
Gisselquist
Technology, LLC

CMOD S6 SOC

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) ieee.org

March 22, 2017

Gisselquist Technology, LLC Specification 2017/03/22

Copyright (C) 2017, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

www.opencores.com Rev. 0.4 ii

Gisselquist Technology, LLC Specification 2017/03/22

Revision History
Rev. Date Author Description

0.4 3/22/2017 Gisselquist Updated to support the 8-bit byte ZipCPU
0.3 5/23/2016 Gisselquist Draft for comment, includes ZipOS and PMod

pin mapping
0.2 5/14/2016 Gisselquist Updated Draft, still not complete
0.1 4/22/2016 Gisselquist First Draft

www.opencores.com Rev. 0.4 iii

Gisselquist Technology, LLC Specification 2017/03/22

Contents

Page

1 Introduction . 1

2 Architecture . 3

3 Getting Started . 5
3.1 Building the Xilinx BIT file(s) . 5
3.2 Building the Compiler . 13
3.3 Building the ADEPT Utilities . 13
3.4 Building and Running the Host Software . 13
3.5 Building the ZipCPU Software . 13
3.6 Connecting the PMods to your board . 15
3.7 Loading Software onto your SoC . 15

4 Software . 16
4.1 Directory Structure . 16
4.2 ZipCPU Tool Chain . 17
4.3 Bench Test Software . 17
4.4 Host Software . 17
4.5 ZipCPU Programs . 18
4.6 ZipOS . 19

4.6.1 System Calls . 19
4.6.2 Scheduler . 21

5 Operation . 22

6 Registers . 25
6.1 Peripheral I/O Control . 25

6.1.1 Interrupt Controller . 25
6.1.2 Last Bus Error Address . 27
6.1.3 ZipTimer . 27
6.1.4 PWM Audio Controller . 28
6.1.5 Special Purpose I/O . 28
6.1.6 General Purpose I/O . 29
6.1.7 UART Data Register . 30

6.2 Debugging Scope . 30
6.3 On-Chip Block RAM . 30
6.4 Flash Memory . 31

7 Clocks . 32

8 I/O Ports . 33

www.opencores.com Rev. 0.4 iv

Gisselquist Technology, LLC Specification 2017/03/22

Figures

Figure Page

2.1. CMod S6 SoC Architecture: ZipCPU and Peripherals 4
2.2. Alternate CMod S6 SoC Architecture: Peripherals, with no CPU 4

3.1. Create a New Project . 6
3.2. Create a New Project . 7
3.3. Synthesis options for low area . 8
3.4. HDL optimization options for the S6SoC . 9
3.5. Xilinx specific options . 10
3.6. Map parameters necessary to optimize the S6SoC 11
3.7. Configuration Options . 12
3.8. Programming file (Bit-File) generation options . 14

6.1. Programmable Interrupt Control (PIC) Register 26
6.2. PWM Audio Controller Bitfields . 28
6.3. SPIO Control Register . 29
6.4. GPIO Control Register . 29

8.1. Physical Locations of Device I/O Ports . 34
8.2. Suggested mapping of I/O ports to PMod Locations 36

www.opencores.com Rev. 0.4 v

Gisselquist Technology, LLC Specification 2017/03/22

Tables

Table Page

6.1. Address Regions . 25
6.2. I/O Peripheral Registers . 26
6.3. Hardware Interrupts . 27
6.4. Flash Address Regions . 31

8.1. List of IO ports . 33

www.opencores.com Rev. 0.4 vi

Gisselquist Technology, LLC Specification 2017/03/22

Preface

The ZipCPU was built with the express purpose of being an area optimized, 32–bit FPGA soft
processor.

The S6 SoC is designed to prove that the ZipCPU has met this goal.
There are two side–effects to this. First, the project proves how capable a very small FPGA, such

as the Spartan 6/LX4 on the CMod–S6, can be and second, this project provides demonstration
implementations of how to interact with a variety of PMod devices: the audio amplifier, the serial
2–line LCD display, the USBUART, and the 16–character numeric keypad.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.4 vii

Gisselquist Technology, LLC Specification 2017/03/22

1.

Introduction

The ZipCPU is a soft core Central Processing Unit (CPU) designed to fit within an FPGA, to use
a minimum amount of the FPGA’s resources, and yet to still provide the services of a fully capable
32–bit computer. It is based upon a Von Neumann architecture and so a single 32–bit wishbone bus
provides it with access to both peripherals and memory.

Previous demonstrations of the ZipCPU have focused on larger FPGAs, such as the Spartan–6
LX9 and LX25 and the Artix–7 35T. On these FPGA’s, the ZipCPU runs in a pipelined configuration
where it is tightly integrated with a prefetch/instruction cache. While these demonstrations have
shown that the ZipCPU can act as a very simple CPU in these environments, they really haven’t
demonstrated the ability of the ZipCPU to use only a minimum amount of the FPGA’s resources.

The CMod S6 board provides the opportunity for that demonstration rather nicely.

1. The Spartan–6 LX4 FPGA is very limited in its resources: It only has 2,400 look–up tables
(LUTs), and can only support a 16 kB RAM memory.

2. With only 16kB RAM, the majority of any program will need to be placed into and run from
the flash.

3. While the chip has enough area for the CPU, it doesn’t have enough area to include the CPU
and . . . write access to the flash, debug access, wishbone command access from the UART,
pipelined CPU operations, a prefetch cache and more. Other solutions will need to be found
as part of this project.

Of course, if someone just wants the functionality of a small, cheap, CPU, this project does
not fit that role very well. While the S6 is not very expensive at nearly $70, it is still an order of
magnitude greater than it’s CPU competitors in price. This includes such CPU’s as the Raspberry
Pi Zero ($5), or even the TeensyLC ($12).

If, on the other hand, what you want is a small, cheap, CPU that can be embedded within
an FPGA without using too much of the FPGA’s resources, this project will demonstrate that
possibility as well as showing that the CPU even has some utility. Alternatively, if you wish to
study how to get a CPU to work in a small, constrained environment, this project may be what
you are looking for. Likewise, if you are a software developer forced to get something running on an
FPGA, such as the CMod-S6, you may have just found your answer.

Finally, because the ZipCPU and the included ZipOS are as small and simple as they are, the
code base found here will be simpler to understand than the code bases for some of these other
projects. For example, the ZipCPU instruction set is very simple. With only 29 instructions, it is
much easier to understand and learn than the ARM instruction set. Further, unlike the ARM, the
entire specification for and description of the ZipCPU is publicly available. Likewise, an operating

www.opencores.com Rev. 0.4 1

Gisselquist Technology, LLC Specification 2017/03/22

system such as the ZipOS that has less than 3,000 lines of code will be much easier to understand
than any Linux operating system–even if it has much less functionality.1

1I’m still entertaining thoughts of placing Linux onto this device.

www.opencores.com Rev. 0.4 2

Gisselquist Technology, LLC Specification 2017/03/22

2.

Architecture

Fig. 2.1 shows the basic internal architecture of the S6 SoC. In summary, it consists of a CPU
coupled with a variety of peripherals for the purpose of controlling the external peripherals of the
S6 SoC: flash, LEDs, buttons, and GPIO. External devices may also be added on, and have been
added on as part of this project, such as an audio device, an external serial port, an external keypad,
and an external display. All of these devices are then available for the CPU to interact with.

If you are familiar with the ZipCPU, you’ll notice this architecture provides no access to the
ZipCPU debug port. There simply wasn’t enough room on the device. Debugging the ZipCPU will
instead need to take place via other means, such as dumping all registers and/or memory to the
serial port on any reboot, and making judicious use of the internal scope.

Further, the read/write flash controller couldn’t fit in the design along with the ZipCPU, leaving
the ZipCPU with a simpler read–only flash controller and no ability to write to flash memory. For
this reason, there exists an alternate CMod S6 SoC architecture, shown in Fig. 2.2. Using this
alternate architecture, it is be possible to test the peripherals and program the flash memory.

The basic approach to loading the board is actually quite simple. Using the Digilent ADEPT
JTAG configuration program, djtgcfg, the alternate configuration may be written directly to the
device. Once this alternate configuration has been loaded, the flash may be examined and pro-
grammed using the zipload utility. This utility uses Digilent’s Asynchronous Parallel Port interface
(DEPP) to communicate with the device, and in particular to tell the device what to write to the
flash. When writing to the flash, the zipload utility can program the FPGA configuration into the
configuration section of the flash, as well as computer code into the rest of the flash. Once com-
plete, the system may then be reloaded, either by power down/up or via djtgcfg, with the primary
configuration file which will contain an image of the CPU. The CPU will then begin following the
instructions found in flash memory.

www.opencores.com Rev. 0.4 3

Gisselquist Technology, LLC Specification 2017/03/22

Figure 2.1: CMod S6 SoC Architecture: ZipCPU and Peripherals

Figure 2.2: Alternate CMod S6 SoC Architecture: Peripherals, with no CPU

www.opencores.com Rev. 0.4 4

Gisselquist Technology, LLC Specification 2017/03/22

3.

Getting Started

3.1 Building the Xilinx BIT file(s)

The S6SoC nearly fills the CMod-S6 part, so building the BIT files can be a little tricky, and there
are a couple steps to doing this.

The first step is to built a Xilinx project, such as in Fig. 3.1. So, once you’ve downloaded the
repository, create a new project. We’ll call it “s6soc”, and declare the working directory of this
project and the xilinx project directory to be in a xilinx subdirectory of the main repository. (You
may notice that bit files already exist in that directory. You can use those, or continue here.)

As this is a new project, you’ll need to configure your project as in Fig. 3.2 so as to configure for
the proper part. In this case, the proper part comes from the CMod–S6 schematic, and is shown in
the figure.

At this point, you’ll want to include the Verilog files into the ISE project. These files can be
found in the rtl/ project subdirectory. While not all Verilog files are used in all configurations,
including unused files is not a problem. I recommend just including all of them.

Once these Verilog files have been included, there are two possible top level files. The first is the
main toplevel.v file, used by the SoC itself. This file includes the ZipCPU as the master of all the
peripherals. The second top level module is found in the alttop.v file. This second file can be used
both to test the CMod–S6 hardware as well as to program the flash with any programs we wish to
run in the S6–SoC.

Two more files need to be included: cmod.ucf and cmodtop.ucf. The first of these, cmod.ucf, is
the constraint file for the alternate top file, alttop.v. The latter file, cmodtop.v, is the constraint
file for the main top level file, toplevel.v. You’ll want to associate these two files with their
respected top level at this time.

Once you have these files included, the next step will be to configure how the project will be
synthesized. To set these options, first select one of the two top levels to be the top level, and then
right click on the “Synthesize–XST” to bring up a process properties menu. This menu contains
three sub–screens. If you look at Figures 3.3, 3.4, and 3.5, you can see how I have made these choices
to guarantee a minimum LUT count.

Once you finish configuring the synthesizer, it’s time to configure the map process. This particular
menu is within the Implement Design menu, Process Properties option. Selecting this menu option
brings up a dialog, such as Fig. 3.6. From Fig. 3.6, you can see what optimization settings were
necessary for getting the S6SoC to fit within the CMod–S6 device.

Two configuration screens remain. The first, shown in Fig. 3.7, controls how the FPGA will be
configured. Important on this screen is the fact that the CMod–S6 has a Quad SPI flash, and that it

www.opencores.com Rev. 0.4 5

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.1: Create a New Project

www.opencores.com Rev. 0.4 6

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.2: Create a New Project

www.opencores.com Rev. 0.4 7

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.3: Synthesis options for low area

www.opencores.com Rev. 0.4 8

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.4: HDL optimization options for the S6SoC

www.opencores.com Rev. 0.4 9

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.5: Xilinx specific options

www.opencores.com Rev. 0.4 10

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.6: Map parameters necessary to optimize the S6SoC

www.opencores.com Rev. 0.4 11

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.7: Configuration Options

www.opencores.com Rev. 0.4 12

Gisselquist Technology, LLC Specification 2017/03/22

can be run from a clock as fast as 108 MHz. Here, we choose 16 MHz although I know of no reason
why the clock speed could not be made faster.

As a final configuration screen, there are options for generating the programming (bit) file. These
are shown in Fig. 3.8. From the standpoint of the CMod–S6, the important configuration item here
is that we would like to compress the bit file, so that we can pack as much information into our flash
device as possible.

Having gone through all of your configuration options, you may now build the two configurations,
toplevel.bit and alttop.bit which are used in this distribution.

make axload in the main directory (assuming the Digilent ADEPT utilities are installed) will
load the alternate configuration into the flash, while make xload will load the main configuration
into the flash. For our purposes, and until you have a compiled program to run, you will want to
load the alternate configuration into the flash.

3.2 Building the Compiler

The ZipCPU compiler comes as source from the ZipCPU distribution. To build this compiler, clone
the ZipCPU distribution and follow the build and installation instructions within it. Ever afterwards,
you’ll want the ZipCPU toolchain, zip-gcc, zip-as, zip-ld, etc., in your path.1

3.3 Building the ADEPT Utilities

You will also need a copy of Digilent’s ADEPT software installed on your system in order to use
the CMod–S6. This includes not only the ADEPT utilities, but also ADEPT software development
kit and it’s runtime environment. We’ll need these pieces of software to provide both the djtgcfg

program to load the FPGA with our designs, as well as the DEPP port, provided by both the SDK
and the runtime environment, necessary to communicate with our board.

3.4 Building and Running the Host Software

Once you have the ADEPT utilities installed, you may then build the software in the sw/host project
subdirectory. The makefile in this directory has a reference to the location of ADEPT include files,
which you may need to update according to where you have installed ADEPT. You may also need
to adjust the library path, so that it properly references the ADEPT libraries. (The library path is
currently hard coded into the Makefile.)

3.5 Building the ZipCPU Software

Once you have the ZipCPU toolchain built, you may then build the ZipCPU software which will be
placed onto the board. This software may be found in the sw/dev directory. The ZipOS example
can be found in the sw/zipos directory. A make command executed in each of these directories
should build the ZipCPU software for the board.

1You may need to install several packages to do this, such as: flex, bison, libbison-dev, libgmp10, libgmp-dev,

libmpfr-dev, libmpc-dev, libelf-dev, ncurses-dev, libelf-dev, and verilator.

www.opencores.com Rev. 0.4 13

Gisselquist Technology, LLC Specification 2017/03/22

Figure 3.8: Programming file (Bit-File) generation options

www.opencores.com Rev. 0.4 14

Gisselquist Technology, LLC Specification 2017/03/22

3.6 Connecting the PMods to your board

The S6 SoC supports four PMods: The PModUSBUART, the PModAMP2 pwm to audio amplifier,
the PModCLS two line LCD display, and the PModKYPD sixteen character keypad. These need to
be wired up to the CMod S6 as shown in Fig. 8.2 on page 36.

3.7 Loading Software onto your SoC

Once you have all the software loaded, you may wish to try a simple LED program. You may find
the sw/dev/blinky.c program suitable for this purpose. To run this program, you will need to
follow a series of steps:

1. Build the sw/dev/blinky program.

2. Build both Xilinx configurations, alttop.bit and toplevel.bit. The main makefile will look
for these files in the xilinx/ project subdirectory that you made when you created the project.

3. From the main project subdirectory, run make axload to load the alternate configuration onto
your board. (You do have your board plugged in, right?)

4. Then you can run the zipload program found in the sw/host directory. zipload takes one
or two arguments. In this example, we’ll give it a first argument of the xilinx/toplevel.bit
file, and a second argument of the program we would like to run, sw/dev/blinky.

5. Assuming zipload completed successfully, you can then either run make xload from the main
directory, or you may remove and reconnect power to your board.

6. A blinking light demonstration should now be running on your board.

www.opencores.com Rev. 0.4 15

Gisselquist Technology, LLC Specification 2017/03/22

4.

Software

This chapter provides an overview of the software that is available to support the S6 SoC. This
includes not only the RTL, the Makefiles, and the software that will run on the ZipCPU within the
S6 SoC, but also the support software necessary for communicating with the S6 SoC in its alternate
configuration.

4.1 Directory Structure

sim/verilator/ Contains software for emulating the S6 SoC without the S6 present.

All of the bench testing software is written in C++, so it is found in this directory. Primary
among these programs is the zip sim program which will simulate the ZipCPU within the
S6 SoC. Specifically, it simulates everything at or below the busmaster.v level.

Some, although not all, of the peripherals have been simulated and made a part of this simu-
lation. These include the Quad–SPI flash, the UART, the LED’s and the GPIOs.

doc/ All of the documentation for the S6 SoC project may be found in this documentation directory.
Specifically, I would commend your attention to anything with a .pdf extension, as these are
the completed documents. Among these you should find a copy of the GPL copyright under
which this software is released, as well as a pre–built copy of this document.

doc/gfx/ Here is where the graphics are located in support of this specification document.

doc/src/ And here is where the LATEXfiles are kept that were used in building both this document
as well as the GPL copyright.

rtl/ Verilog files. The two top–level files are toplevel.v for the primary top level module, and
alttop.v for the alternate load.

rtl/cpu Verilog files containing the ZipCPU core and peripherals. The toplevel file here is the
zipbones.v file, although some of the peripherals, such as the ziptimer.v are referenced
independently.

sw/ The main software directory, primarily a repository for software subdirectories beneath it.

sw/dev/ This directory holds a variety of simple programs for the ZipCPU, such as blinky,
helloworld, doorbell and doorbell2, as well as software drivers for various periph-
erals, such as the real–time clock simulator, and the keypad and display device drivers.

One key file in this directory is the cputest.c file, which provides a basic test of the
CPU and its capabilities.

www.opencores.com Rev. 0.4 16

Gisselquist Technology, LLC Specification 2017/03/22

sw/host/ This directory holds support software which can be built on and run on the host machine.
Building this software will involve adjusting the Makefile so that it knows where your
local ADEPT installation directory is. Once built, you will find a variety of very useful
programs within here.

sw/zipos/ This directory contains the source code for a rudimentary, very basic, pre-emptive multi-
tasking operating system that I call the ZipOS.

4.2 ZipCPU Tool Chain

To build programs for the ZipCPU, you will need the ZipCPU toolchain. You can find this as part
of the ZipCPU project, available at OpenCores. Building the ZipCPU project should result in a set
of binaries in the sw/install/cross-tools/bin/ subdirectory of your ZipCPU project directory.
Make this directory a part of your path, and you should be able to build the CMod S6 ZipCPU
software. Specifically, you will need to use zip-gcc, zip-as, zip-ld, and zip-cpp. Other tools,
such as zip-objdump and zip-readelf, may also prove to be very useful when trying to debug what
is going on within the SoC.

4.3 Bench Test Software

Bench testing software currently consists of the zip sim program found within sim/verilator. This
program requires Verilator to run, and simulates in a cycle accurate fashion, the entire S6 SoC from
busmaster.v on down. Further, the external Quad–SPI flash memory, UART, and LED’s are also
simulated, although the 2–line display, audio, and keypad are not.

4.4 Host Software

Several software programs have been built to support the S6 SoC from a nearby host. These programs
include:

• dumpuart: My current approach to debugging involves dumping the state of the registers and
memory to the UART upon reboot. The dumpuart command found here is designed to make
certain that the UART is first set up correctly at 9600 Baud, and second that everything read
from the UART is directly sent to both a file and to the screen. In this fashion, it is similar
to the UNIX tee program, save for its serial port attachment.

• readflash: As I am loathe to remove anything from a device that came factory installed, the
readflash program reads the original installed configuration from the flash and dumps it to
a file.

This program is only useful when the alternate configuration is loaded.

• wbregs: This program offers a capability very similar to the PEEK and POKE capability
Apple user’s may remember from before the days of Macintosh. wbregs <address> will read
from the Wishbone bus the value at the given address. Likewise wbregs <address> <value>

will write the given value into the given address. While both address and value have the

www.opencores.com Rev. 0.4 17

Gisselquist Technology, LLC Specification 2017/03/22

semantics of numbers acceptable to strtoul(), the address can also be a named address.
Supported names can be found in regdefs.cpp, and their register mapping in regdefs.h.

As examples, wbregs version, will return the build date, or version of the RTL. wbregs spio

reads the special purpose I/O register, and wbregs gpio 0xffffffff will set all output GPIO
ports high while wbregs gpio 0xffff0000 will set all output GPIO ports to ground.

This program is only useful when the alternate configuration is loaded. When the primary
toplevel.v configuration is loaded, the ZipCPU will be able to read and write these registers
in a similar fashion.

• zipload: This is the primary program you will need to get your software loaded on the CMod.
It takes two arguments. The first is the name of the primary Xilinx configuration file, and the
second is the name of the ZipCPU program you wish to write to Flash memory.

Each of these arguments is optional. For example, if a configuration file is given, the loader
will load the primary configuration. If a ZipCPU program is given, the program will be loaded
into the program memory area and the configuration file areas will be left untouched.

As with wbregs, this program is only useful when the alternate configuration is loaded.

4.5 ZipCPU Programs

The following are a list of simple, independent, single-task example programs that will run on the
S6 SoC:

• blinky: This is a very simple program similar to hello world, with the difference that the lights
have a bit of a different response, the hello world message is written slower, and interrupts are
used to accomplish this purpose.

• helloworld: The first program any programmer should build, “Hello, world!” This program
sends the string, “Hello, world!” over the UART connection once per second. It is a very
valuable program because, if you can get this program running, you know you have a lot of
things working and working correctly. For example, running this program means you can run
the zip-gcc compiler, load the auxiliary configuration, load the program info flash memory,
load the primary configuration, and read from the UART port. It also means that you must
have the UART port properly configured and wired to your CMod board.

Unlike other versions of Hello World that you may be familiar with, this one does not use the
C–library. It programs the hardware directly.

• cputest: This is a simple test of the CPU and all of its functionality. The functionality
proven is primarily assembly level, but it does require the C compiler to put its framework
together. cputest is actually one of two programs built from the same source. The other
is named cputestcis, and specifically allows the complex instruction set (CIS) instructions
whereas cputest specifically disallows them. The difference, therefore, is in the command line
parameters given to the assembler (via the compiler).

• doorbell: This annoying program verifies the functionality of the audio device by playing a
doorbell sound to the audio port. It will then wait ten seconds, and play the doorbell sound
again (and again, and again). (It gets old after a while ...)

www.opencores.com Rev. 0.4 18

Gisselquist Technology, LLC Specification 2017/03/22

• doorbell2: This adds to the functionality of the doorbell program a wait for keypress, and
a display of the current time on the 2–line display. While almost our fully functional ZipOS
program, this does not include any menus to configure the device or set time, since it doesn’t
include any keypad functionality.

• kptest: A test of whether or not they keypad driver works. When run, anytime a key is
pressed, the key’s associated printable character will be sent to the UART. Further, pressing
an ‘F’ on the keypad will also send a newline over the UART, in case you wish to keep your
lines from getting too long.

4.6 ZipOS

The ZipOS is a brand new operating system, specifically designed to run on the ZipCPU. It is both
pre–emptive and multitasking, although with many limitations. Those familiar with the internals
of other operating systems, such as Linux, may laugh that I call this an Operating System at all:
it has no memory management unit, no paging, no virtual memory, no file I/O access, no network
stack, no ability to dynamically add or remove tasks, indeed it hardly has any of the things most
often associated with an Operating System. It does, however, handle interrupts, support multiple
pre–emptive tasks in a multitasking, timesharing fashion, and it supports some very basic and
rudimentary system calls. In a similar fashion, it does contain just about all of the functionality
necessary for a multi–tasking microcontroller built around a do–forever loop. For its size, I consider
it an impressive achievement. You are welcome to disagree with me.

This version of the ZipOS starts in the resetdump.s code, so that upon any startup the ZipOS
will dump register contents, the BusError register, and any scope contents to the UART–assuming
that the scope had been triggered. This can take some time, so you may wish to configure what you
really wish to send–if anything. If desired, resetdump can be configured to also dump the entire
memory as well while only using ten memory locations in its own support. All of this is quite useful
in case the ZipCPU encounters a bus error or other sort of error that causes it to hang, stall, or
reboot, as the CPU registers are very carefully not touched prior to being sent to the UART output
port. This extends to all registers save the supervisor PC and CC registers, which would’ve been
reset by a reboot anyway.

resetdump.s then calls a rudimentary bootloader, to load the parts of the ZipOS that need to
run faster into Block RAM. The choice of what parts to load into Block RAM is made on a file by
file basis, and found within the linker script, cmodram.ld.

Upon completion, resetdump.s calls the entry routine for the O/S, kernel entry() found in
kernel.c. This is the main task loop for the entire O/S, and worth studying if you are interested
in understanding how the O/S works.

The user tasks are found (mostly) within doorbell.c, also found in the ZipOS directory. This
file contains two kernel entry points, kntasks(), which returns the number of user tasks the kernel
needs to know about, and kinit(), which builds each of the tasks and connects their file descriptors
to the various devices they will be referencing.

4.6.1 System Calls

The ZipOS supports a variety of system calls, listed here:

www.opencores.com Rev. 0.4 19

Gisselquist Technology, LLC Specification 2017/03/22

• int wait(unsigned event mask, int timeout)

Halts the execution of a process until an event matching the event mask takes place, or a
timeout (in milliseconds) has been reached. The events that can take place are a bitmask of
the various interrupts the CPU supports, together with a bitmask of the software interrupt
values found in swint.h.

The timeout value can either be zero, to return immediately with the list of events that have
taken place, negative, to wait indefinitely, or a positive number of milliseconds in order to wait
at least that time for the event of interest to take place.

Waiting on a zero event mask allows a process to sleep for any number of requested milliseconds.

When wait returns, any events returned by the wait have been cleared.

The other thing to be aware of is that events may accumulate before the wait system call.
Nothing within the wait system call clears prior events. These prior events be returned and
cleared, though, if the wait call indicates an interest in those events.

Upon return, the a bitmask of events that have taken place will be returned to the process.

• int clear(unsigned event mask, int timeout)

This system call works closely with the wait system call. Indeed, when the timeout given is
zero, the two function nearly identically. It clears any of the requested events which may be
pending, and returns a bit mask of the events that were pending and cleared.

However, if the timeout is given (and is positive), then clear() starts a timer. Once the timer
has completed, a timeout event, SWINT TIMEOUT, will be generated and made available to the
task to wait upon it.

In a similar fashion, if the timeout is negative, then any pending timeout is cleared.

• void post(unsigned event mask)

Certain software devices, such as the real–time clock and the doorbell reader, need the ability
of being able to post events to any listener within the O/S. The POST system call allows them
to POST events in this manner.

Were the ZipOS to be closer to a secure O/S, it might restrict what events each process could
post. Right now, however, any process can post any event–whether it be a hardware or a
software generated event.

• void yield(void)

This is simply a way of being nice to other processes. This system call takes no arguments
and simply asks the scheduler to schedule the next process. It does not take this process off
of the ready to run list, so the next process may be this one. However, since the scheduler is
a round–robin scheduler, it will only return to this process once it has gone through all other
available processes checking whether or not they are available to be run.

• int read(int fid, void *buf, int len)

This is roughly the same system call as the POSIX read() system call. It reads some number of
words (not octets) from the file descriptor (device) specified by fid into the memory address

www.opencores.com Rev. 0.4 20

Gisselquist Technology, LLC Specification 2017/03/22

range starting at buf and len words long. If the memory requested is unavailable, the read
will wait until it is available, possibly indefinitely.

Upon return, the read() function call returns the number of words actually read, or a negative
value on error.

As a future feature, a read() system call should be able to be interrupted by a timeout. This
feature has not (yet) been implemented, but will likely be implemented via a combination of
the clear() system calls ability to set timeouts together with the read() functions ability to
wait for available data.

• int write(int fid, void *buf, int len)

This is roughly the same system call as the POSIX write() system call. It writes some number
of memory addresses (words, not octets), to the given file descriptor. If there is no reader task
or device associated with the file descriptor, then the write() system call will block forever
once the internal pipe fills up. Otherwise, if something is reading from the file descriptor’s
pipe, the writing task will only stall until the data is either written to the receiving task, or
copied into a memory buffer.

Upon return, the write() system call returns the number of words actually written to the
system pipe (not necessarily the number that have been read), or a negative value on error.

• unsigned time(void)

Returns the number of seconds since startup. Eventually, this will return the number of seconds
since January 1, 1970, and be identical to the UNIX system time() command, but that may
not happen on this project.

• void *malloc(void)

Allocates memory from the system/kernel heap. This is a very low overhead memory allocator
that, while it does allocate memory, cannot free it later. It is nearly 100% efficient since
only one memory address, the top of the heap, is used to determine what memory has been
allocated.

• void free(void *buf)

This function is a do–nothing stub.

4.6.2 Scheduler

The ZipOS currently supports only a round–robin scheduler. Tasks are executed in the order they
were created, as long as they are available to be executed. If no tasks are available to be run, the
Scheduler will run the idle task which puts the CPU to sleep while waiting for an interrupt.

www.opencores.com Rev. 0.4 21

Gisselquist Technology, LLC Specification 2017/03/22

5.

Operation

The doorbell program found in sw/zipos| has been built to illustrate the operation of both the
ZipCPU the ZipOS, as well as showing off how all of the various peripherals work. It was envisioned
after my family and I experienced an unexpected visitor during the wee hours of the morning. The
doorbell program is designed to couple the doorbell and the exterior lights to a single button.
Hence, when the doorbell to the house is pressed, the exterior light (an LED in the demo) is turned
on for a half an hour. This, then, would make it difficult for someone to see inside during this time.

This chapter will present a discussion of how that doorbell program works.
To run the doorbell program, you will first need to build the various RTL and software support

programs just to get the doorbell program on the device:

1. First build the primary and alternate .bit files by building with toplevel.v and then alttop.v

as your top–level RTL files. I like to place my Xilinx work directory into a xilinx/ project
subdirectory, and if you do the same the load scripts that are referenced next will work.

Before going on, double check that both configuration .bit files were created, and that they
each fit within the device (there would be errors if they did not), and that they met their
respective timing requirements.

2. Then, load the alternate bit file into the S6 SoC. You will need the Digilent tools installed in
order to do this. Having done so, you may run make axload from the main project directory.
If you didn’t run the Xilinx ISE from within a xilinx/ project subdirectory, you may need to
find your .bit files and adjust where they load from, but this should be fairly straight–forward
from the instructions within the Makefile.

3. Build the software found in the host directory. This software depends upon Digilent’s ADEPT
toolsuite, so you will need to adjust the Makefile so that it references the toolsuite.

4. Using wbregs, you may now test your configuration. wbregs works like the peek and poke
programs from a generation ago. wbregs <address> will return the value of the memory (or
peripheral) found at the <address>. Some addresses have names, such as UART, SPIO, GPIO,
PIC, and so forth. These names are found in sw/host/regdefs.cpp, and their mappings in
sw/host/regdefs.h.

As examples, if you type wbregs version you should be able to read the version (a.k.a. build
date) from the currently installed .bit file. Likewise if you type wbregs uart 65, you should
see an ‘A’ (i.e. a 65) sent from the S6 SoC over the serial port. wbregs uart by itself will
read a single character from the serial port and so on.

www.opencores.com Rev. 0.4 22

Gisselquist Technology, LLC Specification 2017/03/22

You should be able to test all of your peripherals by hand using wbregs: GPIO, Flash, UART,
keypad, buttons, LEDs, Interrupt controller, timer, etc.1 This should give you some confidence
in how these peripherals work, should you need it. You may also use this time to verify that
your wiring is properly set up.

5. If you wish to make certain you keep track of the original Flash bitfile that came with your
device, you may read it out using readflash. This will dump the contents of you flash onto
qspiflash.bin. You may then wish to change the name of this file, lest you overwrite it by
running readflash again later.

If you wish to restore this bitfile later, load the alternate configuration and run zipload

qspiflash.bin.

6. At this point, it’s time to build the programs for the ZipCPU. To do this, you will first need
to download the ZipCPU project. When building that project, it will create a directory of
programs (including its compiler) in the sw/install/cross-tools/bin/ subdirectory of the
ZipCPU project directory. Include this directory into your path.

7. Change into the sw/dev project subdirectory to build some device testing files. make by itself
should build some of these.

You should now be ready to run some basic tests on the S6 SoC.

8. Let’s test the UART first: back out to the main project directory, and run
sw/host/zipload sw/dev/helloworld and then make xload. Now, examine your UART
port. (You do have the PModUSBUART installed and connected, right?) You should see
“Hello, World!” printed over and over again once each second.

9. You may try other test files in a similar manner, such as sw/dev/doorbell and
sw/dev/doorbell2. The first of these will just play the doorbell over and over again, whereas
the second one will wait for a button press before playing the doorbell sound.

10. Now let’s go and build the ZipOS together with it’s user files. To do this, enter into the
sw/zipos/ directory and type make. If all goes well, you should now have a program named
sw/zipos/doorbell which you can load into your S6 SoC as well.

11. A final load, and we’ll be done. To do this, make axload again, and this time sw/host/zipload
xilinx/toplevel.bit sw/zipos/doorbell. When you power on your device the next time,
or after you make xload, you’ll find the ZipOS running on the ZipCPU.

12. To test the doorbell, press one of the buttons. You should hear a doorbell coming out of the
PModAMP2 audio port.

13. You should also be able to read the time on the LCD display. It will be the wrong time (the
number of seconds since power on . . .) initially. To set the correct time, press ‘A’ on the
keypad and then type in the 6–digit time: HHMMSS.

If you make a mistake, the ‘C’ key can be used for a backspace.

1The display and audio devices may be more difficult since these require multiple interactions over the course of a

short period of time to work.

www.opencores.com Rev. 0.4 23

Gisselquist Technology, LLC Specification 2017/03/22

14. You can also set the time of “dawn” by pressing a ‘B’ on the keypad and then typing in the
time “dawn” should be at. The same is true for dusk, only you’ll need to start that by pressing
a ‘C’ on the keypad.

15. Now, when the doorbell rings, the LCD will show the time the doorbell was pressed. If the
time is at night, the outdoor light (oops, I mean LED#3) will turn on for a half an hour
(currently set to 30 seconds, since I don’t have the patience to wait a half hour while testing).

Now that you’ve made it this far, you can go back and examine what was done along the way,
and perhaps even modify it for your own personal application.

www.opencores.com Rev. 0.4 24

Gisselquist Technology, LLC Specification 2017/03/22

6.

Registers

There are several address regions on the S6 SoC, as shown in Tbl. 6.1. In general, the address

Start End Purpose

0x0000400 0x00043f R/W Peripheral I/O Control
0x0000800 0x00080f R/(W) Debugging scope
0x0004000 0x03fff R/W 16kB On-Chip Block RAM
0x1000000 0x7fffff R 16 MB SPI Flash memory

Table 6.1: Address Regions

regions that are made up of RAM or flash act like memory. The RAM can be read and written, and
the flash acts like read only memory.1 Furthermore, only the RAM offers the capability of byte-wise
writes across the bus.

This isn’t quite true with the other address regions. For example, accesses to the I/O region may
also have side-effects–even though this region is accessed just like memory. For example, reading
from the debugging scope device’s data port will read a word from the scope’s buffer and advance
the buffer pointer. (More on that later.)

Finally, to keep the address decoder simple, many of these addresses are multiply mapped. Hence
you may find the I/O peripherals mapped throughout the 0x0400–0x07ff address region. Other
memory addresses are similarly overmapped. This overmapping was a resource minimization feature,
to get the bus to fit within a minimum number of FPGA resources. For this reason, addresses not
explicitly defined in this specification are undefined. Likewise, attempting to write a byte or half-
word to anything other than RAM will have undefined results.

6.1 Peripheral I/O Control

Tbl. 6.2 shows the addresses of various I/O peripherals included as part of the SoC. We’ll walk
through each of these peripherals in turn, describing how they work.

6.1.1 Interrupt Controller

The programmable interrupt controller (PIC) is identical to the one found with the ZipSystem.
The layout of the PIC bits is shown in Fig. 6.1. This controller supports up to fifteen interrupts,

1The Flash can be written, but only by an external command while in the alternate configuration.

www.opencores.com Rev. 0.4 25

Gisselquist Technology, LLC Specification 2017/03/22

Name Address Width Access Description

PIC 0x0400 32 R/W Interrupt Controller
BUSERR 0x0404 32 R Last Bus Error Address
TIMER 0x0408 32 R/W ZipTimer
WATCHDOG 0x040c 32 R/W Watchdog Timer
PWM 0x0410 32 R/W PWM Audio Controller
SPIO 0x0414 32 R/W Special Purpose I/O, Keypad, LED Controller
GPIO 0x0418 32 R/W GPIO Controller
UART 0x041c 32 R/W UART data
VERSION 0x0420 32 R Build date

Table 6.2: I/O Peripheral Registers

012345678910111213141516171819202122232425262728293031

E Enabled Ints A Currently Active Ints

Figure 6.1: Programmable Interrupt Control (PIC) Register

however only eleven are defined within the SoC, and of those only nine are defined in the primary
configuration. All of these interrupts are listed in Tbl. 6.3. If any interrupt line is active, the PIC
controller will have that bit set among its active set. Once set, the bit and hence the interrupt can
only be cleared by writing to the controller. Interrupts can also be enabled as well. The enabled
bit mask controls which interrupt lines are permitted to interrupt the CPU. Hence, just because an
interrupt is active doesn’t mean it will interrupt the CPU–the corresponding bit in the enable mask
must be set as well. Finally, then A or ANY bit will be high if any interrupts are both enabled and
active, whereas the E or global interrupt enable bit can be set to allow the PIC to interrupt the CPU
or cleared to disable all interrupts.

To keep operations on this register atomic, most of the bits of this register have special meanings
upon write. The one exception to this is the global interrupt enable bit. On any write, interrupts
will be globally enabled or disabled based upon the value of this bit. Further, the ANY bit is a read
only bit, so writes to it have no effect.

Enabling specific interrupts, via writes to the enable lines, are different. To enable a specific
interrupt, enable all interrupts and set the mask bit associated with the specific interrupt you wish
to enable. Hence writing a 0x80010000 will enable interrupt line zero (INT BUTTON), while also
enabling all previously enabled interrupts. To disable a specific interrupt, disable all interrupts
and write a one to the enable line of the interrupt you wish to disable. In this fashion, writing a
0x00010000 will disable all interrupts and leave interrupt line zero disabled when the interrupts are
re–enabled later, whereas 0x7fff0000 will not only disable all interrupts, it will leave all all specific
interrupts disabled when interrupts are enabled again later.

Interrupts are acknowledged in a fashion similar to enabling interrupts. By writing a ‘1’ to
the active bit mask, the interrupt will be acknowledged and reset, whereas writing a ‘0’ leaves the
interrupt untouched. In this fashion, as individual interrupts are handled, a ‘1’ may be written

www.opencores.com Rev. 0.4 26

Gisselquist Technology, LLC Specification 2017/03/22

Name Bit Mask Description

INT BUTTON 0x001 A Button has been pressed.
INT BUSERR 0x002 A Wishbone bus error has taken place
INT SCOPE 0x004 The Scope has completed its collection
INT TIMER 0x010 Timer-A has reached zero
INT TIMB 0x020 Timer-B has reached zero. (Alternate config only.)
INT UARTRX 0x040 A character has been received via the UART
INT UARTTX 0x080 The transmit UART is idle, and ready for its next character.
INT KEYPAD 0x100 One of the keypad wires has been pulled low.
INT AUDIO 0x200 The audio device is ready for its next sample
INT GPIO 0x400 The GPIO input lines have changed values.
INT FLASH 0x800 The flash device has finished either its erase or write cycle, and

is ready for its next command. (Alternate config only.)

Table 6.3: Hardware Interrupts

to this bottom mask to clear the interrupt. Be aware, however, that any write for the purpose of
acknowledging an interrupt will also globally enable or disable interrupts.

6.1.2 Last Bus Error Address

The Bus Error peripheral simply records the address of the last bus error, and sets an interrupt
upon receiving a bus error. (The interrupt itself is kind of useless ...) The address can be useful
when debugging. While the peripheral may only be read, setting it is really as easy as creating a
bus error and trapping the result. Another use for this is upon any reboot, it is possible to read the
address of the last bus error and perhaps learn something of what caused the CPU to restart.

6.1.3 ZipTimer

The S6 SoC contains two ZipTimers, one general purpose and one watchdog, available for the CPU
to use. These are both countdown timers. Writing any non–zero value to them will cause them
to immediately start counting down from that value towards zero, and to interrupt the CPU upon
the transition to zero. Writing a new value while the timer is running will cause that new value to
automatically load into the timer and start counting from there. Writing a zero to the timer disables
the timer, and causes it to stop.

The general purpose ZipTimer can be set to auto reload by setting the top bit as well as the
interval. When so set, the timer will automatically load it’s last set value upon reaching zero and
interrupting the CPU. This effectively turns it into an interval timer. To set this feature, write to
the timer the number of clock ticks before an interrupt, but also set the high order bit. In this
fashion, writing a 0x8001387f will interrupt the CPU every millisecond, starting one millisecond
after the write takes place (assuming an 80 MHz system clock).2

2Note that, since the timer spends a cycle at zero, setting it for a 80,000 cycle period requires setting the timer

value to one less than 80,000.

www.opencores.com Rev. 0.4 27

Gisselquist Technology, LLC Specification 2017/03/22

012345678910111213141516171819202122232425262728293031

Unused S G E Sample

Figure 6.2: PWM Audio Controller Bitfields

The watchdog timer has been wired for a different purpose. It does not support auto reload, nor
will it interrupt the CPU. When this timer transitions to zero, the CPU will be rebooted. One way
to use this timer would be in conjunction with the general purpose timer, and to write a number to
it upon any entry to the interrupt service routine. If given enough time, this would cause the CPU
to reboot if for any reason it locked up and failed to interrupt at the general timer interrupt request
time.

The ZipOS uses the ZipTimer for task swapping. By setting the timer for 1 ms, the ZipOS
examines every task for a potential task swap every millisecond. Of course, if the various tasks are
running from Flash at 17 clocks per instruction, this means that as few as 4,705 instructions may
be executed between timer interrupts, but this can be tuned if necessary for better performance.

6.1.4 PWM Audio Controller

The bit fields of the PWM Audio controller are shown in Fig. 6.2. This controller has been designed
for easy writing. To send a sample to the PWM audio controller, simply write the sample to the
controller and clear the PWM audio interrupt—in that order. When the audio controller interrupts
the CPU again, it is ready for the next sample. Do note, however, that the audio interrupt can only
be cleared once a new sample has been written to it. Attempts to clear it prior to that will have no
effect. (This is why the order matters.)

The audio sample rate has been fixed at 8 kHz. This rate may be easily changed within
busmaster.v by simply setting the number of clocks between samples (currently set to 10,000)
and rebuilding the primary configuration. Whether or not the CPU can keep up with a higher rate
might be application dependent.

The audio controller supports two additional functionalities, however. The first is that the E bit
will be set upon any read when or if the audio controller is ready for another sample and the Audio
interrupt has been asserted. By polling this bit, for example, the audio driver can be run without
using the interrupt functionality.

The second functionality has to do with the two auxiliary control bits present in the PModAMP2
audio device. These are the gain and shutdown bits. To set these bits, write a sample to the controller
while also setting the E bit. When the E bit is set upon any write, the shutdown and gain bits will
also be set. (Be aware, the shutdown bit is negative logic.) Hence, one may start this interface by
writing a 0x0310000 to the device, and later shut it back off by writing a 0x010000.

6.1.5 Special Purpose I/O

Register SPIO, as shown in Fig. 6.3, is a Special Purpose Input/Output (SPIO) register. It is
designed to control the on-board LED’s, buttons, and keypad. Upon any read, the register reads
the current state of the keypad column output, the keypad row input, the buttons and the LED’s.
Writing is more difficult, in order to make certain that parts of these registers can be modified

www.opencores.com Rev. 0.4 28

Gisselquist Technology, LLC Specification 2017/03/22

012345678910111213141516171819202122232425262728293031

Zeros Kpad Kpad 00 Btn LED

Col OutRow In
Read

{

Ignored Col Col LED LED

Out Enable Enable
Write

{

Figure 6.3: SPIO Control Register

012345678910111213141516171819202122232425262728293031

Current Input Vals (x16) Current Output

Output Change Enable Values (16-outs)

Figure 6.4: GPIO Control Register

atomically. Specifically, to change an LED, write the new value as well as a ‘1’ to the corresponding
LED change enable bit. The same goes for the keypad column output, a ‘1’ needs to be written to
the corresponding change enable bit in order for a new value to be accepted.

As examples, writing a 0x0ff to the SPIO register will turn all LED’s on, 0x0f0 will turn all
LED’s off, and 0x011 and 0x010 will turn LED0 on and then off again respectively.

The keypad is a little bit tricker. To wait for a keypad interrupt, one needs to set the column
outputs to zero. To do this, write a 0x0f00 to the SPIO register. When a user then presses a key,
one of the row inputs will go low and an interrupt will be asserted. The key must then be debounced
in software. The ZipOS accomplishes this by waiting for 5ms. Once debounced, the key may be
read. To do this, set half of the columns to zero, such as by writing a 0x0cf00 to the SPIO register.
If one of the row values is still zero, then one of the two columns tested corresponded with the key.
This can then be repeated until the correct column has been determined, at which point the row
can be read and the key known.

All of this functionality may be checked and tested by loading the alternate configuration and
either reading, wbregs spio, or writing wbregs spio <value>.

The controller will generate a keypad interrupt whenever any row input is zero, and a button
interrupt whenever any button value is a one. This is a level triggered interrupt, not edge triggered.
What that means is that, once generated, the interrupt will need to be disabled until the key or
button is released—there will be no interrupt for the release, that part will need to be done in
software.

6.1.6 General Purpose I/O

The General Purpose Input and Output (GPIO) control register, shown in Fig. 6.4, is quite simple
to use: when read, the top 16–bits indicate the value of the 16–input GPIO pins, whereas the bottom
16–bits indicate the value being placed on the 16–output GPIO pins. To change a GPIO pin, write
the new pin’s value to this register, together with setting the corresponding pin in the bit-mask

www.opencores.com Rev. 0.4 29

Gisselquist Technology, LLC Specification 2017/03/22

represented by the upper 16–bits. For example, to set output pin zero, write a 0x010001 to the
GPIO device. To clear output pin zero, write a 0x010000. Likewise pin one may be set by writing
a 0x020002, and both pins may be set by writing 0x030003, etc. This makes it possible to adjust
some output pins independent of the others.

The GPIO controller, like the keypad or SPIO controller, will also generate an interrupt. The
GPIO interrupt is generated whenever a GPIO input line changes. The interrupt is not selective: if
any line changes, a GPIO interrupt will be generated. There are no “do not care” lines (although
the GPIO controller could be easily adjusted to make such “do-not-care” lines if necessary . . .).

Of the 16 GPIO inputs and the 16 GPIO outputs, two lines have been taken for I2C support, and
a third has been stolen to make the PMod’s fit on the board. GPIO line zero, for both input and
output, is an I2C data line, io sda, and GPIO line one is an I2C clock line, io scl. If the output of
either of these lines is set to zero, the GPIO controller will pull the line low. Otherwise, the line is
pulled up so that other devices may pull it low. If either line is low, when the output control bit is
high, it is an indicator that another device is sending data across these wires. Likewise GPIO input
line 15 has been fixed to ground in order to support placing the keypad next to the S6 SoC.

6.1.7 UART Data Register

Moving on to the UART . . . although the UART module itself within the S6 SoC is highly config-
urable, as built the UART can only handle 9600 Baud, 8–data bits, no parity, and one stop bit.
Changing this involves changing the constant UART SETUP within toplevel.v. Further, the UART
has only a single byte data buffer, so reading from the port has a real–time requirement associated
with it: the data buffer must be emptied before the next value is read. Attempts to read from this
port will either return an 8–bit data value from the port, or if no values are available it will return
an 0x0100 indicating that fact. In general, reading from the UART port involves first waiting for
the interrupt to be ready, second reading from the port itself, and then third immediately clearing
the interrupt. (The interrupt cannot be cleared while data is waiting.) Writing to the UART port is
done in a similar fashion. First, wait until the UART transmit interrupt is asserted (this will likely
be most of the time), second, write to the UART port, and then third, clear the interrupt. As with
the read interrupt, clearing the transmit interrupt prior to writing to the port will have no effect.
Likewise, clearing the transmit interrupt after the byte has been written will have no affect either.

6.2 Debugging Scope

The debugging scope consists of two registers, a control register and a data register. It needs to be
internally wired to 32–wires, internal to the S6 SoC, that will be of interest when debugging. For
further details on how to configure and use this scope, please see the WBSCOPE project on OpenCores.

6.3 On-Chip Block RAM

The block RAM is the fastest memory available to the processor. It is also the only writable memory
available to the processor. Hence all non-constant program data must be placed into block RAM.
The ZipCPU can also run instructions from the block RAM if extra speed is desired. When running
from block RAM, the ZipCPU will nominally take 6 clocks per instruction, for an effective rate of
13 MIPS. Loads or stores to block RAM will take one clock longer.

www.opencores.com Rev. 0.4 30

Gisselquist Technology, LLC Specification 2017/03/22

6.4 Flash Memory

The flash memory has been arbitrarily sectioned into three sections, one for a primary configuration,
a second section for an alternate configuration file, and the third section for any program and
data. These regions are shown in Tbl. 6.4. The host program zipload can be used to load a

Start End Purpose

0x1000000 0x10fffff R Primary configuration space
0x1200000 0x1ffffff R ZipCPU program memory

Table 6.4: Flash Address Regions

ZipCPU program and configuration files into this address space. To use it, first load the alternate
configuration into the FPGA. Then pass it, as arguments, the primary, and alternate (if desired),
configuration files followed by the ZipCPU program file. Then, when the primary configuration
is loaded again, perhaps upon power up, the ZipCPU will automatically start running from it’s
RESET ADDRESS, 0x1200000.

When running from Flash memory, the ZipCPU will nominally take 17 clocks per instruction,
for an effective speed of about 4.7 MIPS.

When using zipload, the first bit file argument will load the first configuration space, the
second bit file argument will load the second configuration space, and the third argument will load
the ZipCPU program into its space.

www.opencores.com Rev. 0.4 31

Gisselquist Technology, LLC Specification 2017/03/22

7.

Clocks

The S6 SoC is designed to run off of one master clock. This clock is derived from the 8 MHz input
clock on the board, by multiplying it up to 80 MHz. The code for doing this can be found in both
toplevel.v and alttop.v.

www.opencores.com Rev. 0.4 32

Gisselquist Technology, LLC Specification 2017/03/22

8.

I/O Ports

Table. 8.1 lists the various I/O ports associated with the S6 SoC. These ports are named in roughly

Port Width Direction Description

i clk 8mhz 1 Input 8 MHz Input Clock
o qspi cs n 1 Output Quad SPI Flash chip select
o qspi sck 1 Output Quad SPI Flash clock
io qspi dat 4 Input/Output Four-wire SPI flash data bus
i btn 2 Input Inputs from the two on-board push-buttons
o led 4 Output Outputs controlling the four on-board LED’s
o pwm 1 Output Audio output, via pulse width modulator
o pwm shutdown n, 1 Output Audio output shutdown control
o pwm gain 1 Output Audio output 20 dB gain enable
i uart 1 Input UART receive input
o uart 1 Output UART transmit output
o uart cts 1 Output H/W flow control response, true if the internal single-

byte receive buffer is empty.
i uart rts 1 Input H/W flow control, true if the PModUSBUART wishes

to send a byte
i kp row 4 Output Four wires to activate the four rows of the keypad
o kp col 4 Output Return four wires, from the keypads columns
i gpio 14 Output General purpose logic input lines
o gpio 14 Output General purpose logic output lines
io scl 1 Input/Output I2C clock port
io sda 1 Input/Output I2C data port

Table 8.1: List of IO ports

the same manner they are used. The four UART pins, i uart, o uart, i uart rts and o uart cts,
connect to the PModUSBUART. The three PWM pins, o pwm, o pwm gain, and o pwm shutdown n,
control the PModAMP2 audio device. The eight pins, i kp row[3:0] and o kp col[3:0], control
the PModKYPD keypad. The final PMod, PModCLS, is controlled via the SPI lines formed from
o gpio[4:2] and i gpio[2]. This display could also be controlled via I2C, io sda and io scl,
although that is not part of the current demonstration software.

The assignment of these pins to external output I/O pins is shown in Fig. 8.1. Although pin

www.opencores.com Rev. 0.4 33

Gisselquist Technology, LLC Specification 2017/03/22

Figure 8.1: Physical Locations of Device I/O Ports

www.opencores.com Rev. 0.4 34

Gisselquist Technology, LLC Specification 2017/03/22

assignment to the actual S6 board has been rather arbitrary, there is a touch of method to the
madness. In particular, the S6 SoC pin placement supports placing the PMods in the configuration
shown in Fig. 8.2. From this figure you can see that I have tried to minimize the amount of movement
necessary to install any particular PMods, while also making the greatest use of pins on board. What
may not be obvious from this picture is that the PMod power and ground lines are all connected to
power and ground rails separate from the CMod itself.

As with any piece of open source firmware, these pin assignments are fairly arbitrary and easy
to adjust by making changes to the cmod.ucf and cmodtop.ucf files. The main difference between
those two files being the DEPP interface supported by alternate configuration, which uses cmod.ucf.

www.opencores.com Rev. 0.4 35

Gisselquist Technology, LLC Specification 2017/03/22

Figure 8.2: Suggested mapping of I/O ports to PMod Locations

www.opencores.com Rev. 0.4 36

	Introduction
	Architecture
	Getting Started
	Building the Xilinx BIT file(s)
	Building the Compiler
	Building the ADEPT Utilities
	Building and Running the Host Software
	Building the ZipCPU Software
	Connecting the PMods to your board
	Loading Software onto your SoC

	Software
	Directory Structure
	ZipCPU Tool Chain
	Bench Test Software
	Host Software
	ZipCPU Programs
	ZipOS
	System Calls
	Scheduler

	Operation
	Registers
	Peripheral I/O Control
	Interrupt Controller
	Last Bus Error Address
	ZipTimer
	PWM Audio Controller
	Special Purpose I/O
	General Purpose I/O
	UART Data Register

	Debugging Scope
	On-Chip Block RAM
	Flash Memory

	Clocks
	I/O Ports

