed in Table. 4.1.

Name Address Width Access Description

EREG 0 32 R/W An overall control register, providing instant
status from the device and controlling erase
commands.

Config 1 8 R/W The devices configuration register.
Status 2 8 R/W The devices status register.
ID 3 16 R Reads the 16-bit ID from the device.

Table 4.1: List of QSPI Registers

4.1.1 EREG Register

The EREG register was designed to be a replacement for all of the device registers, leaving all the
other registers a part of a lower level access used only in debugging the device. This would’ve been
the case, save that one may need to set bit one of the configuration register to enter high speed
mode.

The bits associated with this register are listed in Tbl. 4.2.
In general, only three bits and an address are of interest here.
The first bit of interest is bit 27, which will tell you if you are in Quad–I/O mode. The device will

automatically start up in SPI serial mode. Upon reading the configuration register, it will transition
to Quad–I/O mode if the QUAD bit is set. Likewise, if the bit is written to the configuration register
it will transition to Quad–I/O mode.

While this may seem kind of strange, I have found this setup useful. It allows me to debug
commands that might work in serial mode but not quad I/O mode, and it allows me to explicitly
switch to Quad I/O mode. Further, writes to the configuration register are non–volatile and in some
cases permanent. Therefore, it doesn’t make sense that a controller should perform such a write
without first being told to do so. Therefore, this bit is set upon noticing that the QUAD bit is set
in the configuration register.

www.opencores.com Rev. 0.3 10

Gisselquist Technology, LLC Specification 2016/08/11

Bit # Access Description

31 R/W Write in Progress/Erase. On a read, this bit will be high if any
write or erase operation is in progress, zero otherwise. To erase
a sector, set this bit to a one. Otherwise, writes should keep this
register at zero.

30 R Dirty bit. The sector referenced has been written to since it was
erased. This bit is meaningless between startup and the first
erase, but valid afterwards.

29 R Busy bit. This bit returns a one any time the lower level Quad
SPI core is active. However, to read this register, the lower level
core must be inactive, so this register should always read zero.

28 R/W Disable write protect. Set this to a one to disable the write
protect mode, or to a zero to re–enable write protect on this
chip. Note that this register is not self–clearing. Therefore, write
protection may still be disabled following an erase or a write.
Clear this manually when you wish to re–enable write protection.

27 R Returns a one if the device is in high speed (4-bit I/O) mode. To
set the device into high speed mode, set bit 1 of the configuration
register.

20–26 R Always return zero.
14–19 R/W The sector address bits of the last sector erased. If the erase line

bit is set while writing this register, these bits will be set as well
with the sector being erased.

0–13 R Always return zero.

Table 4.2: EREG bit definitions

www.opencores.com Rev. 0.3 11

Gisselquist Technology, LLC Specification 2016/08/11

The second bit of interest is the write protect disable bit. Write a ’1’ to this bit before any erase
or program operation, and a ’0’ to this bit otherwise. This allows you to make sure that accidental
bus writes to the wrong address won’t reprogram your flash (which they would do otherwise).

The final bit of interest is the write in progress slash erase bit. On read, this bit mirrors the
WIP bit in the status register. It will be a one during any ongoing erase or programming operation,
and clear otherwise. Further, to erase a sector, disable the write protect and then set this bit to a
one while simultaneously writing the sector of interest to the device.

The last item of interest in this register is the sector address of interest. This was placed in bits
14–19 so that any address within the sector would work. Thus, to erase a sector, write the sector
address, together with an erase bit, to this register.

4.1.2 Config Register

The Quad Flash device also has a non–volatile configuration register, as shown in Tbl. 4.3. Writes
to this register are program events, which will stall subsequent bus operations until the write in
progress bit of either the status or EREG registers clears. Note that some bits, once written, cannot
be cleared such as the BPNV bit.

Writes to this register are not truly independent of the status register, as the Write Registers
(WRR) command writes the status register before the configuration register. Therefore, the core
implements this by writing the status register with the last value that was read by the core, or zero
if the status register has yet to be read by the core. Following the status register write, the new
value for the configuration register is written.

Bit # Access Description

8–31 R Always return zero.
6–7 R Not used.
5 R/W TBPROT. Configures the start of block protection. See device

documentation for more information. (Default 0)
4 R/W Do not use. (Default 0)
3 R/W BPNV, configures BP2–0 bits in the status register. If this bit

is set to 1, these bits are volatile, if set to ’0’ (default) the bits
are non–volatile. Note that once this bit has been set, it cannot
be cleared!

2 R/W TBPARM. Configures the parameter sector location. See device
documentation for more detailed information. (Default 0)

1 R/W QUAD. Set to ’1’ to place the device into Quad I/O (4–bit)
mode, ’0’ to leave in dual or serial I/O mode. (This core does
not support dual I/O mode.) (Most programmers will set this to
’1’.)

0 R/W FREEZE. Set to ’1’ to lock bits BP2–0 in the status register,
zero otherwise. (Default 0).

Table 4.3: Configuration bit definitions

www.opencores.com Rev. 0.3 12

Gisselquist Technology, LLC Specification 2016/08/11

Further information on this register is available in the device data sheet.

4.1.3 Status Register

The definitions of the bits in the status register are shown in Tbl. 4.4. For operating this core, only
the write in progress bit is relevant. All other bits should be set to zero.

Bit # Access Description

8–31 R Always return zero.
7 R/W Status register write disable. This setting is irrelevant in the

current core configuration, since the W#/ACC line is always
kept high.

6 R/W P ERR. The device will set this to a one if a programming error
has occurred. Writes with either P ERR or E ERR cleared will
clear this bit.

5 R/W E ERR. The device will set this to a one if an erase error has oc-
curred, zero otherwise. Writes clearing either P ERR or E ERR
will clear this bit.

2–4 R/W Block protect bits. This core assumes these bits are zero. See
device documentation for other possible settings.

1 R Write Enable Latch. This bit is handled internally by the core,
being set before any program or erase operation and cleared by
the operation itself. Therefore, reads should always read this line
as low.

0 R Write in Progress. This bit, when one, indicates that an erase
or program operation is in progress. It will be cleared upon
completion.

Table 4.4: Status bit definitions

4.1.4 Device ID

Reading from the Device ID register causes the core controller to issue a RDID 0x9f command. The
bytes returned are first the manufacture ID of the part (0x01 for this part), followed by the device
ID (0x0215 for this part), followed by the number of extended bytes that may be read (0x4D for this
part). This controller provides no means of reading these extended bytes. (See Tab. 4.5)

Bit # Access Description

0–31 R Always reads 0x0102154d.

Table 4.5: Read ID bit definitions

www.opencores.com Rev. 0.3 13

Gisselquist Technology, LLC Specification 2016/08/11

5.

Wishbone Datasheet

Tbl. 5.1 is required by the wishbone specification, and so it is included here.

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, (Block) Read/Write
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering Little Endian
Clock constraints Must be 100 MHz or slower (QSPI)

Must be 200 MHz or slower (EQSPI)

Signal Names

Signal Name Wishbone Equivalent
i clk 100mhz CLK I (QSPI)
i clk 200mhz CLK I (EQSPI)
i wb cyc CYC I

i wb ctrl stb STB I

i wb data stb STB I

i wb we WE I

i wb addr ADR I

i wb data DAT I

o wb ack ACK O

o wb stall STALL O

o wb data DAT O

Table 5.1: Wishbone Datasheet for the (E)QSPI Flash controller

The EQSPI flash controller has a further simplified wishbone usage: the strobe lin, i wb ctrl stb

or i wb data stb, must be guaranteed low any time i wb cyc is low. This simplifies transaction
processing internal to the controller, and is part of the method of getting the controller running at
200 MHz.

www.opencores.com Rev. 0.3 14

Gisselquist Technology, LLC Specification 2016/08/11

5.1 EQSPI Controller

5.1.1 EREG Register

5.1.2 Status Register

5.1.3 Non–Volatile Configuration Register

5.1.4 Volatile Configuration Register

5.1.5 Extended Volatile Configuration Register

5.1.6 Sector Lock Register

5.1.7 Flag Status Register

5.1.8 Identification memory

5.1.9 One–Time Programmable Memory

www.opencores.com Rev. 0.3 15

Gisselquist Technology, LLC Specification 2016/08/11

6.

Clocks

The QSPI core is based upon the Basys–3 design. The Basys–3 development board contains one
external 100 MHz clock. This clock is divided by two to create the 50 MHz clock used to drive
the device. According to the data sheet, it should be possible to run this core at up to 160 MHz,
however I have not tested it at such speeds. See Table. 6.1.

Name Source Rates (MHz) Description
Max Min

i clk 100mhz External 160 System clock.

Table 6.1: List of QSPI Controller Clocks

The EQSPI core is based upon a very similar Arty design, but one that instead uses a 200 MHz
core clock frequency. In a fashion similar to the QSPI controller, this clock is divided down to create
a 100 MHz clock to command the device. Hence, the EQSPI clock is much faster, as shown in
Table. 6.2.

Name Source Rates (MHz) Description
Max Min

i clk 200mhz External 200 System clock.

Table 6.2: List of EQSPI Controller Clocks

www.opencores.com Rev. 0.3 16

Gisselquist Technology, LLC Specification 2016/08/11

7.

I/O Ports

There are two interfaces that this device supports: a wishbone interface, and the interface to the
Quad–SPI flash itself. Both of these have their own section in the I/O port list. For the purpose of
this table, the wishbone interface is listed in Tbl. 7.1, and the Quad SPI flash interface is listed in
Tbl. 7.2. The two lines that don’t really fit this classification are found in Tbl. 7.3.

Port Width Direction Description

i wb cyc 1 Input Wishbone bus cycle wire.
i wb data stb 1 Input Wishbone strobe, when the access is to the data memory.
i wb ctrl stb 1 Input Wishbone strobe, for when the access is to one of control

registers.
i wb we 1 Input Wishbone write enable, indicating a write interaction to

the bus.
i wb addr 19 Input Wishbone address. When accessing control registers,

only the bottom two bits are relevant all other bits are
ignored.

i wb data 32 Input Wishbone bus data register.
o wb ack 1 Output Return value acknowledging a wishbone write, or signi-

fying valid data in the case of a wishbone read request.
o wb stall 1 Output Indicates the device is not yet ready for another wish-

bone access, effectively stalling the bus.
o wb data 32 Output Wishbone data bus, returning data values read from the

interface.

Table 7.1: Wishbone I/O Ports

While this core is wishbone compatible, there was one necessary change to the wishbone interface
to make this possible. That was the split of the strobe line into two separate lines. The first strobe
line, the data strobe, is used when the access is to data memory–such as a read or write (program)
access. The second strobe line, the control strobe, is for reads and writes to one of the four control
registers. By splitting these strobe lines, the wishbone interconnect designer may place the control
registers in a separate location of wishbone address space from the flash memory. It is an error for
both strobe lines to be on at the same time.

www.opencores.com Rev. 0.3 17

Gisselquist Technology, LLC Specification 2016/08/11

With respect to the Quad SPI interface itself, one piece of glue logic is necessary to tie the QSPI
flash I/O to the in/out port at the top level of the device. Specifically, these two lines must be added
somewhere:

assign io qspi dat = (˜qspi mod[1])?({2’b11,1’bz,qspi dat[0]}) // Serial mode
:((qspi bmod[0])?(4’bzzzz):(qspi dat[3:0])); // Quad mode

These provide the transition between the input and output ports used by this core, and the bi–
directional inout ports used by the actual part. Further, because the two additional lines are defined
to be ones during serial I/O mode, the hold and write protect lines are effectively eliminated in this
design in favor of faster speed I/O (i.e., Quad I/O).

The EQSPI controller is similar, but the glue logic is more involved.

Port Width Direction Description

o qspi sck 1 Output Serial clock output to the device. This pin will be either
inactive, or it will toggle at 50 MHz.

o qpsi cs n 1 Output Chip enable, active low. This will be set low at the
beginning of any interaction with the chip, and will be
held low throughout the interaction.

o qspi mod 2 Output Two mode lines for the top level to control how the out-
put data lines interact with the device. See the text for
how to use these lines.

o qspi dat 4 Output Four output lines, the least of which is the old SPI MOSI
line. When selected by the o qspi mod, this output be-
comes the command for all 4 QSPI I/O lines.

i qspi dat 4 Input The four input lines from the device, of which line one,
i qspi dat[1], is the old MISO line.

Table 7.2: List of Quad–SPI Flash I/O ports

Finally, the clock line is not specific to the wishbone bus, and the interrupt line is not specific
to any of the above. These have been separated out here.

Port Width Direction Description

i clk 100mhz 1 Input The 100 MHz clock driving all QSPI interactions.
o interrupt 1 Output An strobed interrupt line indicating the end of any erase

or write transaction. This line will be high for exactly
one clock cycle, indicating that the core is again available
for commanding.

Table 7.3: Other I/O Ports

www.opencores.com Rev. 0.3 18

	Introduction
	Architecture
	QSPI Flash Architecture
	EQSPI Flash Architecture

	Operation
	High Level
	Low Level

	Registers
	QSPI Controller
	EREG Register
	Config Register
	Status Register
	Device ID

	Wishbone Datasheet
	EQSPI Controller
	EREG Register
	Status Register
	Non–Volatile Configuration Register
	Volatile Configuration Register
	Extended Volatile Configuration Register
	Sector Lock Register
	Flag Status Register
	Identification memory
	One–Time Programmable Memory

	Clocks
	I/O Ports

