
 

 

 

SHA3 Core 
Specification 

 

 

 
Author: Homer Hsing 

homer.hsing@gmail.com 

 

 

 

 

Rev. 0.1 

January 29, 2013 

  

http://www.opencores.org/


 OpenCores SHA3 Core Specifications 1/29/2013 

 
 
www.opencores.org Rev 0.1 ii  

 

 

 

 

 

 

 

 

 

 

 

 

 

This page has been intentionally left blank. 



 OpenCores SHA3 Core Specifications 1/29/2013 

 
 
www.opencores.org Rev 0.1 iii  

Revision History 

Rev. Date Author Description  

0.1 01/29/2013 Homer Hsing First Draft 

    

 



 OpenCores SHA3 Core Specifications 1/29/2013 

 
 
www.opencores.org Rev 0.1 iv  

Contents 
INTRODUCTION............................................................................................................. 1 

ABOUT SHA-3............................................................................................................................................ 1 
ABOUT THIS PROJECT ................................................................................................................................. 2 

ARCHITECTURE ............................................................................................................ 3 

ARCHITECTURE OF THE CORE ..................................................................................................................... 3 
ARCHITECTURE OF THE PADDING MODULE ................................................................................................. 3 
ARCHITECTURE OF THE PERMUTATION MODULE ......................................................................................... 4 

PORTS ............................................................................................................................... 6 

USAGE AND TIMING..................................................................................................... 8 

SYNTHESIS RESULT ................................................................................................... 10 

SYNTHESIS RESULT ....................................................................................................................................10 
THROUGHPUT ............................................................................................................................................11 

TESTBENCH .................................................................................................................. 12 

REFERENCES ................................................................................................................ 13 

 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 1 of 13 

1  

Introduction 

About SHA-3 

SHA-3, originally known as Keccak (pronounced         ) [1]
, is a cryptographic hash 

function selected as the winner of the NIST hash function competition 
[2]

. Because of the 

successful attacks on MD5, SHA-0 and theoretical attacks on SHA-1, NIST perceived a 

need for an alternative, dissimilar cryptographic hash, which became SHA-3 
[3]

. 

SHA-3 is a family of sponge functions that use a permutation as a building block
 [4]

. The 

permutation (over    
    ) is a sequence of operations on a state   that is a three-

dimensional array of elements of      , namely             [4]
. The mapping between 

the bits of     
     and the bits of a state   is that the            -th bit of   

is             for any                 . The permutation consists of 24 rounds, 

indexed with    from 0 to 23. Each round   consists of five steps 
[4]

. 

              

                        ∑              

 

    

 ∑                

 

    

 

                                  ⁄   

                         (
  
  

)
 

(
 
 

)  (
 
 )             

                 

                         (
 
 )  (

  
  

) (
  

  )  

                             

             

                                

                [    ]                   

                                                  

 

The additions and multiplications are in      . 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 2 of 13 

NIST requires the candidate algorithms to support at least four different output lengths 

                    with associated security levels 
[6]

. “SHA-3 512”, in which 

output length is 512-bit, has the highest security level among all SHA-3 variants. 

Denote the padding of a message   to a sequence of 576-bit blocks by 

            | |   
The padding is a multi-rate padding, appending a single bit 1 followed by the minimum 

number of bits 0 followed by a single bit 1 such that the length of the result is a multiple 

of 576 
[4]

. Denote the number of blocks of   by | |   , and the  -   block of   by   . 

The algorithm of SHA-3 512 is as follows. 

 

         :    SHA-3-512        
      

    

               | |  

          

           | |         

       (            ) 

        
       ⌊ ⌋    

About this project 

This project has implemented “SHA-3 512” hash function. 

This project has implemented two cores, one (high-throughput) core designed to work in 

high clock frequency (150 MHz) dedicated to ASIC or expensive FPGA (Virtex 6), 

another (low-throughput) core designed to work in low clock frequency (100 MHz) 

dedicated to cheap FPGA (Spartan 3). Because in many systems the clock frequency is 

fixed for the entire chip, so even if the hash core can reach a high frequency it has to be 

clocked at a lower frequency 
[5]

. 

The code is FPGA-vendor independent, having been fully optimized, using only one 

clock domain, not using any latch. 

This project is licensed under the Apache License, version 2. 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 3 of 13 

2  

Architecture 

Architecture of the core 

The architecture depicted as follows is of the whole core. Two cores implemented in this 

project have the same architecture. 

 

Figure 1: The architecture of the whole core 

Architecture of the padding module 

The architecture of the padding module is illustrated in the figure below. 

The width of the user input is far less than 576 bit. So the padding module uses a buffer 

to assemble the user input. 

If the buffer grows full, the padding module notices the permutation module its output is 

valid. Then the permutation module begins calculation, the buffer cleared, the padding 

module waiting for input simultaneously. 

Padding 

module 
      

Permutation 

module 
       



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 4 of 13 

 

Figure 2: The architecture of the padding module 

Architecture of the permutation module 

The permutation module of the low throughput core is composed of a combinational logic 

block computing a round, a counter selecting the round constant, and a register storing 

the output. 

 

Figure 3A: The architecture of the permutation module (low throughput core) 

 

In the high throughput core, two rounds are done per clock cycle. 

   

1600-bit register 

                

    

    

          counter round const 

   

576-bit buffer 

             

        

       

         

    



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 5 of 13 

 

Figure 4B: The architecture of the permutation module (high throughput core) 

 

The round constant module is implemented by combinational logic, saving resource than 

block RAM, because most bits of the round constant is zero. 

   

1600-bit register 

                

    

    

           counter round const 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 6 of 13 

3  

Ports 

The ports and their description are listed in the table below.  

Input ports are sampled by the core at the rising edge of the clock. 

All output ports are registered, not directly connected to any combinational logic inside 

the core. 

For ports wider than 1 bit, its bit index is from the port width minus one down to zero. 

 

Table 1: Ports of the high throughput core 

Port name Width Direction Description 

    1 In Clock 

      1 In Synchronous reset 

   64 In Input 

         3 In The byte length of    

         1 In Input is valid or not 

        1 In Current input is the last or not 

            1 Out Buffer is full or not 

    512 Out The hash result 

          1 Out The hash result is ready or not 

 

  



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 7 of 13 

Table 2: Ports of the low throughput core 

Port name Width Direction Description 

    1 In Clock 

      1 In Synchronous reset 

   32 In Input 

         2 In The byte length of    

         1 In Input is valid or not 

        1 In Current input is the last or not 

            1 Out Buffer is full or not 

    512 Out The hash result 

          1 Out The hash result is ready or not 

 

The width of port    and port          is difference between the high throughput core 

and the low throughput core. The reason is we want to get high performance. When the 

permutation module is computing by the current input, the padding module is preparing 

next input. We don’t want the permutation wait the padding. For the high throughput core, 

permutation is done in 12 clock cycles, so its padding module should prepare next 576 bit 

in time, so its input width is 64 bit. For the low throughput core, which finishes 

permutation in 24 clock cycles, the input width is fixed in the same way. 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 8 of 13 

4  

Usage and timing 

Before computing a new hash value each time, reset the core. Suppose the core has 

computed SHA-3-512(“A”). Then you should first reset the core before letting it compute 

SHA-3-512(“B”). The reset method is to let       be 1, then after one clock cycle to let 

      be 0. The rising edge of       should be aligned to the rising edge of    . 

If real width of the input is less than the width of input port,    should be aligned to the 

most significant bit. This may only happens at the last block of input. Suppose the input 

is one byte data “A”. You should let          =“A”, (          for the low throughput 

core) not        =“A”.  

If and only if current input is the last block,         is 1. The value of          takes 

effect only when         is 1. If the message length is multiple of the input port width, 

you should provide an additional zero-length block. For example, to hash “ABCDEFGH”, 

first set 

                        

Then set 

                     

You may provide input in any slow rate. If input is not ready, just let          be 0, then 

the core will not absorb current input value. 

Only if             is 0 and          is 1, the core absorbs current value. If in any 

clock cycle                               then next valid value of    should 

be  . A timing graph below helps understand it. 

The hash result is ready only if           is 1. After           is 1, the hash result 

remain unchanged until next reset. 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 9 of 13 

 

 

    

      

   

         

            

XX     A    B    C     D    E    F     G    H     I     J     J      J     J     J     K    L     M   N    O 

Keep input 

unchanged 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 10 of 13 

5  

Synthesis result 

Synthesis result 

The synthesis software is Xilinx ISE version 14.4. 

 

The high throughput core has been synthesized targeting an expensive Virtex 6 FPGA. 

Table 3: synthesis result of the high throughput core 

Device Xilinx Virtex 6 XC6VLX240T-1FF1156 

Number of Slice Registers 2,220 

Number of Slice LUTs 9,895 

Number of fully used LUT-FF pairs 1,673 

Number of bonded IOBs 585 

Number of BUFG/BUFGCTRLs 1 

Maximum Frequency 188.9 MHz 

 

The low throughput core has been synthesized targeting a very cheap Spartan 3 FPGA. 

Table 4: synthesis result of the low throughput core 

Device Xilinx Spartan 3 xc3s5000-4fg900 

Number of Slices 2,321 

Number of Slice Flip Flops 2,346 

Number of 4 input LUTs 4,499 

Number of bonded IOBs 552 

Number of GCLKs 1 

Maximum Frequency 117.3 MHz 

 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 11 of 13 

Throughput 

For the high throughput core: 7.2 G bit /second if clock frequency is 150 MHz 

For the low throughput core: 2.4 G bit /second if clock frequency is 100 MHz 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 12 of 13 

6  

Testbench 

The RTL files and test benches for the high throughput core are in directory 

“high_throughput_core”. The files for the low throughput core are in directory 

“low_throughput_core”. The structure of two directories is same. 

The file “testbench/simulation.do” is a batch file for ModelSim to compile the HDL 

files, setup the wave file, and begin function simulation. In order to make it work 

properly, the working directory of ModelSim must be the directory of “testbench”. 

The file “testbench/test_keccak.v” is the main test bench for the cores. The test feeds 

input data to the core and compares the correct result with the core output. For any wrong 

output, the test bench displays error messages. If all output being correct, the test bench 

displays “OK”. 

 



 OpenCores SHA3 Core Specifications 1/29/2013 

 

 

www.opencores.org Rev 0.1 13 of 13 

7  

References 

[1] Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche, 

“The Keccak sponge function family: Specifications summary”, 

http://keccak.noekeon.org/specs_summary.html  

[2] “NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition”,  

NIST. Oct. 2012. 

http://www.nist.gov/itl/csd/sha-100212.cfm  

[3] “SHA-3”, Wikipedia, the free encyclopedia, 

http://en.wikipedia.org/wiki/SHA3  

[4] The Keccak reference, version 3.0,  

http://keccak.noekeon.org/Keccak-reference-3.0.pdf  

[5] Keccak implementation overview, version 3.2, 

http://keccak.noekeon.org/Keccak-implementation-3.2.pdf  

[6] “Announcing request for candidate algorithm nominations for a new cryptographic 

hash algorithm (SHA-3) family”,  

Federal Register Notices 72 (2007), no. 212, 62212–62220 

http://csrc.nist.gov/groups/ST/hash/index.html 

[7] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif, 

“Comprehensive evaluation of high-speed and medium-speed implementations of 

Five SHA-3 Finalists using Xilinx and Altera FPGAs”, 

3rd SHA-3 candidate conference, Mar 2012. 

 

http://keccak.noekeon.org/specs_summary.html
http://www.nist.gov/itl/csd/sha-100212.cfm
http://en.wikipedia.org/wiki/SHA3
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://csrc.nist.gov/groups/ST/hash/index.html

