
SD/eMMC/MMC Card hardware testing unit

MMC Test Pack : synthesizable cores
Technical Reference Manual

Written by:

March 17, 2017

John Clayton
Klugwhallah FPGA design team

MMC Test Pack

Table of Contents
1 List of Acronymns...2
2 Introduction...2
3 Description of Cores..3

3.1 Background..3
3.2 Summary of Cores In Package...3
3.3 mmc_test_cmd_rx..3
3.4 mmc_tester...6

Register 0x0 : LED Register...11
Register 0x1 : Switch State...12
Register 0x2 : Function Enables...14
Register 0x3 : Test Command Receiver Filter..15
Registers 0x4 – 0x7 : Transfer statistics registers...17
Register 0x8 : SD/MMC data bus size register...18
Register 0x9 : Traffic log FIFO fill level..18
Register 0xA : Traffic log FIFO data..19
Register 0xD : mmc_data_pipe write FIFO fill level..20
Register 0xE : mmc_data_pipe read FIFO fill level...20
Register 0xF : mmc_data_pipe FIFO data..21

1 List of Acronymns
DDR Double Data Rate

FPGA Field Programmable Gate Array

JTAG Joint Test Access Group

MMC Multi-Media Card

SD Secure Digital

USART Universal Synchronous/Asynchronous Receiver/Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

2 Introduction
This document provides a description of the interface signals, internal structure and registers present
in the synthesizable cores within the VHDL package file named “mmc_test_pack.vhd” Some of the
cores may be intended for use at lower levels of a design, in hierarchical fashion. All cores in the
VHDL package are synthesizable and have been tested via simulation and in hardware using a

2

MMC Test Pack

Xilinx “ARTY” Artix 7 FPGA development board.

3 Description of Cores

3.1 Background
The “mmc_test_pack.vhd” VHDL package consists of two VHDL entities which combine with
other cores from “sd_card_pack.vhd,” “sd_host_pack.vhd” and nine other VHDL packages, to
realize a core that facilitates simulation, hardware testing and data logging of traffic on a Multi-
Media Card (MMC) or Secure Digital (SD) card bus. The main specification document used during
development was the JEDEC document JESD84-A44 titled “Embedded MultiMediaCard(e•MMC)”
(MMCA, 4.4) version.

3.2 Summary of Cores In Package
The cores present in the package file “mmc_test_pack.vhd” are shown in table Table 1. The last
core in the table was written specifically for the task at hand, namely to provide an FPGA based
data logger and test platform for working with SD/MMC hosts and cards. The functional capability
of the mmc_tester core is such that it can be used in several different ways.

Name Description

mmc_test_cmd_rx Card command receiver core, testing version

mmc_tester Card and host testing, card datalogging core

Table 1: MMC Test Pack Cores

3.3 mmc_test_cmd_rx
The first core is one of the most elementary and basic, a special testing version of a SD/MMC
command receiver. Its internal structure is shown in this block diagram:

3

47 bit
shift

register
Start bit
detector

(countdown
load)

6 bit down
counter

SD/MMC
Command
Signal and
clock input

CRC-7
checker

O
ut

pu
t L

at
ch

cmd_raw_o

stop_err_o

crc_err_o

stop bit check

cmd_done_o

MMC Test Pack

The mmc_test_cmd_rx captures all traffic going across the bus in either direction, both commands
and responses, and it attempts to correctly capture the first 48 bits of the communication. This was
done as a trade off, so that all traffic could be captured in 48 bit segments, and longer 136 bit
messages are simply truncated in the interest of simplicity. Just to reiterate, the mmc_test_cmd_rx
captures traffic from both directions, and has logic to correctly ignore the “tail end” of longer
messages, and in these ways it differs from the “regular” sd_card_cmd_rx receiver in
sd_card_pack.vhd.

This module is meant to be part of a system that tests, or snoops on an SD/MMC card.

This module clocks incoming serial bits from the cmd signal into a 48 bit shift register. It starts
when a '0' (start) bit is found, and then shifts in 47 additional bits. The expected format of the
command is:

0 d [index] [arg] [crc] 1

Where:

 d = direction bit. '1'=host to card, '0'=reply from card.

 index = 6 bits

 arg = 32 bits

 crc = 7 bits

The test command receiver checks that the last bit is a '1' (stop) bit, in the expected position (bit 47;
start bit is bit 0). The seven bits immediately prior to the stop bit are checked using a CRC-7 code.

If any of the checks do not pass, the associated error bits are set. Regardless of errors, however, the
received data bits are presented at the cmd_raw_o output. The cmd_rx_done_o output is pulsed
high for one clock cycle to notify the downstream entities that newly received data is available.

In the interest of simplicity and in an effort to remain practical, only 48 bit responses are captured
correctly by this unit. For R2 responses, which are 136 bits long, only the first 48 bits are
presented.

4

MMC Test Pack

Because the R2 type responses are 136 bits long, specific logic is included to try and detect them,
and prevent errors from being flagged by their occurrence. The first eight bits of an R2 response are
"00111111". Unfortunately, the first eight bits of a 48 bit R3 response are also "00111111".
Fortunately, the CRC field of an R3 response is always set to "1111111". So, the logic checks for
these conditions and behaves accordingly. In the case of an R2 response, that includes ignoring
further activity on the command line for another 88 clocks after the initial 48 bits are received.

Note that this receiver runs entirely within the sd_clk_i clock domain. Therefore, care must be
taken when using the outputs. A FIFO can form a natural "clock domain boundary crossing" or the
user may need to implement other special handshaking to safely transfer signals into a different
clock domain.

5

MMC Test Pack

3.4 mmc_tester
Now, we get into the real “meat” of this VHDL package.

This core, mmc_tester, is a synthesizable top level unit which brings together many useful pieces in
order to allow testing of devices which share an MMC cardbus. It also allows snooping of the
traffic over that bus, providing a means for sending out the resulting timestamped “telemetry” for
archiving. To approach the structure of this core in an analytical way, it will help to state, at the
outset, that the lower level units which compose the mmc_tester comprise five main functions:

1. An sd_controller_8bit_bram core as an MMC host, with some BRAM connected to give the
host some storage area, plus some registers to allow working with the host.

2. An mmc_data_pipe core, which includes an sd_card_emulator, plus some BRAM and FIFOs
for use as an emulated MMC device.

3. A main system parellel bus, with automatic baud rate enabled async_syscon system
controller, which communicates with registers and BRAM and/or FIFOs in both the host and
the data pipe cores. The system controller is a “hardware debugger” unit, which implements
a minimal command set via an asynchronous serial communications terminal.

4. An mmc_test_cmd_rx, which can “snoop” on the MMC command bus. The timestamped
output of the MMC command snooper is buffered in a small FIFO, and then periodically
sent out for archiving elsewhere by means of an asynchronous serial transmitter connected
to a separate serial port (This is essentially the transmit half of a UART.) Statistics counters
are also provided tracking the number of good messages, the number with CRC errors, and
the number with stop bit errors.

6

MMC Test Pack

5. A set of I/O muxes, which can be controlled via registers accessible over the main bus, or by
physical switches on the FPGA board, allowing “crossbar steering” of the MMC bus. By
means of these muxes, the internal MMC host can be used with an external MMC card, or
the external MMC bus can be used with the internal mmc_data_pipe core, or the internal
MMC host and the internal MMC data pipe core can be used with each other.

The sheer scope of this mmc_tester core makes it difficult to explain fully, but with careful
understanding of its components, the purpose and usefulness of the different settings and facilities it
provides should become clear. It also aids understanding to study the memory map of the items
connected to the system bus which is controlled by the hardware debugger.

The block diagram of this core is:

7

SD/MMC
host
core

MMC data
pipe core
(slave)

telemetry
encoder

Crossbar
Mux
Logic

Auto-baud
generator

async_syscon serial connected
system controller

serial com
(bi-directional)

 Main System Bus

MMC bus

snooped cmd
FIFO buffer

asynchronous
telemetry sender

snooped
telemetry

MMC test
cmd receiver

t-stamp
capture

cmd/data message
statistics countersSD/MMC

host BRAM

tester
registers

MMC Test Pack

For simplicity, the register connections, and the “flancters” used for safe clock domain crossing are
not shown in this block diagram. There are two main clock domains in this core, the first being the
SD/MMC cardbus clock domain, which is used by substantial parts of the MMC host and MMC
slave cores, and the second being the FPGA system clock, which is used by the rest of the system,
including the async_syscon system controller, the telemetry sender, and all the registers.

A compact summary of the mmc_tester memory map is given here:

Address Length Function

0x03000000 0x10 SD/MMC host core registers

0x03000010 0x10 SD/MMC slave core registers

0x03000020 0x10 mmc_tester core registers

0x04000000 0x4000* 16k byte SD/MMC host BRAM (*Can be set by generics)

0x05000000 0x4000* 16k byte SD/MMC slave BRAM (*Can be set by generics)

Table 2: mmc_tester memory map “30,000ft overview”

The summary of the mmc_tester memory map is a good introduction to the way the components are
mapped on the main system bus, but to be more helpful, the expanded memory map is given here.
Note that further details on the different fields contained in SD/MMC host and slave registers are
given in the sd_card_pack and sd_host_pack documents. The mmc_tester core registers are further
explained using diagrams inside this document.

8

MMC Test Pack

Address Location Function

0x03000000 SD/MMC host SD/MMC transfer data block size

0x03000001 SD/MMC host SD/MMC transfer data block count

0x03000002 SD/MMC host SD/MMC command index

0x03000003 SD/MMC host SD/MMC command argument

0x03000004 SD/MMC host Response register 0

0x03000005 SD/MMC host Response register 1

0x03000006 SD/MMC host Response register 2

0x03000007 SD/MMC host Response register 3

0x03000008 SD/MMC host SD/MMC bus size, reset, bustest and timeout settings

0x03000009 SD/MMC host SD/MMC bus operating frequency

0x0300000A SD/MMC host SD/MMC command interrupt status register

0x0300000B SD/MMC host SD/MMC command interrupt enable register

0x0300000C SD/MMC host SD/MMC data interrupt status register

0x0300000D SD/MMC host SD/MMC data interrupt enable register

0x0300000E SD/MMC host DMA address register

0x0300000F SD/MMC host (Reserved)

0x03000010 SD/MMC slave Card reported status

0x03000011 SD/MMC slave Card RCA and DSR registers

0x03000012 SD/MMC slave Card EXT_CSD address

0x03000013 SD/MMC slave Card EXT_CSD data

0x03000014 SD/MMC slave Card CSD(31:0)

0x03000015 SD/MMC slave Card CSD(63:32)

0x03000016 SD/MMC slave Card CSD(95:64)

0x03000017 SD/MMC slave Card CSD(127:96)

9

MMC Test Pack

0x03000018 SD/MMC slave (Reserved)

0x03000019 SD/MMC slave (Reserved)

0x0300001A SD/MMC slave (Reserved)

0x0300001B SD/MMC slave (Reserved)

0x0300001C SD/MMC slave (Reserved)

0x0300001D SD/MMC slave (Reserved)

0x0300001E SD/MMC slave (Reserved)

0x0300001F SD/MMC slave (Reserved)

0x03000020 mmc_tester LED register

0x03000021 mmc_tester switch input register (read only)

0x03000022 mmc_tester Host/slave enables, telemetry FIFO register access enable

0x03000023 mmc_tester mmc_test_cmd_receiver command filter setting

0x03000024 mmc_tester received command good count

0x03000025 mmc_tester received command CRC bad count

0x03000026 mmc_tester received command stop error bad count

0x03000027 mmc_tester data block transfer count

0x03000028 mmc_tester MMC data bus size setting (write to reset)

0x03000029 mmc_tester telemetry FIFO fill level (write to clear FIFO contents)

0x0300002A mmc_tester telemetry FIFO data read port (byte-wise shift register)

0x0300002B mmc_tester (RESERVED)

0x0300002C mmc_tester (RESERVED)

0x0300002D mmc_tester (RESERVED)

0x0300002E mmc_tester SD/MMC data pipe (internal slave) FIFO clear bits

0x0300002F mmc_tester SD/MMC data pipe (internal slave) FIFO read/write port

Table 3: mmc_tester memory map full register list

10

MMC Test Pack

For each of the registers implemented within the mmc_tester, further explanation and a register
diagram are given. Note that in this core, the parallel system bus is a 32-bit data and 32-bit address
bus, with each function being allocated a block of 16 register addresses. Addresses in the system
are 32-bit “double word” addresses, meaning that each address selects a specific 32-bit data word
location, and there are no byte-enables or other byte addressing constructs. the address given for
each register is the relative offset from the base address used to generate the 16-register block select
signal:

Register 0x0 : LED Register

Address 0x0300_0020 is R0, the LED outputs register (READ/WRITE). This register contains a
number of bits meant for controlling LEDs on the test board, just for fun. The sixteen bits in this
register are connected to the LEDs on the ARTY board. The four least significant bits are connected
to the green LEDs, and the twelve most significant bits are connected to the RGB LEDs, as shown
in Table 4. Note that the LEDs are in reality driven by a data selector which can select either the
LED outputs register or the upper 32-bits of a 40-bit counter which runs at the ARTY system clock
rate of 100 MHz. The selector is controlled by switch SW3, such that if SW3 is on the “OFF”
position (slider handle positioned near the edge of the ARTY board) then the LEDs are all driven by
the LED outputs register. On the other hand, if SW3 is “ON” then the LEDs are driven by the
counter, which makes for a nice visual display and a direct confirmation that the ARTY board is
running the target design.

An observer with delicate sensibilities might pose the question: Why are Xilinx ARTY specific
LEDs connected to a register in this mmc_tester core, which is meant to be independent of any
particular FPGA development board? The answer is that most FPGA development boards have
some set of LEDs available for display purposes, and so the number of bits contained within this
register is parameterized so that the user can easily connect it to any given FPGA development
board, and drive up to 32 LEDs with it.

11

Addr: 0x0 Access: Read/Write

led_reg
0 0
31 0

MMC Test Pack

Bit Connection

0 LD4 anode, green

1 LD5 anode, green

2 LD6 anode, green

3 LD7 anode, green

4 LD3, red

5 LD3, green

6 LD3, blue

7 LD2, red

8 LD2, green

9 LD2, blue

10 LD1, red

11 LD1, green

12 LD1, blue

13 LD0, red

14 LD0, green

15 LD0, blue

Table 4: ARTY LED connections

Register 0x1 : Switch State

12

Addr: 0x1 Access: Read Only

switch state
0 0
31 0

MMC Test Pack

Address 0x0300_0021 is R1, the Switch State register. The Switch State register is read only, and
its contents reflect the status of the ARTY switch inputs, in real time. There is no debouncing or
filtering applied to these values. The switches are mapped to bits within the register as shown in
Table 5.

Bit Connection

0 SW0

1 SW1

2 SW2

3 SW3

4 BTN0

5 BTN1

6 BTN2

7 BTN3

Table 5: ARTY switch connections

An observer with an easily offended sense of design partition might pose the question: Why are
Xilinx ARTY specific switches connected to a register in this mmc_tester core, which is meant to be
independent of any particular FPGA development board? The answer is that many FPGA
development boards have some set of switches available as inputs to the FPGA, and so the number
of bits contained within this register is parameterized so that the user can easily connect it to any
given FPGA development board, and receive up to 32 switch states with it.

Note that some of the switches are dedicated to special functions within the mmc_tester design.
The special functions are summarized in Table 6.

Switch Dedicated Function

SW1 MMC host core enable

SW2 MMC slave core (data pipe) enable

SW3 Drive the LEDs from counter. Also, send any traffic log data as asynchronous bytes.

Table 6: ARTY dedicated switch functions

13

MMC Test Pack

The functions of SW1 and SW2 are also available via register bits in register 0x2.

Register 0x2 : Function Enables

Address 0x0300_0022 is R2, the Function Enables register. Certain functions of the mmc_tester
core can be enabled or disabled via setting or clearing bits in the Function Enables register.

Bit [0] = Slave Enable Reg. Setting this bit causes the internal MMC_data_pipe slave to be active
on the SD/MMC bus.

Bit [1] = Host Enable Reg. Setting this bit causes the internal sd_controller_8bit_bram unit to be
active on the SD/MMC bus.

Bits [3..2] = "00" (Reserved)

Bit [4] = Slave Enabled (READ ONLY). This bit is the logical OR of bit[0] and the slave_en_i
input, which is connected to ARTY switch SW2. Thus we see that the MMC_data_pipe slave can
be made active by the switch, or the register bit.

Bit [5] = Host Enabled (READ ONLY). This bit is the logical OR of bit[1] and the host_en_i input,
which is connected to ARTY switch SW1. Thus we see that the sd_controller_8bit_bram host unit
can be made active by the switch, or the register bit.

Bits [7..6] = "00" (Reserved)

Bit [8] = Telemetry log register read access enable. When this bit is set, then telemetry log FIFO
contents can be read out via register R10 (0xA), and the asynchronous serial transmitter is disabled.
When clear, the asynchronous serial transmitter has access to the telemetry log FIFO instead of
register R10.

For inquiring minds that want to know, a further explanation of the operation of the enable bits may
be helpful:

Register 2, bit[0] : "slave_en_reg"

When high, this bit causes the MMC slave to receive commands, and respond to them. When this

14

Addr: 0x2 Access: Read/Write (* Read Only portions)

 t
lm

_f
ifo

_r
eg

_a
cc

es
s

 h
os

t_
en

ab
le

*

 s
la

ve
_e

na
bl

e*

 h
os

t_
en

_r
eg

 s
la

ve
_e

n_
re

g

0 0
31 0

MMC Test Pack

bit is enabled, the MMC slave will drive signals onto mmc_cmd_o and mmc_dat_o, including
driving the mmc_cmd_oe_o and mmc_dat_oe_o lines when appropriate. When this bit is low, the
MMC slave cmd input will be held high, and the MMC slave will not have anything to do.

Register 2, bit[1] : "host_en_reg"

When high, this bit causes the MMC host to send commands, and receive responses to them. When
this bit is enabled, the MMC host can drive signals onto mmc_cmd_o and mmc_dat_o, including
driving the mmc_cmd_oe_o and mmc_dat_oe_o lines when appropriate. When this bit is low, the
MMC host cmd output will be cut off from affecting mmc_cmd_o, and the MMC host will not be
able to influence the MMC bus signals.

If both of these bits are low, then the only function active in this core is to monitor the mmc
commands which occur on the MMC bus due to the action of any outside MMC hosts, such as card
readers, which may send commands to an MMC card on the bus.

With "host_enable" set, the mmc_tester can be used to communicate with a real external SD/MMC
device, perhaps for the purpose of reading or writing some sectors, or reading the device registers
including the CID, CSD and the 512 byte EXT_CSD.

With "slave_enable" set, on the other hand, an MMC slave can be used with an external SD/MMC
card reader. The MMC slave includes a small amount of RAM, plus a pair of FIFO buffers.
Writing data to the card at addresses below the upper boundary of the RAM, simply places the data
into RAM. Beyond the RAM upper boundary, the data goes into the write FIFO. Reading is
handled the same way.

An alternative to using the register bits to enable the slave and host, is to use the input signals
"slave_en_i" and "host_en_i", which are connected to ARTY switches. These signals are simply
logically ORed with the slave_en_reg and host_en_reg register bits, to produce the read only bits
“slave_enable” and “host_enable.”

Register 0x3 : Test Command Receiver Filter

Address 0x0300_0023 is R3, the Test Command Receiver Filter register. This register is a filter
which can serve to pass a desired set of commands through to the command log, rejecting all the
rest. It is useful for homing in on a particular command of interest.

Bits [7:0] determine what type of command creates a "command event" for capture in the log.
Except for the value of 0x80, setting bit [7] means "capture and count everything," including all

15

Addr: 0x3 Access: Read/Write

t_rx_cmd_filter
0 1 1 1 1 1 1 1 1
31 0

MMC Test Pack

command indices, in both directions.

Example settings:

0x81..0xFF => Capture and count everything.

0x80 => Capture and count nothing. Nada. Zilch.

0x7F => Capture and count all host-to-card commands

0x3F => Capture and count all card-to-host responses

0x59 => Capture and count CMD25 from host-to-card only

0x28 => Capture and count CMD40 R5 responses only

0x27 => Capture and count CMD39 R4 responses only

0x19 => Capture and count CMD25 R1 responses only

0x00 => Capture and count CMD0 R1 responses only

To explain more clearly how these filter settings work, it is helpful to recall that the first eight bits
of the command or response are:

[0][d][cccccc]

Where:

0 = start bit (always low)

d = direction bit (1 for host to card, 0 for card response)

cccccc = command index, ranging from 0 to 56.

A special setting of 63 for the cccccc field, selects long responses and/or 48-bit R3 OCR responses.
Therefore, since 136 bit long responses are not differentiated from 48-bit R3 OCR responses, it
becomes clear that the design of the filter is not perfect. For example, there is no way to act on only
R3 responses. However, there is really no need for a perfect filter. This one is, well, you know,
good enough.

16

MMC Test Pack

Registers 0x4 – 0x7 : Transfer statistics registers

These four registers contain counts of different categories of transfers detected on the SD/MMC
bus.

Address 0x0300_0024 (R4) is the Error-free Command Events count.

Address 0x0300_0025 (R5) is the Command Events with CRC error count.

Address 0x0300_0026 (R6) is the Command Events with stop bit error count.

Address 0x0300_0027 (R7) is the Number of data transfers completed count.

No clear means are provided for the mmc_tester to determine what direction the data is flowing
over the SD/MMC data lines. Therefore, the R7 register simply contains the total number of
transfers started in either direction. Note that this 32-bit counter is distinct from the eight bit
"tlm_d_count" data transfer counter in the telemetry, which is a relative count, cleared at every
command transfer event.

17

Addr: 0x4 Access: Read/Write (Writing clears to zero)

t_rx_cmd_gdcount
0 0
31 0

Addr: 0x5 Access: Read/Write (Writing clears to zero)

t_rx_cmd_crc_bdcount
0 0
31 0

Addr: 0x6 Access: Read/Write (Writing clears to zero)

t_rx_cmd_stp_bdcount
0 0
31 0

Addr: 0x7 Access: Read/Write (Writing clears to zero)

t_rx_dat_count
0 0
31 0

MMC Test Pack

Register 0x8 : SD/MMC data bus size register

This register allows the user of the mmc_tester to read the current SD/MMC data bus size. This
register setting can only be altered to larger bus sizes by the action of the SD/MMC host, sending a
SWITCH command. However, through the system bus interface, it can be cleared back to its
default setting of “00.”

Address 0x0300_0028 is R8, the reg_dbus_size register.

Bits [1:0] reflect the current SD/MMC data bus size setting, as follows:

0 => 1 bit data bus transfers

1 => 4 bit data bus transfers

2 => 8 bit data bus transfers

In order for the mmc_tester to determine when a data transfer is completed, so that it can count
valid start bits, it is required to know the data bus size. Logic is present to decode when a host-to-
card command of index 6 (CMD6), the SWITCH command, is seen with an argument 0x03B70s00,
where s contains the new data bus size. This 2-bit setting is then stored in the reg_dbus_size
register, and decoded to set the "dstart_wait" parameter used for ignoring data bus activity during an
active data transfer. The reg_dbus_size starts out at "00b", and is expected to change to "01b" for 4-
bit SD/MMC activity, and to "10b" for 8-bit MMC activity. SD cards are restricted to 4-bit data bus
width maximum.

Register 0x9 : Traffic log FIFO fill level

18

Addr: 0x8 Access: Read/Write (Writing clears to zero)

size
0 0
31 0

Addr: 0x9 Access: Read/Write (Writing clears to zero)

tlm_fifo_fill_level
0 0
31 0

MMC Test Pack

This register allows the user of the mmc_tester to read the number of entries currently present in the
traffic log, or “telemetry stream” FIFO. The size of this FIFO is currently set by a constant within
the mmc_tester core at 16384 bytes. The FIFO receives and stores time stamped entries, each entry
representing a command or data transaction detected on the SD/MMC bus. The format of the entries
is explained further in the description of register 0xA.

Register 0xA : Traffic log FIFO data

Address 0x0300_002A is R10, the SD/MMC traffic log FIFO read port. Telemetry bytes can be
read out of the traffic log FIFO whenever enabled in R2 bit 8. For convenience in reading the data,
the bytes are packed into 32-bit words. If R2 bit 8 is clear, then reading this register returns
0x55555555.

Each traffic log (A.K.A. telemetry stream) entry is composed of 16 bytes, shown in Table 7.

Slice Bytes Payload Name Contents

[0..3] 32 bits Sync Pattern 0xFE6B2840

[4] 8 bits tlm_fid Frame ID, a number which increments with each frame.

[5..7] 24 bits tlm_tstamp Timestamp, in μsec. Has a 16.777216 s rollover period.

[8] 8 bits tlm_d_count Data transfer count, cleared at every host command.

[9] 8 bits tlm_code_byte 255 for host-to-card commands, 0 for card-to-host.

[10..15] 48 bits t_rx_cmd_raw Raw contents of the detected command.

Table 7: mmc_tester traffic log record format

The captured traffic log can be output via an asynchronous transmitter. If the tlm_fifo_reg_access
bit is clear in register 0x2, and ARTY SW3 is turned on, the regular asynchronous serial response
stream is immediately preempted by a stream of telemetry data spewing forth for capture on a host
computer system. The binary data bytes are sent out using the same Baud rate as the established

19

Addr: 0xA Access: Read Only

tlm_r10_dat
0 0
31 0

MMC Test Pack

hardware debugger serial session, and there is no flow control, so the receiving software must be
ready to buffer and store the data immediately. An example of some SD/MMC bus traffic log data
captured into a file, as displayed in a binary editor, is shown in Figure 1.

Register 0xD : mmc_data_pipe write FIFO fill level

Address 0x0300_002D is R13, the mmc_data_pipe write data FIFO fill level. Reading this register
returns the number of bytes in the MMC slave write data FIFO. The FIFO holds data that are meant
to flow from the MMC slave to the host. Writing to this register clears the MMC slave write data
FIFO.

Register 0xE : mmc_data_pipe read FIFO fill level

20

Figure 1: SD/MMC traffic log file example

Addr: 0xD Access: Read/Write (Writing clears the entire FIFO)

s_fif_dat_wr_level
0 0
31 0

Addr: 0xE Access: Read/Write (Writing clears the entire FIFO)

s_fif_dat_rd_level
0 0
31 0

MMC Test Pack

Address 0x0300_002E is R14, the mmc_data_pipe read data FIFO fill level. Reading this register
returns the number of bytes in the MMC slave read data FIFO. The FIFO holds data that have been
sent from the host to the MMC slave. Writing to this register clears the MMC slave read data FIFO.

Register 0xF : mmc_data_pipe FIFO data

Address 0x0300_002F is R15, the MMC_data_pipe FIFO data port. Writing to this address loads
another byte into the MMC slave write data FIFO, thereby enqueueing it to be read by the host from
the MMC slave. However, if the write data FIFO is full, then nothing happens, and the data bits are
thrown into the "bit bucket." Reading from this address reads a byte, removes it from the MMC
slave read data FIFO, which data was previously delivered from the host to the MMC slave.
However, if the read data FIFO is empty, then no valid data is actually delivered, as can well be
understood.

21

Addr: 0xF Access: Read/Write (Reads from RX fifo, Writes to TX fifo)

Slave FIFO port
0 0
31 0

	1 List of Acronymns
	2 Introduction
	3 Description of Cores
	3.1 Background
	3.2 Summary of Cores In Package
	3.3 mmc_test_cmd_rx
	3.4 mmc_tester
	Register 0x0 : LED Register
	Register 0x1 : Switch State
	Register 0x2 : Function Enables
	Register 0x3 : Test Command Receiver Filter
	Registers 0x4 – 0x7 : Transfer statistics registers
	Register 0x8 : SD/MMC data bus size register
	Register 0x9 : Traffic log FIFO fill level
	Register 0xA : Traffic log FIFO data
	Register 0xD : mmc_data_pipe write FIFO fill level
	Register 0xE : mmc_data_pipe read FIFO fill level
	Register 0xF : mmc_data_pipe FIFO data

