URL
https://opencores.org/ocsvn/spi_master_slave/spi_master_slave/trunk
Subversion Repositories spi_master_slave
[/] [spi_master_slave/] [trunk/] [syn/] [spi_master_atlys_top.vhd] - Rev 11
Go to most recent revision | Compare with Previous | Blame | View Log
---------------------------------------------------------------------------------- -- Engineer: Jonny Doin -- -- Create Date: 01:21:32 06/30/2011 -- Design Name: -- Module Name: spi_master_atlys_top -- Project Name: spi_master_slave -- Target Devices: Spartan-6 LX45 -- Tool versions: ISE 13.1 -- Description: -- This is a verification project for the Digilent Atlys board, to test the SPI_MASTER, SPI_SLAVE and GRP_DEBOUNCE cores. -- It uses the board's 100MHz clock input, and clocks all sequential logic at this clock. -- -- See the "spi_master_atlys.ucf" file for pin assignments. -- The test circuit uses the VHDCI connector on the Atlys to implement a 16-pin debug port to be used -- with a Tektronix MSO2014. The 16 debug pins are brought to 2 8x2 headers that form a umbilical -- digital pod port. -- ------------------------------ REVISION HISTORY ----------------------------------------------------------------------- -- -- 2011/07/02 v0.01.0010 [JD] implemented a wire-through from switches to LEDs, just to test the toolchain. It worked! -- 2011/07/03 v0.01.0020 [JD] added clock input, and a simple LED blinker for each LED. -- 2011/07/03 v0.01.0030 [JD] added clear input, and instantiated a SPI_MASTER from my OpenCores project. -- 2011/07/04 v0.01.0040 [JD] changed all clocks to clock enables, and use the 100MHz board gclk_i to clock all registers. -- this change made the design go up to 288MHz, after synthesis. -- 2011/07/07 v0.03.0050 [JD] implemented a 16pin umbilical port for the MSO2014 in the Atlys VmodBB board, and moved all -- external monitoring pins to the VHDCI ports. -- 2011/07/10 v1.10.0075 [JD] verified spi_master_slave at 50MHz, 25MHz, 16.666MHz, 12.5MHz, 10MHz, 8.333MHz, 7.1428MHz, -- 6.25MHz, 1MHz and 500kHz -- 2011/07/18 v1.12.0105 [JD] spi_master.vhd changed to fix CPHA='1' clock glitch. -- -- ---------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; entity spi_master_atlys_top is Port ( gclk_i : in std_logic := 'X'; -- board clock input 100MHz --- SPI interface --- spi_ssel_o : out std_logic; -- spi port SSEL spi_sck_o : out std_logic; -- spi port SCK spi_mosi_o : out std_logic; -- spi port MOSI spi_miso_o : out std_logic; -- spi port MISO --- input slide switches --- sw_i : in std_logic_vector (7 downto 0); -- 8 input slide switches --- input buttons --- btn_i : in std_logic_vector (5 downto 0); -- 6 input push buttons --- output LEDs ---- led_o : out std_logic_vector (7 downto 0); -- output leds --- debug outputs --- dbg_o : out std_logic_vector (7 downto 0); -- 10 generic debug pins --- spi debug pins --- spi_rx_bit_m_o : out std_logic; -- master rx bit feedback spi_rx_bit_s_o : out std_logic; -- slave rx bit feedback spi_do_valid_o : out std_logic; -- spi data valid spi_di_req_o : out std_logic -- spi data request -- spi_wren_o : out std_logic; -- spi write enable -- spi_wren_ack_o : out std_logic -- spi write enable ack ); end spi_master_atlys_top; architecture behavioral of spi_master_atlys_top is --============================================================================================= -- Constants --============================================================================================= -- clock divider count values from gclk_i (100MHz board clock) -- these constants shall not be zero constant FSM_CE_DIV : integer := 1; -- fsm operates at 100MHz constant SPI_2X_CLK_DIV : integer := 1; -- 50MHz SPI clock constant SAMP_CE_DIV : integer := 1; -- board signals sampled at 100MHz -- spi port generics constant N : integer := 8; -- 8 bits constant CPOL : std_logic := '0'; constant CPHA : std_logic := '0'; -- button definitions constant btRESET : integer := 0; -- these are constants to use as btn_i(x) constant btUP : integer := 1; constant btLEFT : integer := 2; constant btDOWN : integer := 3; constant btRIGHT : integer := 4; constant btCENTER : integer := 5; --============================================================================================= -- Type definitions --============================================================================================= type fsm_state_type is (st_reset, st_wait_spi_idle, st_wait_new_switch, st_send_spi_data, st_wait_spi_ack, st_wait_spi_finish ); --============================================================================================= -- Signals for state machine control --============================================================================================= signal state_reg : fsm_state_type := st_reset; signal state_next : fsm_state_type := st_reset; --============================================================================================= -- Signals for internal operation --============================================================================================= --- clock enable signals --- signal samp_ce : std_logic := '1'; -- clock enable for sample inputs signal fsm_ce : std_logic := '1'; -- clock enable for fsm logic --- switch debouncer signals --- signal sw_data : std_logic_vector (7 downto 0) := (others => '0'); -- debounced switch data signal sw_reg : std_logic_vector (7 downto 0) := (others => '0'); -- registered switch data signal sw_next : std_logic_vector (7 downto 0) := (others => '0'); -- combinatorial switch data signal new_switch : std_logic := '0'; -- detector for new switch data --- pushbutton debouncer signals --- signal btn_data : std_logic_vector (5 downto 0) := (others => '0'); -- debounced state of pushbuttons signal btn_reg : std_logic_vector (5 downto 0) := (others => '0'); -- registered button data signal btn_next : std_logic_vector (5 downto 0) := (others => '0'); -- combinatorial button data signal new_button : std_logic := '0'; -- detector for new button data --- spi port signals --- -- spi bus wires signal spi_ssel : std_logic; signal spi_sck : std_logic; signal spi_mosi : std_logic; signal spi_miso : std_logic; -- spi master port control signals signal spi_rst_reg : std_logic := '1'; signal spi_rst_next : std_logic := '1'; signal spi_ssel_reg : std_logic; signal spi_wren_reg_m : std_logic := '0'; signal spi_wren_next_m : std_logic := '0'; -- spi master port flow control flags signal spi_di_req_m : std_logic; signal spi_do_valid_m : std_logic; -- spi master port parallel data bus signal spi_di_reg_m : std_logic_vector (N-1 downto 0) := (others => '0'); signal spi_di_next_m : std_logic_vector (N-1 downto 0) := (others => '0'); signal spi_do_m : std_logic_vector (N-1 downto 0); -- spi master port debug flags signal spi_rx_bit_m : std_logic; signal spi_wr_ack_m : std_logic; -- spi slave port control signals signal spi_wren_reg_s : std_logic := '1'; signal spi_wren_next_s : std_logic := '0'; -- spi slave port flow control flags signal spi_di_req_s : std_logic; signal spi_do_valid_s : std_logic; -- spi slave port parallel data bus signal spi_di_reg_s : std_logic_vector (N-1 downto 0) := (7 => '1', 6 => '0', 5 => '1', others => '0'); signal spi_di_next_s : std_logic_vector (N-1 downto 0) := (others => '0'); signal spi_do_s : std_logic_vector (N-1 downto 0); -- spi slave port debug flags signal spi_rx_bit_s : std_logic; signal spi_wr_ack_s : std_logic; -- other signals signal clear : std_logic := '0'; -- debug output signals signal leds_reg : std_logic_vector (7 downto 0) := (others => '0'); signal dbg : std_logic_vector (7 downto 0) := (others => '0'); begin --============================================================================================= -- COMPONENT INSTANTIATIONS FOR THE CORES UNDER TEST --============================================================================================= -- spi master port: -- receives parallel data from the slide switches, transmits to slave port. -- receives serial data from slave port, sends to 8bit parallel debug port. Inst_spi_master_port: entity work.spi_master(rtl) generic map (N => N, CPOL => CPOL, CPHA => CPHA, PREFETCH => 3, SPI_2X_CLK_DIV => SPI_2X_CLK_DIV) port map( sclk_i => gclk_i, -- system clock is used for serial and parallel ports pclk_i => gclk_i, rst_i => spi_rst_reg, spi_ssel_o => spi_ssel, spi_sck_o => spi_sck, spi_mosi_o => spi_mosi, spi_miso_i => spi_miso, di_req_o => spi_di_req_m, di_i => spi_di_reg_m, do_valid_o => spi_do_valid_m, do_o => spi_do_m, rx_bit_reg_o => spi_rx_bit_m, wren_i => spi_wren_reg_m, -- wren_o => spi_wren_o, wren_ack_o => spi_wr_ack_m -- monitor wren ack from inside spi port ); dbg(7 downto 0) <= spi_do_m(7 downto 0); -- connect master received data to 8bit debug port spi_rx_bit_m_o <= spi_rx_bit_m; -- connect rx_bit monitor for master port -- spi slave port -- receives parallel data from the pushbuttons, transmits to master port. -- receives serial data from master port, sends to the 8 LEDs. Inst_spi_slave_port: entity work.spi_slave(rtl) generic map (N => N, CPOL => CPOL, CPHA => CPHA, PREFETCH => 3) port map( clk_i => gclk_i, spi_ssel_i => spi_ssel, -- generated by the spi master spi_sck_i => spi_sck, -- generated by the spi master spi_mosi_i => spi_mosi, spi_miso_o => spi_miso, di_req_o => spi_di_req_s, di_i => spi_di_reg_s, wren_i => spi_wren_reg_s, rx_bit_reg_o => spi_rx_bit_s, do_valid_o => spi_do_valid_s, do_o => spi_do_s ); spi_di_reg_s(7) <= btn_data(btLEFT); -- get the slave transmit data from pushbuttons spi_di_reg_s(6) <= btn_data(btCENTER); spi_di_reg_s(5 downto 1) <= B"10101"; spi_di_reg_s(0) <= btn_data(btRIGHT); spi_wren_reg_s <= '1'; -- fix wren to '1', for continuous load of transmit data spi_rx_bit_s_o <= spi_rx_bit_s; -- connect rx_bit monitor for slave port -- debounce for the input switches, with new data strobe output Inst_sw_debouncer: entity work.grp_debouncer(rtl) generic map (N => 8, CNT_VAL => 10000) -- debounce 8 inputs with 100 us settling time port map( clk_i => gclk_i, -- system clock data_i => sw_i, -- noisy input data data_o => sw_data -- registered stable output data -- strb_o => dbg(0) -- monitor the debounced data strobe ); -- debounce for the input pushbuttons, with new data strobe output Inst_btn_debouncer: entity work.grp_debouncer(rtl) generic map (N => 6, CNT_VAL => 50000) -- debounce 6 inputs with 500 us settling time port map( clk_i => gclk_i, -- system clock data_i => btn_i, -- noisy input data data_o => btn_data -- registered stable output data -- strb_o => dbg(3) -- monitor the debounced data strobe ); --============================================================================================= -- CONSTANTS CONSTRAINTS CHECKING --============================================================================================= -- clock dividers shall not be zero assert FSM_CE_DIV > 0 report "Constant 'FSM_CE_DIV' should not be zero" severity FAILURE; -- minimum prefetch lookahead check assert SPI_2X_CLK_DIV > 0 report "Constant 'SPI_2X_CLK_DIV' should not be zero" severity FAILURE; -- maximum prefetch lookahead check assert SAMP_CE_DIV > 0 report "Constant 'SAMP_CE_DIV' should not be zero" severity FAILURE; --============================================================================================= -- CLOCK GENERATION --============================================================================================= -- The clock generation block derives 3 internal clocks, divided down from the 100MHz input clock -- core clock, -- spi 2x base clock, -- fsm clock, ----------------------------------------------------------------------------------------------- -- generate the sampling clock enable from the 100MHz board input clock samp_ce_gen_proc: process (gclk_i) is variable clk_cnt : integer range SAMP_CE_DIV-1 downto 0 := 0; begin if gclk_i'event and gclk_i = '1' then if clk_cnt = SAMP_CE_DIV-1 then samp_ce <= '1'; clk_cnt := 0; else samp_ce <= '0'; clk_cnt := clk_cnt + 1; end if; end if; end process samp_ce_gen_proc; -- generate the fsm clock enable from the 100MHz board input clock fsm_ce_gen_proc: process (gclk_i) is variable clk_cnt : integer range FSM_CE_DIV-1 downto 0 := 0; begin if gclk_i'event and gclk_i = '1' then if clk_cnt = FSM_CE_DIV-1 then fsm_ce <= '1'; clk_cnt := 0; else fsm_ce <= '0'; clk_cnt := clk_cnt + 1; end if; end if; end process fsm_ce_gen_proc; --============================================================================================= -- INPUTS LOGIC --============================================================================================= -- registered inputs samp_inputs_proc: process (gclk_i) is begin if gclk_i'event and gclk_i = '1' then if samp_ce = '1' then clear <= btn_data(btUP); -- clear is button UP leds_reg <= spi_do_s; -- update LEDs with spi_slave received data end if; end if; end process samp_inputs_proc; --============================================================================================= -- REGISTER TRANSFER PROCESSES --============================================================================================= -- fsm state and data registers: synchronous to the spi base reference clock fsm_reg_proc : process (gclk_i) is begin -- FFD registers clocked on rising edge and cleared on sync 'clear' if gclk_i'event and gclk_i = '1' then if clear = '1' then -- sync reset state_reg <= st_reset; -- only provide local reset for the state register else if fsm_ce = '1' then state_reg <= state_next; -- state register end if; end if; end if; -- FFD registers clocked on rising edge, with no reset if gclk_i'event and gclk_i = '1' then if fsm_ce = '1' then spi_wren_reg_m <= spi_wren_next_m; spi_di_reg_m <= spi_di_next_m; -- spi_wren_reg_s <= spi_wren_next_s; -- spi_di_reg_s <= spi_di_next_s; spi_rst_reg <= spi_rst_next; spi_ssel_reg <= spi_ssel; sw_reg <= sw_next; btn_reg <= btn_next; end if; end if; end process fsm_reg_proc; --============================================================================================= -- COMBINATORIAL NEXT-STATE LOGIC PROCESSES --============================================================================================= -- edge detector for new switch data new_switch_proc: new_switch <= '1' when sw_data /= sw_reg else '0'; -- '1' for difference -- edge detector for new button data new_button_proc: new_button <= '1' when btn_data /= btn_reg else '0'; -- '1' for difference -- fsm state and combinatorial logic -- the sequencer will wait for a new switch combination, and send the switch data to the spi port fsm_combi_proc: process ( state_reg, spi_wren_reg_m, spi_di_reg_m, spi_di_req_m, spi_wr_ack_m, -- spi_di_reg_s, spi_wren_reg_s, spi_ssel_reg, spi_rst_reg, sw_data, sw_reg, new_switch, btn_data, btn_reg, new_button) is begin spi_rst_next <= spi_rst_reg; spi_di_next_m <= spi_di_reg_m; spi_wren_next_m <= spi_wren_reg_m; -- spi_di_next_s <= spi_di_reg_s; -- spi_wren_next_s <= spi_wren_reg_s; sw_next <= sw_reg; btn_next <= btn_reg; state_next <= state_reg; case state_reg is when st_reset => spi_rst_next <= '1'; -- place spi interface on reset spi_di_next_m <= (others => '0'); -- clear spi data port spi_di_next_s <= (others => '0'); -- clear spi data port spi_wren_next_m <= '0'; -- deassert write enable spi_wren_next_s <= '0'; -- deassert write enable state_next <= st_wait_spi_idle; when st_wait_spi_idle => if spi_ssel_reg = '1' then spi_rst_next <= '0'; -- remove reset when interface is idle state_next <= st_wait_new_switch; end if; when st_wait_new_switch => if new_switch = '1' then -- wait for new stable switch data sw_next <= sw_data; -- load new switch data (end the mismatch condition) state_next <= st_send_spi_data; elsif new_button = '1' then btn_next <= btn_data; -- load new button data (end the mismatch condition) if btn_data /= B"000001" then state_next <= st_send_spi_data; end if; end if; when st_send_spi_data => spi_di_next_m <= sw_reg; -- load switch register to the spi port spi_wren_next_m <= '1'; -- write data on next clock state_next <= st_wait_spi_ack; when st_wait_spi_ack => -- the actual write happens on this state spi_di_next_m <= sw_reg; -- load switch register to the spi port if spi_wr_ack_m = '1' then -- wait acknowledge spi_wren_next_m <= '0'; -- remove write strobe on next clock state_next <= st_wait_spi_finish; end if; when st_wait_spi_finish => if spi_ssel_reg = '1' then state_next <= st_wait_new_switch; end if; when others => state_next <= st_reset; -- state st_reset is safe state end case; end process fsm_combi_proc; --============================================================================================= -- OUTPUT LOGIC PROCESSES --============================================================================================= -- connect the spi output wires spi_ssel_o_proc: spi_ssel_o <= spi_ssel; spi_sck_o_proc: spi_sck_o <= spi_sck; spi_mosi_o_proc: spi_mosi_o <= spi_mosi; spi_miso_o_proc: spi_miso_o <= spi_miso; spi_do_valid_o_proc: spi_do_valid_o <= spi_do_valid_m; spi_di_req_o_proc: spi_di_req_o <= spi_di_req_m; -- spi_wren_ack_o_proc: spi_wren_ack_o <= spi_wr_ack_m; led_o_proc: led_o <= leds_reg; -- connect leds_reg signal to LED outputs --============================================================================================= -- DEBUG LOGIC PROCESSES --============================================================================================= -- connect the debug vector outputs dbg_o_proc: dbg_o <= dbg; end behavioral;
Go to most recent revision | Compare with Previous | Blame | View Log