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Contents 

Instruction Set Op-codes Variations

1. Instruction Set 

Register to register    XXXXXX DDDDDD RRRRRR SSSSSS 

Immediate1    XXXXXX DDDDDD RRRRRR sNNNNN 

Immediate2    XXXXXX DDDDDD sNNNNN NNNNNN 

Immediate3    XXXXXX sNNNNN NNNNNN NNNNNN 

X:    Op-code  D:    Result register 

R:    1st operand register S:    2nd operand register 

N:    immediate operand s:     N’s sign (2’s complement) 

 

2. Op-codes   XXXXXX DDDDDD RRRRRR SSSSSS 

Register 0 always reads as zero 

PFX instruction loads 18-bits into prefix register.  Used for concatenation by next sN instruction 

Three address arithmetic: 

ADD Add 

SUB Subtract 

ADC Add with carry 

SBC Subtract with borrow 

AND And 

ANDN And with second operand complemented 

OR  Or 

XOR Exclusive Or 

MUL Multiply, least significant 24 bits 

MULU Multiply, most significant 24 bits unsigned 

MULUS Multiply, most significant 24 bits signed 

DIV Divide, unspecified 

FADD Floating point add 

FSUB Floating point subtract 

FMUL Floating point multiple 

FDIV Floating point divide 

Immediates (immediate 1 format): 

ADDI, ADCI, ANDI, ORI, XORI, MULI,  

LSRI Logical shift right  

ASRI Arithmetic shift right 

LSLI Logical shift left 

RORI Rotate right 
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Immediate (immediate 2 format): 

LDI  Load register with sNNNNN NNNNNN 

Immediate (immediate 3 format): 

PFX Load prefix register with 18 bits from sNNNNN NNNNNN NNNNNN 

Load/Store: 

LD  Load register D with memory location R+S 

ST  Store register D at memory location R+S 

Load/Store (immediate 1 format): 

LDsN Load register D with memory location R+sNNNNN 

STsN Store register D at memory location R+sNNNNN 

IN  Place contents of input port R+sNNNNN into D 

OUT Transfer D to output port R+sNNNNN 

Relative branches (immediate2 format): 

BRCC Branch to PC+sNNNNNNNNNNN if condition DDDDDD true 

CALLR Branch to PC+sNNNNNNNNNNN and save PC at register D 

Three address branches: 

CALL Branch to address R+S, save PC+1 at register D 

CALLsN Branch to address R+sNNNNN, save PC+1 at register D 

JMPCC Jump to R+S if condition DDDDDDD true 

JMPCCsN Jump to R+sNNNNN if condition DDDDDDD true 

 

2. Variations 

The main constraints are LUT RAM for the register file(s) and Block RAM for program 

and data memory.  In the larger memory space versions block RAM becomes a cache for 

main memory (which is external to the FPGA).  LUT RAM for a single register file is 

constrained to have a single write port and may have as many read ports as needed. 

The variation dimensions are RTL description (pipeline-depth, data-path, control 

signals), instruction encoding (op-codes, modes, number of register fields), instruction bit 

size (24, 16 or 12-bit) and addressable unit (8-bit, 12-bit or word). 

All the variations listed below assume that one or more instructions are processed per 

clock.  The single stage pipe versions of load and store instructions take two clocks.  Two 

stage pipe versions of conditional instructions take two clocks if the condition code is 

modified by the pervious instruction.  To the extent that they implemented; multiply, divide 

and floating-point instructions may take more than two clock cycles depending on the 

pipeline implementation and result delay interlocks. 

2.1. Minimal implementation (MI) 

Only a few instructions are implemented and the program is expressed by a case 

statement which allows further optimization (program and instruction logic get folded 

together, optimization includes removing unused instructions and modes)1.  Fmax very good 

and LUT count is minimal. 

                                                           
1
Further expansion of the “case statement as the program” approach is covered in the paper: “Lutiac – Small Soft 

Processors for Small Programs”, Galloway and Lewis, 2010.  

http://www.eecg.utoronto.ca/~jayar/FPGAseminar/2010/lutiac---small-processors-2.html 

http://www.eecg.utoronto.ca/~jayar/FPGAseminar/2010/lutiac---small-processors-2.html
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2.2. Basic implementation (BI) 

The basic architecture is a single stage pipe, triple port LUT RAM, single port block 

RAM.  Instruction implementation is a simple case statement, one entry for each op-code.  

Then there is a second case statement to handle the second clock cycle for memory 

read/write.  Program typically in block RAM. 

Synthesis results in many adders and multiplexors which get optimized by translate & 

map. Clock speed is good and LUT count is high. 

The great advantage of BI is the ease of adding or removing instructions (one can simply 

comment out unused instructions). 

2.3. Data path with control signals 

Number of signal names increases and debugging is more difficult. 

2.3.1. Many adders, multiplexors mostly after the adders 

Variation is unexplored at this time.  Variation needed for comparison against DP.  

Possibly superior Fmax at small increase in LUT count. 

2.3.2. Few adders, multiplexors on both sides of adders (DP) 

Preliminary indications are that LUT count is dramatically lower than that of BI.  Good 

control over synthesis results. 

2.4. Two stage pipeline 

The case statement for instruction specification now generates control signals rather 

than data operations.   

2.4.1. With single port block RAM 

Not likely to be viable. 

2.4.2. With dual port block RAM 

This variation is expected to give the best performance metric (Instruction work2 per LUT 

per millisecond).  Use of more than two pipe stages likely to give marginal improvement 

to Fmax and result in increased complexity and LUT count. 

2.5. Five bit register designators 

2.5.1. Additional instruction bits 

With three five bit register designators there is room for nine instruction bits.  Planned 

usage for the additional bits are: return bit and condition code save bit.  The third bit 

remains for six-bit immediates.  The condition code save bit is the MSB of the D register 

field and return bit is the MSB of the R register field. 

2.5.2. Register designation recode 

Rather than have 32 fixed location registers it is possible to provide a number of register 

offsets that correspond to: return address stack, data stack(s) and frame pointer.  Thus 

one can specify a register relative to these pointers. 

                                                           
2
 Instruction work is the average amount of computation done by a single instruction, typically normalized to a VAX 

MIPS (e.g. the Drystone MIPS or the CoreMark).  The target performance metric value is several hundred.  To a first 
approximation instruction work is pro-rated by word size: 8:33%, 16:67%, 24:83%, 32:100%, 48:150%, 64:200% 
and by average clocks per instruction.  Further pro-rating if instruction set is weak, average or strong. 
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Additionally it is useful to specify modification of the offset pointers.  Thus an instruction 

can specify stack pops (from a source stack) and pushes (to a destination stack). 

2.6. Code compression 

The MIPS instruction set uses up to three five bit register designators and a variable size 

instruction.  Here, the baseline instruction is three six bit register designators and a six bit 

op-code.  By being 75% of the MIPS instruction size (32-bits), it is 33% more compact and 

within the realm of “densely coded” instruction sets3. 

2.7. Addressable unit size 

2.7.1. 12-bit 

Original design is for 12, 24 or 48 bit word sizes.  With 12-bit addressability the 

functionality closely matches 8/16/32 uP.  Practical considerations may necessitate 8-bit 

addressability (UTF-8 in particular). 

2.7.2. 8-bit 

One can dispense with 12-bit items being addressable.  Thus instructions would be 

either 24 or 16-bit and memory would be 8, 16, 32 or 64-bits wide.  Memory would be in 

two banks with separate address adders for each bank.  Instruction readout for 24-bit 

instructions requires a shift circuit to align the instruction. 

2.8. LUT RAM word size 

2.8.1. 12-bit 

The intent of a 4K memory space with 12-bit words is small micro-controllers. 

2.8.1. 24-bit 

The intent of a 16M item memory space is embedded systems with program and data 

that fit.  There is a cost savings over 32-bit uP. 

2.8.2. 48-bit 

The intent of a 48-bit uP is all applications short of very large super-computers.  Its 48-bit 

floating-point is adequate for many applications.  It holds the sweet spot between 32-bit 

and 64-bit uP. 

2.8.3. 16-bit 

TBD 

2.8.4. 32-bit 

The 32-bit uP provides 4GB of address space, sufficient for most general purpose 

computing including full operating systems and large libraries of code. 

3. Implementation decisions 

3.1. Go for a minimal design 

There are arguments for going for either the smallest possible design or going for the highest 

performance design.  The figure of merit is DMIPS per LUT.  Or equivalently, DMIPS per unit silicon 

area, which factors in the area taken by multiplier/DSP units and block RAMs.  Of course LUTs from 

                                                           
3
 PDP-11, x86, MSP430 and ARM Thumb instruction sets are considered some of the densest. 
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different FPGA families are not necessarily equivalent.  The ultimate figure of merit is DMIPS per 

dollar using the prorated chip area. 

The DMIPS per dollar and DMIPS per unit silicon area metrics also allow comparison with FPGAs 

with hard core processors such as the PowerPC, ARM Cortex A9 or Cortex A3, or with non-FPGA 

embedded processors. 

Naturally some applications call for very little data RAM or instruction memory.  Other 

applications call for a full 32-bit processor with floating-point, caches and/or memory management. 

Interestingly enough there are examples of high performance FPGA soft core processors at the 

minimal level, at the single processor pipelined level and at the multi-processor/barrel approach.  

Thus it is possible to get a high figure of merit for any of the three design approaches. 

Given that rois24_24uP is a new architecture, a simple or minimal implementation is the lowest 

risk and fastest to implement choice.  A minimal implementation also offers the greatest insight into 

LUT count versus instruction set complexity or cycle time. 

 

3.2. Use a single pipeline stage 

This mode of operation uses LUT RAM with asynchronous read for fetching operands.  Thus in 

one clock cycle an instruction is read, is decoded, the operands are read, the operation performed 

and the results along with the updated PC registered at the beginning of the next clock cycle. 

A pipeline design with additional stages will result in a higher clock speed and greater 

performance.  However, there is greater complexity which is best left to when after the single 

pipeline stage design is up and running.  A full pipelined “barrel processor” design, with one 

processor per pipeline stage, is a straight forward way to get maximum clock rate. 

3.3. Do not use a data path 

For a simple processor implementation with single pipeline stage, the instruction decode is a 

large case statement with each case condition expressing the instruction calculation. 

Normally one would code the data path and have the instruction decode generate the control 

signals for the data paths.  For sizeable instruction sets, this saves LUTs and results in a faster clock 

cycle. 

3.4. Condition code register (CCR) 

The conditional branch instructions specify a condition code.  There are arguments for and 

against condition code registers.  Here, it was decided to stay with a full condition code register.  

Thus, the CCR contains carry, signed overflow, zero and sign for each accumulator.  Also included is a 

least significant bit (even/odd).  And four bits for: all ones, all zeroes for both the floating point 

exponent and the floating point mantissa fields (the overall zero bit becomes redundant). 

Interrupt enable and Interrupted bits also present. 

3.5. Condition code register contains the ALU result 

It takes additional logic to generate the some condition code bits from the ALU result (such as 

the zero bit).  Instead save the entire ALU result and do the additional logic during the logic for 

conditional branches.  To save the CCR, the ALU result is reduced.  To restore the CCR, the all zeros 

and all ones bits are “unreduced”.  CCR saved/restored via IO instructions. 

3.6. Use block RAM for instruction memory 
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The smallest block RAM allows for several hundred instructions, a reasonable number.  Reading 

instructions from a synchronous RAM is compatible with a single pipe stage implementation. 

3.7. Using instruction memory for data memory 

Given that instruction memory is block RAM and therefore has synchronous reads, and supports 

dual port operation (first port for instruction reads, second port used for data RAM read/write), the 

single stage pipe design does not allow a block RAM data read to occur in the same cycle as the 

instruction read.  However a block RAM data write can occur at the end of the cycle. 

Given that it takes one cycle to post the read address and the next cycle to read from the block 

RAM, a variety of arrangements can be made for data read: Use two instructions, one to post the 

read address and the next instruction to process the data.  Or use a memory pointer register (in IO 

space) which auto increments after each data read and fetches data at the next location 

3.8. Interrupts 

Interrupts shall push sufficient information (program counter, condition code register, etc.) to 

transparently resume the program at the point of interrupt. 


