
Gisselquist
Technology, LLC

CMOD S6 SOC

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

April 23, 2016

Gisselquist Technology, LLC Specification 2016/04/23

Copyright (C) 2016, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

www.opencores.com Rev. 0.2 ii

Gisselquist Technology, LLC Specification 2016/04/23

Revision History
Rev. Date Author Description

0.1 4/22/2016 Gisselquist First Draft

www.opencores.com Rev. 0.2 iii

Gisselquist Technology, LLC Specification 2016/04/23

Contents

Page

1 Introduction . 1

2 Architecture . 2

3 Operation . 4

4 Registers . 5
4.1 Debugging Scope . 5
4.2 Internal Configuration Access Port . 5
4.3 Real–Time Clock . 6
4.4 I/O Peripherals . 6

5 Clocks . 9

6 IO Ports . 10

www.opencores.com Rev. 0.2 iv

Gisselquist Technology, LLC Specification 2016/04/23

Figures

Figure Page

2.1. CMod S6 SoC Architecture: ZipCPU and Peripherals 3
2.2. Alternate CMod S6 SoC Architecture: Peripherals, with no CPU 3

4.1. Spartan–6 ICAPE Usage . 6
4.2. SPIO Control Register . 7
4.3. GPIO Control Register . 7

www.opencores.com Rev. 0.2 v

Gisselquist Technology, LLC Specification 2016/04/23

Tables

Table Page

4.1. Address Regions . 5
4.2. I/O Peripheral Registers . 6

6.1. List of IO ports . 10

www.opencores.com Rev. 0.2 vi

Gisselquist Technology, LLC Specification 2016/04/23

Preface

The Zip CPU was built with the express purpose of being an area optimized, 32–bit FPGA soft
processor.

The S6 SoC is designed to prove that the ZipCPU has met this goal.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.2 vii

Gisselquist Technology, LLC Specification 2016/04/23

1.

Introduction

This project is ongoing. Any and all files, to include this one, are subject to change without notice.
This project comes from my desire to demonstrate the Zip CPU’s utility in a challenging envi-

ronment. The CMod S6 board fits this role nicely.

1. The Spartan–6 LX4 FPGA is very limited in it’s resources: It only has 2,400 look–up tables
(LUTs), and can only support a 4,096 Word RAM memory (16 kB).

2. With only 4kW RAM, the majority of any program will need to be placed into and run from
flash. (The chip will actually support more, just not 8k RAM.)

3. While the chip has enough area for the CPU, it doesn’t have enough area to include the CPU
and . . . write access to the flash, debug access, wishbone command access from the UART,
pipelined CPU operations, and more. Other solutions will need to be found.

Of course, if someone just wants the functionality of a small, cheap, CPU, this project does not
fit that role very well. While the S6 is not very expensive, it is still an order of magnitude greater
than it’s CPU competitors in price. This includes such CPU’s as the Raspberry Pi Zero, or even
the TeensyLC.

If, on the other hand, what you want is a small, cheap, CPU that can be embedded within an
FPGA without using too much of the FPGA’s resources, this project will demonstrate that utility
and possibility. Alternatively, if you wish to study how to get a CPU to work in a small, constrained
environment, this project may be what you are looking for.

www.opencores.com Rev. 0.2 1

Gisselquist Technology, LLC Specification 2016/04/23

2.

Architecture

Fig. 2.1 shows the basic internal architecture of the S6 SoC. In summary, it consists of a CPU
coupled with a variety of peripherals for the purpose of controlling the external peripherals of the
S6: flash, LEDs, buttons, and GPIO. External devices may also be added on, such as an audio
device, an external serial port, an external keypad, and an external display. All of these devices are
then available for the CPU to interact with.

If you are familiar with the Zip CPU, you’ll notice this architecture provides no access to the
Zip CPU debug port. There simply wasn’t enough room on the device. Debugging the ZipCPU will
instead need to take place via other means, such as dumping all registers and/or memory to the
serial port on any reboot.

Further, the ZipCPU has no ability to write to flash memory. For this reason, there exists an
alternate CMod S6 SoC architecture, as shown in Fig. 2.2. Using this alternate architecture, it
should be possible to test the peripherals and program the flash memory. Both architectures may
be loaded into the flash, together with the programming code for the Zip CPU.

The basic approach is simple: up and until the software works, the S6 will power up into the
alternate architecture of Fig. 2.2. While in this state, the flash may be examined and programmed.
Once complete, a UART command to the ICAPE port will tell the S6 to load the (primary) FPGA
configuration from an alternate flash location. This alternate location will contain a configuration
image containing the CPU. The CPU will then begin following the instructions given to it from the
flash.

www.opencores.com Rev. 0.2 2

Gisselquist Technology, LLC Specification 2016/04/23

Figure 2.1: CMod S6 SoC Architecture: ZipCPU and Peripherals

Figure 2.2: Alternate CMod S6 SoC Architecture: Peripherals, with no CPU

www.opencores.com Rev. 0.2 3

Gisselquist Technology, LLC Specification 2016/04/23

3.

Operation

www.opencores.com Rev. 0.2 4

Gisselquist Technology, LLC Specification 2016/04/23

4.

Registers

There are several address regions on the S6 SoC, as shown in Tbl. 4.1. In general, the address regions

Start End Purpose

0x000100 0x000107 R/W Peripheral I/O Control
0x000200 0x000201 R/(W) Debugging scope
0x000400 0x00043f R/W Internal Configuration Access Port
0x000800 0x000803 R/W RTC Clock (if present)
0x002000 0x002fff R/W 16kB On-Chip Block RAM
0x400000 0x7fffff R 16 MB SPI Flash memory

Table 4.1: Address Regions

that are made up of RAM or flash act like memory. The RAM can be read and written, and the
flash acts like read only memory.

This isn’t quite so true with the other address regions. Accessing the I/O region, while it may
be read/write, may have side-effects. For example, reading from the debugging scope device’s data
port will read a word from the scope’s buffer and advance the buffer pointer.

4.1 Debugging Scope

The debugging scope consists of two registers, a control register and a data register. It needs to be
internally wired to 32–wires, internal to the S6 SoC, that will be of interest later. For further details
on how to configure and use this scope, please see the WBSCOPE project on OpenCores.

4.2 Internal Configuration Access Port

The Internal Configuration Access Port (ICAP) provides access to the internal configuration details
of the FPGA. This access was designed so as to provide the CPU with the capability to command
a different FPGA load. In particular, the code in Fig. 4.1 should reconfigure the FPGA from any
given Quad SPI address.1

For further details, please see either the WBICAPETWO project on OpenCores as well as Xilinx’s
“Spartan-6 FPGA Configuration User Guide”.

1According to Xilinx’s technical support, this will only work if the JTAG port is not busy.

www.opencores.com Rev. 0.2 5

Gisselquist Technology, LLC Specification 2016/04/23

warmboot(uint32 address) {
uint32 t *icape6 = (volatile uint32 t *)0x<ICAPE port address>;

icape6[13] = (address<<2)&0x0ffff;

icape6[14] = ((address>>14)&0x0ff)|((0x03)<<8);

icape6[4] = 14;

// The CMod S6 is now reconfiguring itself from the new address.
// If all goes well, this routine will never return.

}

Figure 4.1: Spartan–6 ICAPE Usage

4.3 Real–Time Clock

The Real Time Clock will be included if there is enough area to support it. The four registers
correspond to a clock, a timer, a stopwatch, and an alarm. If space is tight, the timer and stopwatch,
or indeed the entire clock, may be removed from the design. For further details regarding how to
set and use this clock, please see the RTCCLOCK project on OpenCores.

4.4 I/O Peripherals

Tbl. 4.2 shows the addresses of various I/O peripherals included as part of the SoC.

Name Address Width Access Description

PIC 0x0100 32 R/W Interrupt Controller
BUSERR 0x0101 32 R Last Bus Error Address
TIMA 0x0102 32 R/W ZipTimer A
TIMB 0x0103 32 R/W ZipTimer B
PWM 0x0104 32 R/W PWM Audio Controller
KYPAD 0x0105 32 R/W Special Purpose I/O, Keypad, LED Controller
GPIO 0x0106 32 R/W GPIO Controller
UART 0x0107 32 R/W UART data

Table 4.2: I/O Peripheral Registers

The interrupt controller is identical to the one found with the ZipSystem. Please read the
ZipSystem documentation for how to control this.

The Bus Error peripheral simply records the address of the last bus error. This can be useful
when debugging. While the peripheral may only be read, setting it is really as easy as creating a
bus error and trapping the result.

The two ZipTimer’s are ZipSystem timer’s, placed onto this peripheral bus. They are available for
the CPU to use. Common uses might include I2C or SPI speed control, or multi–tasking task-swap
control. For further details, please see the ZipSystem documentation.

Audio Controller

www.opencores.com Rev. 0.2 6

Gisselquist Technology, LLC Specification 2016/04/23

012345678910111213141516171819202122232425262728293031

Zeros Kpad Kpad 00 Btn LED

Col OutRow In
Read

{

Ignored Col Col LED LED

Out Enable Enable
Write

{

Figure 4.2: SPIO Control Register

012345678910111213141516171819202122232425262728293031

Current Input Vals (x16) Current Output

Output Change Enable Values (16-outs)

Figure 4.3: GPIO Control Register

Register KYPAD, as shown in Fig. 4.2, is a Special Purpose Input/Output (SPIO) register. It is
designed to control the on-board LED’s, buttons, and keypad. Upon any read, the register reads
the current state of the keypad column output, the keypad row input, the buttons and the LED’s.
Writing is more difficult, in order to make certain that parts of these registers can be modified
atomically. Specifically, to change an LED, write the new value as well as a ‘1’ to the corresponding
LED change enable bit. The same goes for the keypad column output, a ‘1’ needs to be written to
the change enable bit in order for a new value to be accepted.

The controller will generate a keypad interrupt whenever any row input is zero, and a button
interrupt whenever any button value is a one.

The General Purpose Input and Output (GPIO) control register, shown in Fig. 4.3, is quite
simple to use: when read, the top 16–bits indicate the value of the 16–input GPIO pins, whereas the
bottom 16–bits indicate the value being placed on the 16–output GPIO pins. To change a GPIO
pin, write the new pins value to this register, together with setting the corresponding pin in the
upper 16–bits. For example, to set output pin 0, write a 0x010001 to the GPIO device. To clear
output pin 0, write a 0x010000. This makes it possible to adjust some output pins independent of
the others.

The GPIO controller, like the keypad or SPIO controller, will also generate an interrupt. The
GPIO interrupt is generated whenever a GPIO input line changes.

Of the 16 GPIO inputs and the 16 GPIO outputs, two lines have been taken for I2C support.
GPIO line zero, for both input and output, is an I2C data line, and GPIO line one is an I2C clock
line. If the output of either of these lines is set to zero, the GPIO controller will drive the line.
Otherwise, the line is pulled up with a weak resistor so that other devices may pull it low. If either
line is low, when the output control bit is high, it is an indicator that another device is sending data
across these wires.

Moving on to the UART . . . although the UART module within the S6 SoC is highly configurable,
as built the UART can only handle 9600 Baud, 8–data bits, no parity, and one stop bit. There is
a single byte data buffer, so reading from the port has a real–time requirement associated with it.

www.opencores.com Rev. 0.2 7

Gisselquist Technology, LLC Specification 2016/04/23

Attempts to read from this port will either return an 8–bit data value from the port, or if no values
are available it will return an 0x0100 indicating that fact. In a similar fashion, writes to this port
will send the lower 8–bits of the write out the serial port. If the port is already busy, a single byte
will be buffered.

www.opencores.com Rev. 0.2 8

Gisselquist Technology, LLC Specification 2016/04/23

5.

Clocks

The S6 SoC is designed to run off of one master clock. This clock is derived from the 8 MHz input
clock on the board, by multiplying it up to 80 MHz.

www.opencores.com Rev. 0.2 9

Gisselquist Technology, LLC Specification 2016/04/23

6.

IO Ports

See Table. 6.1.

Port Width Direction Description

i clk 8mhz 1 Input Clock
o qspi cs n 1 Output Quad SPI Flash chip select
o qspi sck 1 Output Quad SPI Flash clock
io qspi dat 4 Input/Output Four-wire SPI flash data bus
i btn 2 Input Inputs from the two on-board push-buttons
o led 4 Output Outputs controlling the four on-board LED’s
o pwm 1 Output Audio output, via pulse width modulator
o pwm shutdown n, 1 Output Audio output shutdown control
o pwm gain 1 Output Audio output 20 dB gain enable
i uart 1 Input UART receive input
o uart 1 Output UART transmit output
i uart cts 1 Input
o uart rts 1 Output
i kp row 4 Output Four wires to activate the four rows of the keypad
o kp col 4 Output Return four wires, from the keypads columns
i gpio 14 Output General purpose logic input lines
o gpio 14 Output General purpose logic output lines
io scl 1 Input/Output I2C clock port
io sda 1 Input/Output I2C data port

Table 6.1: List of IO ports

www.opencores.com Rev. 0.2 10

