TDM controller core

Jamil Khatib

April 11, 2001

(C) Copyright 2001 Jamil Khatib.

CONTENTS

www. OpenCores.org Project

Contents
1 List of authors and changes 3
2 Project Definition 4
2.1 Introduction. 4
2.2 Objectives e e e e 4
3 Specifications 4
3.1 System Features Specification 4
3.2 External Interfaces 5
3.2.1 Back-end interface mapping to Wishbone SoC bus .. 5
3.2.2 CPUinterface. i e 7
4 Internal Blocks 8
5 Design description 8
5.1 ST-Businterface 8
5.1.1 Designnotes, 8
5.1.2 Timing 8
5.2 External FIFO 8
5.2.1 Notes e 9
53 ISDN support 9
54 Registers. 9
5.4.1 Transmit e e e e e e e e 9
5.4.2 Receive e e e e 10
5.5 Diagrams 11
6 Testing and verifications 11
6.1 Simulation and Test benches 12
6.2 Verification techniques and algorithms 12
6.3 Testplans 12
7 Implementations 12
7.1 Scripts, files and any other information. 12
7.2 Design conventions and coding styles 12
8 Reviews and comments 12
9 References 12
TDM controller 2 of 12

www. OpenCores.org Project

1 List of authors and changes

‘ Name ‘

Changes

‘ Date ‘ Contact address ‘

Jamil Khatib

Initial release

3-2-2001 | khatib@ieee.org

Jamil Khatib

General review and CPU interface added

10-2-2001 | khatib@ieee.org

Jamil Khatib

ISDN support added

3-4-2001 | khatib@ieee.org

Jamil Khatib

Buffer Calculations added

9-4-2001 | khatib@ieee.org

TDM controller

3 of 12

www. OpenCores.org Project

2 Project Definition

2.1 Introduction

Time devision multiplexing is a scheme used to communicate between sys-
tems or devices via shared interface lines. Each device or system gets the
access to this interface in a single time slot.

2.2 Objectives

The aim of this project is to develop the basic TDM functionalities to be
used by many communication systems like ISDN, E1, T1 and voice codecs.

3 Specifications

3.1 System Features Specification

1. Supports E1 bit rate and time slots (32 time slots or 32 DS0 channels
at bit rate 2.048Mbps)

2. Supports ST-Bus (Serial Telecom bus) interface.

3. Routes time slots to/from HDLC controller via the backend interface
and software support or to/from memory.

4. Supports read for all or partial TDM slots from the ST-bus.
5. Supports write for all or partial TDM slots to ST-bus.

6. It supports N x 64 mode (i.e. it supports sampling (or writing) to N
consecutive time slots)

7. Supports two serial lines one input and one output.

8. Can be connected to other ST-Bus compatible devices via serial or
star configurations.

9. If no data is available for transmission it sends all ones.

10. Backend interface uses the Wishbone bus interface which can be con-
nected directly to the system or via FIFO buffer.

11. Optional External FIFO buffer, configuration and status registers.

12. The core will be made of two levels of hierarchies, the basic function-
ality and the Optional interfaces and buffers which makes it easy to
add extra serial lines by duplicating the TDM controllers in parallel.

13. ISDN (2B+D) support can be supported by adding three parallel
HDLC controllers on the first three time slots.

TDM controller 4 of 12

www. OpenCores.org Project

3.2 External Interfaces

‘ Signal name

‘ Direction ‘ Description

‘ Control interface

Rst_n Input System asynchronous reset (active low)
Size[4:0] Input Number of time slots (Can be fixed)
| Serial Interface (ST-Bus) ‘ ‘ |
C2 Input Bus Clock
DSTi Input Receive serial Data
DSTo Output Transmit serial Data
FOn Input Framing pulse (active low)
FOod_n Output Delayed Framing pulse (active low)
| Back-end Interface (Received) | ‘ ‘
RxD([7:0] Output | Receive data bus
RxValidData Output Valid Data
FrameErr Output Error in the received data
Read Input Read byte
Ready Output Valid data exists
| Back-end Interface (Transmited) | ‘
TxDI[7:0] Input Transmit data bus
TxValidData Input Valid Data
Write Input Write byte
Ready Output Ready to get data

3.2.1 Back-end interface mapping to Wishbone SoC bus

The TDM backend interface is divided into two parts one for receive and one
for transmit.It can be used as a slave core or master according to the below
mapping. The core supports SINGLE READ/WRITE Cycle only using 8-
bit data bus without address lines. The choice between master and slave is
left for the system integrator and must do the configuration and glue logic

as defined in the tables.

TDM controller

5 of 12

www. OpenCores.org Project

SuBoE

GO

PATIBLE

Signal Name ‘

Wishbone signal

Master Configuration connected to FIFO

Receive channel

C2 CLK.I

Rst not RST 1
RxD([7:0] DAT_O(7:0)
RxValidData STB_O
RxValidData CYC.O
Read ACK. and not RTY_I
Ready WE_O
FrameERR TAGO0_O
Slave FIFO(two-clock domain FIFO)

Datal[7:0] DAT_I(7:0)
Chip Select STB._I
STB_I and not FullFlag ACK_O
FullFlag RTY O
Write WE_I

Slave Configuration

C2 CLK.I

Rst not RST I
RxDI[T7:0] DAT_O(7:0)
RxValidData TAGO0_O
ReadByte not WE_I
Ready not RTY_O
STB_I and not WR._I ACK_O
FrameERR TAG1.0O

TDM controller

6 of 12

www. OpenCores.org Project

‘ Signal Name

‘ Wishbone signal ‘

‘ Master Configuration connected to FIFO ‘

Transmit channel ‘

C2 CLK1

Rst not RST_I
TxD[7:0] DAT_I(7:0)
Write ACKI and not RTY I
Ready not WE_O
TxValidData TAGO I
Always Active CYC.O
Always Active STB_O
Slave FIFO(two-clock domain FIFO)

Data[7:0] DAT I(7:0)
EmptyFlag RTY.O
Read WE_I
WE_ and not EmptyFlag ACK_O
ChipSelect STB 1
Slave Configuration

C2 CLK.I

Rst not RST_I
TxDI[7:0] DAT I(7:0)
TxValidData STB_I
Write WE I
Ready not RTY_O
STB.I and WR_I ACK O

3.2.2 CPU interface

This interface is used when the FIFO and registers are included in the Core.
This interface is compatible to WishBone slave bus interface that supports
single read /write cycles and block cycles. The interface supports the follow-

ing wishbone signals.

‘ Signal ‘ Note ‘
RSTI Reset
CLKI Clock
ADR_I(2:0) | 3-bit address line
DAT_O(7:0) | 8-bit receive data
DATI(7:0) | 8-bit transmit data
WE.I Read/write
STB._I Strobe
ACK O Acknowledge
CYC1I Cycle
RTY_O Retry
TAGO0_O TxDone interrupt
TAG1.0 RxReady interrupt

TDM controller

7 of 12

www. OpenCores.org Project

4 Internal Blocks

5 Design description

5.1 ST-Bus interface

The TDM controller interfaces to the TDM lines via serial telecom bus. The
interface uses the external input clock (2.048MHz) for all of the internal se-
rial logic. It detects the incoming framing pulse to synchronize the sampling
and transmission of bits. The core reads and writes only the specified num-
ber of TDM channels (8-bits) by the size bus (No. of channels register). In
the transmission mode the output pin should be disabled after writing the
configured time slots. It generates also the output delayed framing pulse
after it samples all the specified bits (TDM channels). This feature can be
used to cascade controllers for different TDM channels.

5.1.1 Design notes
5.1.2 Timing
5.2 External FIFO

The controller has optional external FIFO buffers, one for data to be trans-
mitted and one for data to be received. Status and control registers are
available to control these FIFOs. These two blocks (FIFOs and registers)
are built around the TDM controller core which make them optional if the
core is to be used in different kind of applications.

The current implementation supports the following configuration: The
size of the Transmit and receive FIFOs is (8 x 32) bits which enables the
whole TDM frame to be buffered.

The transmit buffer is used to prevent underflow while transmitting bytes
to the line. All bytes will be available once the transmit is enabled. If the
transmit FIFO is empty the core will transmit ones. The Receive buffer is
used to provide data burst transfer to the Back end interface which prevents
the back end from reading each byte alone. The FIFO size is suitable for
operating frequencies 2.048MHz on the serial interface and 20 MHz on the
back end interface. Other frequencies can operate if the back end can read
the entire TDM frame before the first byte of the next frame is written (the
next calculations is an example to be applied for different frequencies)

8 bits (Time needed to receive the first byte of the next frame) / 2.048MHz
= 3.9 us

32 Bytes (Maximum frame size) / 20MHz = 1.6 us

These FIFOs are implemented on Single port memory. It is the re-
sponsibility of the external interface to write/read data to/from the FIFOs.

TDM controller 8 of 12

www. OpenCores.org Project

TxDone and RxRdy interrupts are generated when the Tx buffer is empty
and Rx buffer has data respectively .

5.2.1 Notes

e Transmit Operation: If the transmit FIFO is empty not enough
data bytes is available according to no. of channels (caused by incom-
plete burst transfer, the core sets the Aborted bit in the TX status
and control register and sends all ones in the transmit serial line.

e Transmit Operation: The back end (software) should write data
to the Tx buffer register according to the configured number of time
slots. The transmission will start only after the specified number of
slots are available in the buffer other wise Aborted bit of the Tx Status
register will be set and all ones will be transmitted in this slot.

e Receive Operation: When Receive FIFO is full It drops the second
FIFO contents and sets overflow bit in the Rx Status and Control
register.

e Receive Operation: When RxRdy Interrupt is asserted (or RxRdy
bit is set) the back end interface (software) must read the specified
number of slots from the Rx Data buffer register or the buffer will not
be marked as empty.

5.3 ISDN support

In order to provide (2B + D) ISDN support three HDLC controllers should
be used on three time slots. The serial data the of first three time slots
will enter (or get out) directly to (from) the three parallel HDLC controllers
if HDLCen bit is set in the Tx Status and Control register. The HDLC
controllers will be managed through the enable signals (each controller will
be enabled on its corresponding time slot). These HDLC controllers will set
in parallel with the Rx and Tx buffers (as shown in the figure) which still
can be used even if the ISDN mode is enabled.

5.4 Registers
All internal registers are 8-bit width.

5.4.1 Transmit
Tx Status and Control Register: Tx_SC Offset Address = 0x0

TDM controller 9 of 12

www. OpenCores.org Project

Rx Buff er

i R« HDLC (B1) >

= Rx HDLC (B2)

> Rx HDLC (D) <>

Ba ckend T Seri al
and Control |l er
Regi sters N
> Tx HDLC (BL1) <>
<%} Tx HDLC (B2) =
= Tx HDLC (D) =
ﬁ» Tx Buffer ﬁ
Figure 1: ISDN support

BIT 7 6 5 4 3 2 1 0
FIELD | N/JA | N/A | N/A | N/A | HDLCen | Aborted | TxEnable | TxReady(empty)
RESET 0 0 0 0 0 0 0 0
R/W RO | RO | RO | RO WO RO WO RO
Tx FIFO buffer register: Tx_Buffer Offset Address = 0x1
BIT 7-0
FIELD || Transmit Data byte
RESET 0x0
R/W WO

5.4.2 Receive
Rx Status and Control Register: Rx SC Offset Address = 0x2

TDM controller 10 of 12

www. OpenCores.org Project

BIT 7 6 5 4 3 2 1 0
FIELD | N/A|N/A | N/A | N/A | N/A | FrameError | Drop | RxReady(Full)
RESET 0 0 0 0 0 0 0 0

R/W RO | RO | RO | RO | RO RO WO RO

Rx FIFO buffer register: Rx_Buffer Offset Address = 0x3

BIT 7-0
FIELD || Received Data byte
RESET 0x0
R/W RO

configuration register: CFG Offset Address = 0x4

BIT 7-0
FIELD || No. of channels
RESET 0xFF
R/W RO

This register defines number of time slots will be sampled and written after
the framing pulse.

HDLC registers Each HDLC controller its own registers as described
in the HDLC controller document but with the offset address as 0xY0 +
z where Y represents the HDLC channel number and z the internal HDLC
register offset. For example Tx_SC register of the second HDLC controller
in the TDM controller will be mapped to 0x20 + 0x0 = 0x20

5.5 Diagrams

le—— DSTi
Backend S/IP ST- bus —>DSTo
<> <— C2
W shbone Interface P/ S Interface ‘ =)
—> FOod

Figure 2: TDM core

6 Testing and verifications

‘ Requirement ‘ Test method ‘ Validation method ‘

Interface timing

| Functionality | ‘ |

TDM controller 11 of 12

www. OpenCores.org Project

N ea—
| Regi sters
|
| |
<« | TxFifo2 |5 TxFifo1 o ST- bus
Wshbonel le—> Controll er >
Bus |
| RxFi fo2 e~ RxFifol |
L — — _— — — _

Figure 3: TDM controller

6.1 Simulation and Test benches
6.2 Verification techniques and algorithms

6.3 Test plans
7 Implementations

7.1 Scripts, files and any other information

7.2 Design conventions and coding styles

8 Reviews and comments

9 References

TDM controller 12 of 12

