rtfSpriteController

Table of Contents

OVEIVIBW ..ttt ettt ettt ettt s et et b et e s s ab e e e s s s b e e e s s b e e e s s ebba e e s s eaba e e s saabaeesssnraees
REEISTOE SO ...ttt ettt e e e e ettt e e e e e s st bttt e e e e e s e bbbttt e e e e e e s abbreeeeeeeeeeaanrraeaeeeeeanas
DS T TE 4o o O PP PSSO PPTOTOUPRI
T g To{ Sl 0ol o [T SRR
=T oA I A= g DT of T o 4 (o [P
oLy L o] T U= = 1Y X< PPN
HOFIZONTAI POSITION ...ttt sttt et e b e s bt e s at e et e et e ebeesbeesaeesaneeas
VEIEICAI POSITION ...eiiiieitie ettt ettt e e st e e s ab e e st te e bteesabeeesabeesaseesneeesabeeenes
PIXEI SHZE ettt ettt ettt et s bt e h e st e e e be e e e bt e e bt e e aabe e s beeesabeesbteenareesbaeesabeenn
T T odcl O] £ =Y SRR
B Lo o =T =T ol o] [PR
[000] Lol gl 2 U=T o =Ty =T 0] =Y To] o PR
F i [o g =T 21 1= o o 11 V-SSR
Y o of 3PP
DIMA @OAIESS ...ttt ettt sttt sttt et s e st st et e bt e s b e e s be e s ae e s bt e bt e bt e e b et s me e e et e et e neenreesaeesane e
DIMIA Tl e tittteeee ettt ettt e e s ettt et e e s e st tte e e e e e e s s ssbb b e e aeeeessssssasaaeeesssssasssssaaeeesssnssssnesaeeeesssnsssssenenees
DAY AL @ =T = (o o PPN
PrOSramMIMEA ACCESS.....cuevieieeeeeeieiiiieee e e e e e e eiet e e eeee e e e st rttaaeeeeeesaaaestaaaeeessaaasseteeeaeaseesaasssseneeeessesaanstanneeeesannas
(€] o] ol 2 =T =4 1) T SO RURRN
BACK GrOUNG COIOT ..ttt et ettt s e st st st b e b e e s me e sae e et e e neesbeesreesane e
Y oL LI =L = o LSRR
Y o g (=l N =T A UT o al = a =1] LR
Y o 1 =l 0o 11 T o TSR
2ol €= oYU Ta Vo I @o] 111 1o o S
Yo LY o g 1T o] 111 o o TSRS
(61 Yol TSSO UR PR UP USRI

o T4 T T o [0] o] L= PSP 10

WISHBONE Compatibility DataShEEL............coerieriiieiiieienreseeeee e 11

Overview
This core provides support for moveable graphical images commonly known as sprites (or hardware
cursors).

The core is parameterized to allow 1,2,4,6,8,14, or 32 sprites. The size of the core depends on the
number of sprites selected.

Register Set

The register set is located at the /O address range of SFFDADxxx. Note that the sprite registers are 8,
16, or 32 bit addressable. For instance the vertical position may be updated by writing a 16 bit value to
register $02.

Unused bits in the registers should be set to zero.

Register | Bits Function
00 [11:0] Horizontal position Position
[27:16] Vertical position
04 [7:0] Width of sprite in pixels Size
[15:8] Height of sprite in vertical pixels
[19:16] Horizontal size of pixel in video clock cycles
[23:20] Vertical size of pixels in scanlines
08 [11:0] Sprite image offset in image cache
[31:12] Sprite image system memory address DMA address
Bits 12 to 31
ocC [15:0] Transparent color
10-1FC These are registers reserved for up to 31 more sprites same format as above four
registers
Global Registers
3C0 [31:0] Sprite enable
3C4 [0] Sprite-sprite collision interrupt enable | Interrupt Enable / Status
[1] Sprite-background collision interrupt enable
3C8 [31:0] Sprite-sprite collision record
3CC [31:0] Sprite-background collision record
3D0 [31:0] DMA trigger on
3D4 [31:0] DMA trigger off
3E8 [23:0] Background transparent color
3EC [23:0] Background color
3FC [31:0] DMA address bits 63 to 32 currently unimplemented

Definitions

Image Cache

The image cache is a block of memory containing the sprite image data that is 4096 x 8 or 2048 x 16 bits
in width. The sprite image cache may be loaded directly under program control (P10O) like any other
memory, or it may be loaded automatically under DMA control. The sprite image caches are exposed as
a block of memory to the system at address SFFD8xxxx. Eight 4kB cache memories are combined into
32kB memory area.

Register Descriptions

Position Registers

The sprites position is relative to the positive edge of the externally supplied horizontal sync and vertical
sync signals. The (zero, zero) point coincides with the horizontal sync and vertical sync signals and hence
is not at the top left of the display. There is an offset from synchronization signals, required before the
top left co-ordinate of the display. The top left of the visible display is approximately sprite co-ordinates
(280, 50). Note that it is possible to position the sprite “off-screen” so that it doesn’t display.

The sprite extends to the right and downwards from the setting in the position register.

Horizontal Position
This register specifies the horizontal position of the sprite with respect to the horizontal sync signal.

Vertical Position
This register specifies the vertical position of the sprite with respect to the vertical sync signal.

Pixel Size

The size of the pixels used to display the sprite may be controlled. Increasing the size of the pixels has
the effect of increasing the size of the sprite. Sprites may be effectively 4096 pixels in extent when the
pixel size is increased to the maximum. Pixel size may be varied from one to sixteen clock cycles or scan
lines.

Image Offset

The sprite uses a block RAM as an image cache. The amount of RAM available per sprite is 4KB. Since the
amount of RAM available is fairly large, multiple sprite images may be cached in a single buffer. The
image offset is the offset into the cache buffer for the currently displayed sprite. Only one image at a
time may be displayed from the image cache. Fortunately there is a separate image cache for each
sprite.

Sprites may sized such that the product of the width and height is less than 4096 for eight bit color or
2048 for sixteen bit color. In this case the sprite image cache may hold multiple images. For example, if
16x16 sprites are used, sixteen separate images would be able to fit into a single image cache. Setting
the sprite size to 8x8 would allow 64 different images to fit into the image cache. By cycling through the
images different graphics effects can be created, For instance a rotating ball, or a flying bird.

Transparent Color

The transparent color register defines which of 256/32k colors are transparent. If the color of the sprite
pixel is equal to the transparent color, then the image underneath the sprite is visible. This has the effect
of making portions of the sprite “transparent”.

Color Representation

The core may be configured via a parameter to use either 8 bits or 16 bits per pixel to represent color. In
the sixteen bits per pixel mode, 1 bit is reserved to indicate alpha blending. Colors are (3,3,2) for (R,G,B)
in eight bit mode or (1,5,5,5) for (A,R,G,B) in sixteen bit color mode.

Alpha Blending

Color alpha blending functionality is available when the core is configured for 15 bit color
representations. The alpha blending factor may be used to create a shadow effect under the sprite. The
alpha blending is indicated by the most significant bit of the color. If the MSB is set to a one, then the
lower eight bits of the color represent an alpha blending factor. The alpha blending blends towards black
or white. A fixed point arithmetic multiply is used for blending.

The alpha is eight bits ranging between 0 and 1.999...

1 bit whole, 7 bits fraction

DMA Access

DMA address

Sprite image caches may be loaded from memory using an internal DMA controller. The DMA address is
formed from the global DMA address register coupled with the sprite DMA address register bits. The low
order 12 bits of the DMA address are automatically generated by the DMA controller. The image
memory must be aligned on a 4kB boundary. Note that a 32 bit address is supported. All sprites images
must be within the same 4GB memory range.

DMA Trigger
DMA begins when the DMA trigger register bit for a sprite is set.

DMA Operation
The DMA controller uses 32 bit memory accesses to load the sprite image caches. 1024, 32 bit memory
accesses are required to load each sprite memory.

Programmed Access

The sprite image caches may be loaded or manipulated directly by a processor. The image caches look
like normal memory mapped into the 1.0 address range of SFFD80000 to SFFDIFFFF. Each images cache
is 4KB in size. All the image caches are contiguously mapped into the address range.

Global Registers

Back Ground Color

The background color register identifies which color of the background image is background. A sprite-
background collision will NOT occur when the sprite obscures images of the background of the
background color.

Sprite Enable
The sprite enable register acts as on/off switches for the sprite display. Sprites will not display unless
enabled.

Sprite Interrupt Enable
This register controls which sprites are capable of causing interrupts due to a collision with another
sprite or a background object.

Sprite Collisions

If the display of two sprites overlap, a sprite-sprite collision is signalled and recorded in the
sprite-collision register. Note that the transparent color does not cause a collision. Sprite
regions may overlap without a collision as long as a transparent color is being displayed. The
transparent color allows irregularly shaped collision regions.

Background Collision

A sprite-background collision is signalled when the sprite is in a display region not defined as
the background color. As long as the sprite intersects display areas defined as the background
color, no sprite-background collision will be signalled.

Sprite-Sprite Collision
This register indicates which sprites are colliding.

Clocks

The sprite controller uses separate system bus and video pixel clocks which do not have to be related

Ports

Port Size Description

Rst_i 1 This signal reset the core

Clk_i 1 (slave) Bus clock

S_cyc_i 1 Slave bus cycle is active

S _stb i 1 Slave data transfer is taking place

S ack o 1 Data transfer acknowledge, generated by the controller

S we i 1 Indicates a write to the controller is taking place

S _sel i 4 Byte lane select, only byte lanes identified by this signal
will be written.

S adr i 34 Slave address input, used to address the sprite registers
and image caches.

S dat i 32 Data input to the core

S dat o 32 Data output from the core

M_bte o 2 This signal indicate the burst type, only type 0 is supported

M _cti o 3 This signal indicates that burst access is taking place.
currently only normal cycles (000) are supported

M_bl o 6 This signal indicates the burst length. It outputs 63 for a
burst length of 64 words.

M_cyc o 1 This signal indicates that a DMA burst cycle is active

M_stb o 1 This signal indicates when a data transfer is taking place

M_ack_i 1 Data transfer acknowledge from memory

M_we_o 1 Not used, always zero

M_sel_o 4 Will be hF when a DMA is taking place

M_adr_o 32 System address for DMA transfer

M_dat_i 32 Data input to the core

M_dat_o 32 Not used. Always zero

vclk 1 Video pixel clock

hSync 1 Horizontal sync input to the core

vSync 1 Vertical sync input to the core

blank 1 Blanking signal input to the core

rgbin 24 Background image input.

rgbOut 24 Video output from core

irg 1 Interrupt request line

Parameters

pnSpr — controls the number of sprites, values 1,2,4,6,8, 14, or 32

pColorBits — controls the number of bits used for color representation, valid values are 8 or 16.

Program Examples:

The following code written in 68000 assembler language randomizes the sprite memory. It causes the
sprites to display as a block of randomly colored pixels. It shows that the image cache is available to the

system.
RANDOM EQU OxFFDCOCO0
SPRITERAM EQU OxFFD80000

; randomize sprite memory
move.l #32768,d1
lea SPRITERAM,a0
main6:
move.l RANDOM,d0 ; load from hardware random # generator
move.wd0,(a0)+
subi.l #1,d1

bne main6

10

WISHBONE Compatibility Datasheet

The rtfSpriteController core may be directly interfaced to a WISHBONE compatible bus.

WISHBONE Datasheet

WISHBONE SoC Architecture Specification, Revision B.3

Description:

Specifications:

General Description:

Hardware cursor / sprite controller

Supported Cycles:

SLAVE, READ / WRITE

SLAVE, BLOCK READ / WRITE

SLAVE, RMW
Data port, size: 35 bit
Data port, granularity: .
P 9 y 8 bit
Data port, maximum .
port, 32 bit
operand size:
Data transfer ordering: Little Endian
any (undefined)

Data transfer sequencing

Clock frequency
constraints:

Supported signal list and
cross reference to
equivalent WISHBONE
signals

Signal Name: \WISHBONE Equiv.
S ack o ACK_O
S_adr_i(23:0) |ADR_I()

S_clk_i CLK_I
S_dat_i(31:0) DAT_I()
S_dat_o(31:0) |DAT_O()

S _cyc i CYC_|

11

S_stb i

S_we_i

STB_|
WE_|

Special Requirements:

12

