
1 | P a g e

rtfSpriteController2
Overview

This is a sprite or hardware cursor display controller.

The display controller interfaces as a slave device with the cpu via a 64-bit bus. It interfaces to

the memory system as a bus master using a 64-bit bus.

Features
up to 32 sprites or hardware cursors

256 entry color palette

each sprite may contain three different colors plus transparent

sprites may be linked together to increase color selection to 16

sprite may be up to 32 pixels horizontally and 512 scan lines vertically

sprite display synchronized to externally supplied hsync, vsync

bitmap image fetch triggered on horizontal sync.

Documentation Notes
Some registers are illustrated as if they were 32 bits in size for easier readability. The lower half

of a register is presented first, followed by the upper half. These are given addresses that are

four bytes apart. However, registers in the circuit are really 64-bit.

Clocks
The video dot clock rate is 40MHz for an 800x600 VGA display. The bus clock for interface to the

cpu is independent of the video clock.

2 | P a g e

Cursor / Sprite Control
The controller has 32 hardware cursors or sprites. The cursors may be up to 32 pixels wide and

512 pixels high. The cursors all share a common 256 entry color palette. However, each cursor

may have its own set of colors. A sprite by itself may use three different colors simultaneously

plus transparency. Note that the cursors are effectively 32 pixels wide, but pixels may be set to

be transparent, so the apparent size of the cursor looks smaller.

Cursor Color Palette

The cursor color palette has 256 entries each of which is a 64-bit vector including additional

attributes besides just the color. Attributes include alpha blending, reverse video and flashing.

The registers are organized into groups of four, a group of four registers present for each of the

sprites. Thus, each sprite can have a different set of colors from other sprites. Only three of the

four registers are used. (The color code 00 is transparent). The registers are further organized

into sixteen groups of sixteen for linked sprites. A set of 16 color registers is used when sprites

are linked together. The first group establishes a set of colors which are shared between sprite 0

and 1. The second group is shared between sprites 2 and 3, and so on. Note that color palette

entry #0 is never used.

$000 ~26 i f rate4 Alpha8 RGB88824 Color0

$008 to $7F8 255 more registers

Alpha8 determines how much of the cursor color is present in the output. A value of zero causes

the cursor to be fully output. A value of all ones will make the cursor invisible. Alpha blending

can be used to create shadows by selecting a cursor color of black then setting the alpha register

to a none-zero value.

I - The I flag indicates to reverse the video output. The color under the cursor is xor’d with -1.

 f – indicates to flash the cursor. The cursor will flash at a rate determined from the rate4 field.

Cursor Link Register

The cursor link register indicates cursors which are linked to the next cursor to increase the

apparent number of colors available to sixteen rather than four. Each bit in the register specifies

the link state for the corresponding sprite. Linked cursors must have their coordinates

maintained with the same values.

$A08 ~32 Link31..0

Cursor Enable Register

The cursor enable register controls which sprites are visible on the screen. Bits in the register

enable the sprite display when set to a one for the sprite corresponding to the bit number.

3 | P a g e

$A00 ~32 Enable31..0

Collision Register

The collision register indicates which sprites are colliding with other sprites. Each bit in the

register corresponds to a sprite. If the bit is set then the sprite has collided with another sprite.

The bits will remain set in the register until the register is updated.

$A10 ~32 SprCollision31..0

Cursor Control Registers

The control register layout for all cursors is identical. The layout is shown only for the first

cursor, cursor #0. Note that the count and position registers are 16-bit addressable. Any or all of

the 16-bit fields may be updated.

$800 Address31..6 06 bitmap address low

$804 (Reserved) Address63..32 bitmap address high

$808 ~4 vpos12 ~4 hpos12 vertical / horizontal position

$80C MCnt16 ~8 zpos8 total number of pixels

$810 to $81C Cursor #1 Registers

… …

$9E0 to $9FC Cursor #31 Registers

Cursor Bitmap Address

This register contains the address of the cursor’s bitmap in the core’s memory. The cursor

bitmap occupies contiguous words of memory. The memory address must be 64-byte aligned.

The amount of memory required is determined by the MCnt field for the cursor. Each raster line

of the cursor is composed of one sixty-four-bit value to allow bitmaps up to 32 pixels in width to

be defined. The amount of memory required is one word, which is a fixed amount. Even if the

sprite is only five pixels wide, a whole word of memory per scanline is still required.

• The system memory controller reads and caches 256 pixels at a time (8x64-bit words) as the

performance of the memory system is increased substantially by reading multiple words in a

single transfer. Most of the time pixel data is fetched from a read cache and not main

memory. This is an aspect of the system’s memory not the sprite controller. As far as the

sprite controller is concerned it just wants to see data for a 64-bit transfer. Read caching is

not required by the sprite controller. Another implementation of the system may handle

sprite accesses differently.

MCnt

The size register controls the visible size of the sprite. Sprites may be up to 32 pixels in size

horizontally, and up to 512 scan lines vertically. The value placed in the register should be one

less than the total count of pixels to display. The count should be a multiple of 32 pixels then

minus one. For example, for a 32hx30v sprite the count would be 960-1 = 959.

4 | P a g e

Horizontal and Vertical Position

The horizontal and vertical position are relative to the sync position which is position (0, 0).

Z-Order

The z-order (zpos) register controls the appearance priority of the sprite compared to other

graphics on-screen. If the sprite’s z-order is less than the z-order of the current pixel it will

appear in front of the pixel. Otherwise it will be hidden by the pixel.

5 | P a g e

Port Signals
Name Width I/O

rst_i 1 i This active high signal resets the core and WISHBONE bus interfaces

Slave Signals
clk_i 1 i Clock signal for slave peripheral interface (typically the cpu clock)

cs_i 1 i circuit select

cyc_i 1 i cycle is valid

stb_i 1 i data transfer in progress

ack_o 1 o data transfer acknowledge

sel_i 8 i byte lane selects

we_i 1 i write enable to register set

adr_i 12 i addresses the registers of the core

dat_i 64 i data input for registers

dat_o 64 o data output of registers

Master Signals (read only)

m_clk_i 1 i clock signal for bus master interface (typically the memory clock)

m_cyc_o 1 o cycle is valid

m_stb_o 1 o data transfer is taking place

m_ack_i 1 i data transfer acknowledge

m_adr_o 32 o Memory address for bitmap data read

m_dat_i 64 i data input from bitmap memory

m_spriteno_o 5 o sprite number to aid in memory caching (acts like an ASID)

Video Port

dot_clk_i 1 i This is the video clock input (40 MHz)

hsync_i 1 o horizontal sync signal

vsync_i 1 o vertical sync signal

zrgb_i 32 o color output video data in ZRGB (8,8,8) format

