
SDRAM CONTROLLER

Specification

Author: Dinesh Annayya

dinesha@opencores.org

Rev. 0.3

February 14, 2012

This page has been intentionally left blank

Revision History

Rev. Date Author Description

0.0 01/17/2012 Dinesh Annayya First draft release

0.1 01/30/2012 Dinesh Annayya Wish Bone Interface is added

 8 Bit SDRAM Support is added

 Test bench is automated for Stand-alone

SDRAM controller and Integrated

SDRAM controller with wish bone

interfaces

0.2 02/07/2012 Dinesh Annayya Frequently asked Section is added

 Block Diagram are upgraded

0.3 02/14/2012 Dinesh Annayya FPGA Bench mark result are added

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 1 of 15

Contents
SDRAM CONTROLLER Specification ... 0
1 Introduction .. 2

1.1 FEATURES .. 3
2. IO ports ... 4

2.1 Core Parameters .. 4

2.2 WISHBONE interface signals .. 4
2.3 Application interface signals... 4
2.4 SDRAM External connections .. 5

3 Configuration ... 6

4 SDRAM Overview... 6
5 Functional Description ... 9

5. 1 Wish Bone Bus Handler: ... 10
5.2 SDRAM Controller ... 10

5.3 SDRAM Interface ... 12
6. SDRAM Data Path .. 16
7 Simulation .. 17

8 FPGA Bench Mark .. 20
9 WAVEFORM .. 21

Appendix A : Timing .. 24
A.1 SDRAM Output signals parameter definition .. 24
A2. SDRAM Input signals parameter definition .. 24

Appendix A : Frequently Asked Q ... 25

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 2 of 15

1 Introduction

Synchronous DRAM (SDRAM) has become a mainstream memory of choice in

embedded system memory design. For high-end applications using processors the

interface to the SDRAM is supported by the processor’s built-in peripheral module.

However, for other applications, the system designer must design a controller to provide

proper commands for SDRAM initialization, read/write accesses and memory refresh.

This SDRAM controller reference design, located between the SDRAM and the bus

master, reduces the user’s effort to deal with the SDRAM command interface by

providing a simple generic system interface to the bus master. Figure 1 shows the

relationship of the controller between the bus master and SDRAM. The bus master can be

either a microprocessor or a user’s proprietary module interface.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 3 of 15

1.1 FEATURES
 8/16/32 Configurable SDRAM data width

 Support asynchronous application layer and SDRAM layer

 Wish bone compatible application layer

 Programmable column address

 Support for industry-standard SDRAM devices and modules

 Supports all standard SDRAM functions

 Fully Synchronous; All signals registered on positive edge of system clock

 One chip-select signals

 Support SDRAM with four bank

 Programmable CAS latency

 Data mask signals for partial write operations

 Bank management architecture, which minimizes latency

 Automatic controlled refresh

 Static synchronous design

 Fully synthesizable

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 4 of 15

2. IO ports

2.1 Core Parameters
Parameter Type Default Description

SDR_DW Bit 16 SDRAM DATA Width Selection:

16 – 16 Bit SDRAM Mode

32 – 32 Bit SDRAM Mode

SDR_BW Bit 2 SDRAM BYTE Width Selection

2 – 16 Bit SDRAM Mode

4 – 32 Bit SDRAM Mode

2.2 WISHBONE interface signals
Port Width Direction Description

wb_clk_i 1 Input Master clock

wb_rst_i 1 Input Synchronous reset, active high

wb_adr_i 32 Input Lower address bits

wb_dat_i 32 Input Data towards the core

wb_dat_o 32 Output Data from the core

wb_sel_i 4 Input Write Data Valid

wb_we_i 1 Input Write enable input

wb_stb_i 1 Input Strobe signal/Core select input

wb_cyc_i 1 Input Valid bus cycle input

wb_ack_o 1 Output Bus cycle acknowledge output

2.3 Application interface signals
Port Width Direction Description

app_req 1 Input Application Request

app_req_addr 30 Input Address

app_req_addr

_mask

29 Input Address Mask

app_req_wr_

n

1 Input 0 - Write, 1 – Read

app_req_wra

p

1 Input Address Wrap

app_req_ack 1 Output Application Request Ack

sdr_core_bus

y_n

1 Output SDRAM Controller Busy Indication,

0 - busy, 1 - free

app_wr_data 32 Input Write Data

app_wr_next 1 Input Next Write Data Request

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 5 of 15

_req

app_wr_en_n 4 Output Byte wise write Enable, Active low

app_rd_data 32 Input Read Data

app_rd_valid 1 Output Read Valid

2.4 SDRAM External connections
Port Width Direction Description

sdr_cke 1 Output SDRAM clock enable

sdr_cs_n 1 Output SDRAM command inputs CS#

sdr_ras_n 1 Output SDRAM command inputs RAS#

sdr_cas_n 1 Output SDRAM command inputs CAS#

sdr_we_n 1 Output SDRAM command inputs WE#

sdr_dqm 2/4 Output SDRAM data bus mask

sdr_ba 2 Output SDRAM bank address

sdr_addr 12 Output SDRAM address bus

pad_sdr_din 16/32 Input SDRAM Data Inut

sdr_dout 16/32 Output SDRAM Data Output

sdr_den_n 16/32 Output SDRAM Data Output enable

The tri-state buffers for the DQ lines must be added at a higher hierarchical level.

Connections should be made according to the following figure:

DQ
sdr_dout

pad_sdr_din

sdr_den_n

Verilog code for 32 BIT SDRAM:

 assign Dq[7:0] = (sdr_den_n[0] == 1'b0) ? sdr_dout[7:0] : 8'hZZ;

 assign Dq[15:8] = (sdr_den_n[1] == 1'b0) ? sdr_dout[15:8] : 8'hZZ;

 assign Dq[23:16] = (sdr_den_n[2] == 1'b0) ? sdr_dout[23:16] : 8'hZZ;

 assign Dq[31:24] = (sdr_den_n[3] == 1'b0) ? sdr_dout[31:24] : 8'hZZ;

Verilog code for 16 BIT SDRAM:

 assign Dq[7:0] = (sdr_den_n[0] == 1'b0) ? sdr_dout[7:0] : 8'hZZ;

 assign Dq[15:8] = (sdr_den_n[1] == 1'b0) ? sdr_dout[15:8] : 8'hZZ;

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 6 of 15

3 Configuration

Port Width Description

cfg_sdr_en 1 SDRAM Controller Enable

cfg_colbits 2 SDRAM Column Bit

00 8 Bit

01 9 Bits

10 10 Bits

11 11 Bits

cfg_sdr_mode_reg 12 SDRAM Mode Register

cfg_sdr_tras_d 4 SDRAM active to precharge, specified in clocks

cfg_sdr_trp_d 4 SDRAM precharge command period (tRP), specified in

clocks.

cfg_sdr_trcd_d 4 SDRAM active to read or write delay (tRCD), specified

in clocks.

cfg_sdr_cas 3 SDRAM CAS latency, specified in clocks

cfg_sdr_trcar_d 4 SDRAM active to active / auto-refresh command period

(tRC), specified in clocks.

cfg_sdr_twr_d 4 SDRAM write recovery time (tWR), specified in clocks

cfg_sdr_rfsh 12 Period between auto-refresh commands issued by the

controller, specified in clocks.

cfg_sdr_rfmax 3 Maximum number of rows to be refreshed at a time

(tRFSH)

4 SDRAM Overview

SDRAM is high-speed Dynamic Random Access Memory (DRAM) with a synchronous

interface. The synchronous interface and fully pipelined internal architecture of SDRAM

allows extremely fast data rates if used efficiently. SDRAM is organized in banks of

memory addressed by row and column. The number of row and column address bits

depends on the size and configuration of the memory.

SDRAM is controlled by bus commands that are formed using combinations of the ras_n,

cas_n, and we_n signals. For instance, on a clock cycle where all three signals are high,

the associated command is a No Operation (NOP). A NOP is also indicated when the

chip select is not asserted. The standard SDRAM bus commands are shown in

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 7 of 15

Command ras_n cas_n we_n

No Operation (NOP) H H H

Active L H H

Read H L H

Write H L L

Burst Terminate H H L

Recharge L H L

Autorefresh L L H

Load mode Register L L L

SDRAM devices are typically divided into four banks. These banks must be opened

before a range of addresses can be written to or read from. The row and bank to be

opened are registered coincident with the Active command. When a new row on a bank is

accessed for a read or a write it may be necessary to first close the bank and then re-open

the bank to the new row. Closing a bank is performed using the Precharge command.

Opening and closing banks costs memory bandwidth, so the SDRAM Controller Core has

been designed to monitor and manage the status of the four banks simultaneously. This

enables the controller to intelligently open and close banks only when necessary.

When the Read or Write command is issued, the initial column address is presented to the

SDRAM devices. The initial data is presented concurrent with the Write command. For

the read command, the initial data appears on the data bus 1-4 clock cycles later. This is

known as CAS latency and is due to the time required to physically read the internal

DRAM and register the data on the bus. The CAS latency depends on the speed grade of

the SDRAM and the frequency of the memory clock. In general, the faster the clock, the

more cycles of CAS latency is required. After the initial Read or Write command,

sequential read and writes will continue until the burst length is reached or a Burst

Terminate command is issued. SDRAM devices support a burst length of up to 8 data

cycles. The SDRAM Controller Core is capable of cascading bursts to maximize

SDRAM bandwidth.

SDRAM devices require periodic refresh operations to maintain the integrity of the stored

data. The SDRAM Controller Core automatically issues the Auto Refresh command

periodically. No user intervention is required.

The Load Mode Register command is used to configure the SDRAM operation. This

register stores the CAS latency, burst length, burst type, and write burst mode. The SDR

controller only writes to the base mode register.

To reduce pin count, SDRAM row and column addresses are multiplexed on the same

pins. Table lists the number of rows, columns, banks, and chip selects required for

various standard discrete SDR SDRAM devices. The SDR SDRAM Controller Core will

support any of these devices.

Chip Size Config Row Columns Banks

64MB 4M * 16 12 8 4

64MB 2M * 32 11 8 4

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 8 of 15

Address Mapping from Application layer to SDRAM.

1. For 8 Bit SDRAM mode:

 SDRAM Mapping Address[25:0] = Application Address [25:0];

2. For 16 Bit SDRAM Mode

 SDRAM Mapping Address[25:0] = Application Address [26:1];

3. For 32 Bit SDRAM Mode

 SDRAM Mapping Address[25:0] = Application Address [26:2];

Row Address[11:0] Bank Address[1:0] Column Address[11:0]

SDRAM Address Mapping Format

Column, Bank and Row Address decoding base on configuration:

cfg_col_bits

2’b00 Column Address[11:0] = {4’h0,SDRAM Mapping Address[7:0]};

Bank Address[1:0] = {SDRAM Mapping Address[9:8]};

Row Address[11:0] = {SDRAM Mapping Address[21:10};

2’b01 Column Address[11:0] = {3’h0,SDRAM Mapping Address[8:0]};

Bank Address[1:0] = {SDRAM Mapping Address[10:9]};

Row Address[11:0] = {SDRAM Mapping Address[22:11};

2’b10 Column Address[11:0] = {2’h0,SDRAM Mapping Address[9:0]};

Bank Address[1:0] = {SDRAM Mapping Address[11:10]};

Row Address[11:0] = {SDRAM Mapping Address[23:12};

2’b11 Column Address[11:0] = {1’h0,SDRAM Mapping Address[10:0]};

Bank Address[1:0] = {SDRAM Mapping Address[12:11]};

Row Address[11:0] = {SDRAM Mapping Address[24:13};

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 9 of 15

5 Functional Description

Command FIFO

(Address + Req

Length)

Write Data FIFO

(Write Data +

Mask)

Read FIFO

Wish Bone Bus Handshake

R
e
a
d
 D

a
ta

 +

R
e
a
d
 V

a
lid

Write Data

and Byte

Mask

app_req/

app_ack/

app_req_len

Wish Bone Master I/F

Wish Bone Bus Handler

SDRAM Controller I/F

Bus width transaltor
Interface Reguest

Generator

SDRAM Bank

Control
SDRAM State machine + Transfer Control

SDRAM I/F

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 10 of 15

5. 1 Wish Bone Bus Handler:
This block handles the Protocol handshake between wish bone master and custom

SDRAM controller. This block also takes care of necessary clock domain change over.

This block include ; Command Async FIFO, Write Data Async FIFO, Read Data Async

FIFO.

5.2 SDRAM Controller

This block include four sub block:

5.2.1 SDRAM Bus convertor: This block convert and re-align the the system side 32

bit into equivalent 8/16/32 SDR format.

sdrc_bs_convert.v
app_wr_data

app_wr_en_n

app_wr_next

app_last_wr

app_rd_data

app_rd_valid

app_last_rd

A
p
p
lic

a
ti
o

n
 W

ri
te

 D
a
ta

 I
/F

A
p
p
lic

a
ti
o

n
 R

e
a
d
 D

a
ta

 I
/F

x2a_wrstart

x2a_wrlast

a2x_wrdt

a2x_wren_n

x2a_wrnext

x2a_rdstart

x2a_rdlast

x2a_rddt

x2a_rdok

T
ra

n
s
fe

r
C

o
n
tr

o
l
W

ri
te

D
a
ta

 I
/F

T
ra

n
s
fe

r
C

o
n
tr

o
l
R

e
a
d

D
a
ta

 I
/F

Write 32 Bit to 8/16/32 bit

SDRAM Write Bus Width

Convertor and Data

Alignment Block

Read 8/16/32 bit SDRAM

Read Bus Width to 32 Bit

Application data Convertor

and Data Alignment Block

During write transaction, it split the 32 Bit Application data into 8/16/32 SDRAM Bus

width format.

During Read transaction, it re-packs the 8/16/32bit SDRAM data into 32 bit Application

data.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 11 of 15

5.2.2 SDRAM Request Generator:

sdrc_req_gen.v

req

req_id

req_addr

req_len

req_wrap

req_wr_n

req_ack

A
p
p
lic

a
ti
o

n
 C

o
m

m
a
n
d
 I
/F

r2b_req

r2b_req_id

r2b_start

r2b_last

r2b_wrap

r2b_ba

x2a_rdlast

r2b_raddr

r2b_caddr

B
a
n
k
 C

o
n
tr

o
l
In

te
rf

a
c
e

r2b_len

r2b_write

b2r_ack

b2r_arb_ok

This block does following function:

 Based on the SDRAM bus width, internal address and burst length will be re

modified as follows

Sdr_width = 2’b00

32 Bit SDRAM

Internal req address App_req_addr

Internal Req Length App_req_Len

Sdr_width = 2’b01

16 Bit SDRAM

Internal req address {App_req_addr,1’b0}

Internal Req Length {App_req_Len,1’b0

Sdr_width = 2’b10

8 Bit SDRAM

Internal req address {App_req_addr,2’b0}

Internal Req Length {App_req_Len,2’b0

 If the wrap = 0 and current application burst length is crossing the page boundary,

then request will be split into two with corresponding change in request address

and request length.

 If the wrap = 0 and current burst length is not crossing the page boundary, then

request from application layer will be transparently passed on the bank control

block.

 If the wrap = 1, then this block will not modify the request address and length.

The wrapping functionality will be handle by the bank control module and

column address will rewind back as follows XX -> FF 00 1….

 Based on column configuration bit, this block generate the column address, row

address and bank address.

 Note: With Wrap = 0, each request from Application layer will be splits into two request,

if the current burst cross the page boundary.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 12 of 15

cfg_colbits= 2'b00 Column Address Address[7:0]

Bank Address Address[9:8]

Row Address Address[21:10]

cfg_colbits= 2'b01 Column Address Address[8:0]

Bank Address Address[10:9]

Row Address Address[22:11]

cfg_colbits= 2'b10 Column Address Address[9:0]

Bank Address Address[11:10]

Row Address Address[23:12]

cfg_colbits= 2'b11 Column Address Address[10:0]

Bank Address Address[12:11]

Row Address Address[24:13]

5.2.3 SDRAM BANK CONTROLLER: This module takes requests from SDRAM

request generator, checks for page hit/miss and issues precharge/activate commands and

then passes the request to SDRAM Transfer Controller.

5.2.4 SDRAM Transfer Controller: This module takes requests from SDRAM Bank

controller, runs the transfer and controls data flow to/from the app. At the end of the

transfer it issues a burst terminate if not at the end of a burst and another command to this

bank is not available.

5.3 SDRAM Interface
Prior to normal operation, SDRAM must be initialized. The following sections provide

detailed information covering device initialization, register definition, command

descriptions and device operation.

INITIALIZATION

SDRAM must be powered up and initialized in a predefined manner. Operational

procedures other than those specified may result in undefined operation. Once power is

applied to VDD and the clock is stable, the SDRAM requires a 100 μs delay prior to

issuing any command other than a COMMAND INHIBIT or NOP. Starting at some point

during this 100 μs period and continuing at least through the end of this period,

COMMAND INHIBIT or NOP commands should be applied.

Once the 100 μs delay has been satisfied with at least one COMMAND INHIBIT or NOP

command having been applied, a PRECHARGE command should be applied. All device

banks must then be precharged, thereby placing the device in the all banks idle state.

Once in the idle state, two AUTO REFRESH cycles must be performed. After two

refresh cycles are complete, SDRAM ready for mode register programming. Because the

mode registers will power up in unknown state, it should be loaded prior to applying any

operational command.

MODE REGISTER

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 13 of 15

The mode register is used to define the specific mode of operation of SDRAM. This

definition includes the selection of burst length, a burst type, a CAS latency, an operating

mode and a write burst mode as shown in the Mode Register Definition Diagram below.

The mode register is programmed via the LOAD MODE REGISTER command and will

retain the stored information until it is programmed again or the device loses power.

Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst

(sequential or interleaved), M4-M6 specify the CAS latency, M7-M8 specify the

Operating mode, M9 specifies the write burst mode, M10 and M11 are reserved for future

use. M12 is undefined but should be driven LOW during loading of the mode register.

The mode register must be loaded when all device banks are idle, and the Controller must

wait the specified time before initiating the subsequent operation. Violating either of

these requirements will result in unspecified operation.

Operating Mode

The normal operating mode is selected by setting M7 and M8 to zero; the others

combinations of values for M7 and M8 are reserved for future use and/or test modes.

The programmable burst length applies to both READ and WRITE bursts.

Writing Burst Mode

When M9 = 0, the burst length programmed via M0-M2 applies to both READ and

WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but

write accesses are single-location (non-burst) accesses.

Burst Length

The burst length determines the maximum number of column locations that can be

accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4 or 8 locations

are available for both the sequential and the interleaved burst types, and fullpage burst is

available for sequential type only. The full-page burst is used in conjunction with the

BURST TERMINATE command to generate arbitrary burst lengths. When a READ or

WRITE command is issuing, a block of columns equal to Burst length is effectively

selected. All accesses for that burst take place within this block, meaning that the burst

will wrap within the block if a boundary is reached, as shown in the Burst Definition

Table below. The block is uniquely selected by A1-A9 when burst length is set to two; by

A2-A9 when burst length is set to four; and by A3-A9 when burst length is set to eight.

The remaining address bits are used to select the starting location within block.

Burst Type

The sequential or interleaved burst is selected via bit M3. The ordering of accesses within

a burst is determined by the burst length, the burst type and starting column address, as

shown in the Burst Definition Table.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 14 of 15

NOTE:

1. For full-page access: y = 1,024.

2. For a burst length of two, A1-A9 selects the block-of-two burst; A0 selects the

starting column within the block.

3. For a burst length of four, A2-A9 selects the block-of-four burst; A0-A1 selects

the starting column within the block.

4. For a burst length of eight, A3-A9 selects the block-of-eight burst; A0-A2 selects

the starting column within the block.

5. For a full-page burst, full row is selected and A0-A9 selects the starting column.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 15 of 15

CAS Latency

The CAS latency is the delay, in clock cycles, between the registration of a READ

command and the availability of the first piece of output data. The latency can be set two

or three clocks. The CAS Latency Table indicates the operating frequencies at which

each CAS latency setting can be used.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 16 of 15

6. SDRAM Data Path

SDRAM Outputs

(ADD/CKE/RAS/CAS/CS/

WE/BA/DQM/DQ)

SDRAM CLOCK

ADD/CKE/RAS/CAS/CS/

BA/DQM/WE

clk

sdram_pad_clk

SDRAM

DATA Input

clk DQ

SDRAM I/FSDRAM CONTROLEER I/F

SDRAM

DATA Input

clk

To simply the interface timing issue at SDRAM interface, all the output signals are

driven with SDRAM_CLOCK. DQ Input is captured with Delayed sdram_pad_clk.

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 17 of 15

7 Simulation
Run Directorty: sdr_ctrl/trunk/verif/run

All the compile and simulation are compatible with model simulator. Automatic

simulation is available at top-level (SDRAM Controller Core + Wish Bone Converter)

and also at Stand-alone SDRAM Controller Core level

 Filelist_core.f Includes RTL and TB files list corresponds to stand-alone

SDRAM Controller core level

 Filelist_top.f Includes RTL and TB files list corresponds to integrated SDRAM

Controller core + WishBone converter.

 Filelist_rtl.f Includes RTL files list corresponds to integrated SDRAM

Controller core + WishBone converter.

 compile.modelsim Model Simulator compile script

 run_modelsim Include compile and simulation script.

 run_all Automated run scripts include 8/16/32 Bit SDR mode. This script

includes both stand-alone SDRAM Controller + Integrated SDRAM Controller

with wishbone interface

Simulation complete test-case at top-level – Integrated SDRAM Controller with

wishbone interface
1. Compiling and Simulating in 8 BIT SDR Mode

./run_modelsim top SDR_8BIT

2. Compiling and Simulating in 16 BIT SDR Mode

./run_modelsim top SDR_16BIT

3. Compiling and Simulating in 32 BIT SDR Mode

./run_modelsim top SDR_32BIT

Simulation complete test-case at core level – Standalone SDRAM Controller

1. Compiling and Simulating in 8 BIT SDR Mode

./run_modelsim core SDR_8BIT

2. Compiling and Simulating in 16 BIT SDR Mode

./run_modelsim core SDR_16BIT

3. Compiling and Simulating in 32 BIT SDR Mode

./run_modelsim core SDR_32BIT

Running individual test-case at SDRAM Top Level (Refer file: run_modelsim)

1. Running in 8 Bit SDRA

./compile.modelsim top SDR_8BIT

vsim -do run.do -c tb_top

2. Running in 16 Bit SDRAM

./compile.modelsim top SDR_16BIT

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 18 of 15

vsim -do run.do -c tb_top

3. Running in 32 Bit SDRA

./compile.modelsim top SDR_32BIT

vsim -do run.do -c tb_top

Running individual test-case at SDRAM Core Level (Refer file: run_modelsim)

4. Running in 8 Bit SDRA

./compile.modelsim core SDR_8BIT

vsim -do run.do -c tb_top

5. Running in 16 Bit SDRAM

./compile.modelsim core SDR_16BIT

vsim -do run.do -c tb_top

6. Running in 32 Bit SDRA

./compile.modelsim core SDR_32BIT

vsim -do run.do -c tb_top

Golden Log file are available under: sdr_ctrl/trunk/verif/log

Log files corresponds the Integrated SDRAM Top-level:

 Top_SDR_16BIT_complie.log - SDR-16BIT Compile log

 Top_sdr16_sim.log – SDR-16BIT Simulation log

 Top_SDR_16BIT_basic_test1.log -- SDR-16BIT Basic Test simulation log

 Top_SDR_32BIT_complie.log - SDR-32BIT Compile log

 Top_sdr32_sim.log -- SDR-32BIT Simulation log

 Top_SDR_32BIT_basic_test1.log – SDR-32BIT Basic Test Simulation log

Log files corresponds the Stand-alone SDRAM core-level:

 core_SDR_16BIT_complie.log - SDR-16BIT Compile log

 core_sdr16_sim.log – SDR-16BIT Simulation log

 core_SDR_16BIT_basic_test1.log -- SDR-16BIT Basic Test simulation log

 core_SDR_32BIT_complie.log - SDR-32BIT Compile log

 core_sdr32_sim.log -- SDR-32BIT Simulation log

 core_SDR_32BIT_basic_test1.log – SDR-32BIT Basic Test Simulation log

Typical Regression Status Report:

 Analysis the Regression Status

test 1: top_SDR_8BIT_basic_test1 --> PASSED

test 2: top_SDR_16BIT_basic_test1 --> PASSED

test 3: top_SDR_32BIT_basic_test1 --> PASSED

test 4: core_SDR_8BIT_basic_test1 --> PASSED

test 5: core_SDR_16BIT_basic_test1 --> PASSED

test 6: core_SDR_32BIT_basic_test1 --> PASSED

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 19 of 15

Test Logs

 test 1: ../log/top_SDR_8BIT_basic_test1.log

 test 2: ../log/top_SDR_16BIT_basic_test1.log

 test 3: ../log/top_SDR_32BIT_basic_test1.log

 test 4: ../log/core_SDR_8BIT_basic_test1.log

 test 5: ../log/core_SDR_16BIT_basic_test1.log

 test 6: ../log/core_SDR_32BIT_basic_test1.log

Test Summary

Failed 0 of 6 tests

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 20 of 15

8 FPGA Bench Mark

FPGA bench mark result with Actel M1AF1500

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 21 of 15

9 WAVEFORM

Image files are available under: sdr_ctrl\trunk\verif\dump

1. Application Write Request:

2. Application Read Request

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 22 of 15

3. SDRAM 16 Bit Write Transaction

4. SDRAM 16 Bit Read Transaction

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 23 of 15

5. SDRAM 32 Bit Write Transaction

6. SDRAM 32 bit Read Transaction

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 24 of 15

Appendix A : Timing

A.1 SDRAM Output signals parameter definition

SDARM CLOCK

CKE/CS/RAS/CAS/WE/

DQM/AD/DQ Output

CLOCK_PERIOD

2ns

CLOCK_PERIOD-2.5 ns 2.5ns 2ns

Signal Name output Delay (ns)

Minimum Maximum

sdr_cs_n, sdr_cke, sdr_ras_n,

sdr_cas_n, sdr_we_n, sdr_dqm, sdr_ba, sdr_addr, sdr_dq

2 CLK_PERIOD-2.5ns

A2. SDRAM Input signals parameter definition

SDARM CLOCK

DQ Input

CLOCK_PERIOD

2ns 0.5ns

Signal Name Input Delay (ns)

Setup Hold

sdr_dq 2 0.5

OpenCores SDRAM controller core 2/14/2012

www.opencores.org Rev 0.0 Preliminary 25 of 15

Appendix A : Frequently Asked Q

1. Design and implementation language used in the IP

<Answer> Design implementation is done Verilog and System verilog language

2. What are the SDRAM Bus width are supported by the IP?

<Ans> This IP Supports 8/16/32 Bit interface

3. What are the Application Bus width are supported by the IP?

<Ans> This IP Supports only 32 bit Application Bus width

4. Can Application clock and SDRAM clock be Asynchronous to each other?

<Ans> Yes, IP support both Synchronous and Asynchronous Application clock and

SDRAM clock

5. Is the application layer is compatible to wish-bone standard?.

<Ans> Yes, Application Layer is wishbone compatible.

6. Is SDRAM cores is also available with custom interface?

<Ans> Yes. SDRAM core is separately available with automated test-bench.

7. Test bench scripts are compatible to which tool?

<Answer> Verification scripts are compatible to model simulator

