High Performance RSA 512 bit [PCore

High Performance
IPCore

RSA 512 bit

Data-sheet v.1.1

Emilio Castillo Villar
Javier Castillo Villar

High Performance RSA 512 bit [PCore

Content Index

High Performance RSA 512 bit [PCore

1. Introduction:

Here, we present the first available open-source 512 bit RSA core. This is an early

prototype version of a full FIPS Certified 512-4096 capable RSA Crypto-core which will be on sale
soon. The version provided, has not the same performance than the final product since it was a
proof of concept that we decided to release to the community in order to help small projects which
need RSA ciphering.

2. Core Interface:

The core performs a classical modular exponentiation x” mod m the data needed is the

following:

COrcs.

bit_size : this is a constant value which specifies the bit length of value vy, it is necessary in
order to perform private-key exponentiation (The usual value of this field will be “512”) or
public-key exponentiation (It can vary between a few bits). It can be calculated as logz(y)
being y the key used to cipher.

X: This is the plain text input which will be ciphered, in section 3 we will detail the data
format.

Y: This is the key input, which will be used to cipher X, in section 3 we will detail the data
format.

m: This is the module m input , in section 3 we will detail the data format.

r_c: this is a 512 bit length constant needed by the ciphering algorithm in order to achieve a
high performance, it can be obtained as we detail in section 3.

start_in: active it when load the first 16 bits of m. After 6 cycles you can activate valid_in to
insert the rest of the data. See testbench.

valid_in: should be active high (logical value of 1 as long as the data is being introduced).
S: This port is the data output of the exponentiation.

valid_out: as it's name says, it indicates when the values on S are valid.

Also don't forget to read section 4 where we explain how to generate the needed memory

3. On constants and input format:

3.1 Data format:

The values X, Y, M and r_c needed to be coded as it follows.

High Performance RSA 512 bit [PCore

Given a 512 bit number X= a;, a5, a,.....a, a,a, with a; being a 16 bit length word
It shall be introduced in the core starting by the least significant 16 bit word.

This means, in the first clock cycle we will input a, in the second a, and continue until a;, is
reached

This example:

8393638£8410333522e0a9d9f£f0746878c30b209d55274¢c7¢c97d11b815e4ed8305363b4c27
£20525¢c99fe3605485cc4c595ab0f3dc4l16f16b9%94cced662025490

Will follow as, 5490 6202 ce46

The output S will follow the same format

3.2 Calculating constants:

The constant r_c is used to accelerate the exponentiation and depends only of the module
m, this mean that if you intend to use the core with a few already known set of keys you can pre-
calculate this constants with the “constant_gen.c” code included in the project.

Given a modulus m with 32 16-bit length words (this is 512 bit). We can calculate the
Montgomery constant r as 2(!6*(32*1)

-r cis > mod m which will result in a maximum of 512 bit number.

Should you want to use our code to generate this constants, you have to edit the .c file and
replace the
mpz_ init set str(m,"8de7066f67bel6fcacd05d319b6729¢cd85fe698c07cec50477614
6eb7a041d9%e3cacbf0£fcdB86441981c0083eedlf8f1b18393f0b186e4d47celb7b4981417b49
1",16);

With your own m value and compile it with “gcc constant _gen.c -Ilgmp” maybe you will have to
install the gnu multiprecission library available at http://gmplib.org/

High Performance RSA 512 bit [PCore

4. Required Memory Cores:

4.1 Mem_b:
A Single port Ram Core must be generated with name Mem_b

component Mem_b
port (
clka: IN std_logic;
wea: IN std_logic_ VECTOR(0 downto 0);
addra: IN std_logic VECTOR(5 downto 0);
dina: IN std_logic VECTOR(15 downto 0);
douta: OUT std_logic VECTOR(15 downto 0));

end component;

With length parameters as follows:

Port A Options

Memory Size
Write Width |16 Range: 1..1152
Write Depth 40 Range: 2..9011200 Read Depth: 40
Operating Mode Enable
@ Write First @ Always Enabled
Read First Use ENA Pin
No Change

4.2 res_out_fifo:

High Performance RSA 512 bit [IPCore

component res_out_fifo
port (
clk: IN std_logic;
rst: IN std_logic;
din: IN std_logic VECTOR(31 downto 0);
wr_en: IN std_logic;
rd_en: IN std_logic;
dout: OUT std_logic VECTOR(31 downto 0);
full: OUT std_logic;
empty: OUT std_logic);

end component;

@ Standard FIFO
First-Word Fall-Through

Built-in FIFO Options

The frequency relationship of WR_CLK and RD_CLK MUST be
specified to generate the correct implementation.

Read Clock Frequency (MHz, 1 Range: 1..1000

Write Clock Frequency (MHz] 1 Range: 1..1000

Data Port Parameters

Write Width |32 Range: 1,2,3..1024
Write Depth 64 E Actual Write Depth: 64
Read Width |32

Read Depth |64 Actual Read Depth: 64

Implementation Options
Enable ECC

Use Embedded Registers in BRAM or FIFO (when possible’

Read Latency (From Rising Edge of Read Clock): 1

High Performance RSA 512 bit [IPCore

4.3 Fifo_512_bram:

component fifo_512_bram
port (
clk: IN std_logic;
rst: IN std_logic;
din: IN std_logic VECTOR(15 downto 0);
wr_en: IN std_logic;
rd_en: IN std_logic;
dout: OUT std_logic VECTOR(15 downto 0);
full: OUT std_logic;
empty: OUT std_logic);

END component;

Read Mode

@ Standard FIFO
First-Word Fall-Through

Built-in FIFO Options

The frequency relationship of WR_CLK and RD_CLK MUST be
specified to generate the correct implementation.

Read Clock Frequency (MHz] 1 Range: 1..1000
Write Clock Frequency (MHz] 1 Range: 1..1000
Data Port Parameters

Write Width |16 Range: 1,2,3..1024

Write Depth BN ~ | Actual Write Depth: 64

Read Width |16

Read Depth |64 Actual Read Depth: 64

High Performance RSA 512 bit [IPCore

4.4 Fifo_256_feedback:

component fifo_256_feedback
port (
clk: IN std_logic;
rst: IN std_logic;
din: IN std_logic VECTOR(48 downto 0);
wr_en: IN std_logic;
rd_en: IN std_logic;
dout: OUT std_logic VECTOR(48 downto 0);
full: OUT std_logic;
empty: OUT std_logic);

END component;

@ Standard FIFO
First-Word Fall-Through

Built-in FIFO Options

The frequency relationship of WR_CLK and RD_CLK MUST be
specified to generate the correct implementation.

Read Clock Frequency (MHz] 1 Range: 1..1000

Write Clock Frequency (MHz) 1 Range: 1..1000

Data Port Parameters

Write Width |49 Range: 1,2,3..1024
Write Depth EZJMMM | Actual Write Depth: 32
Read Width |49

Read Depth |32 Actual Read Depth: 32

