
1 | P a g e

CC64 Language Reference

Table of Contents
CC64 Language Reference ... 1

Overview ... 3

Compiler Options .. 4

__attribute__ ... 6

__check ... 6

__mulf ... 6

align() .. 6

and ... 7

asm [__leafs] ... 7

case .. 9

catch .. 9

class ... 9

delete (not working yet) .. 10

enum .. 10

epilog... 10

firstcall .. 12

forever ... 12

gcnew (not working yet) ... 12

inline ... 13

if .. 13

nocall / naked .. 13

new (not working yet) ... 13

or ... 13

pascal... 14

prolog .. 14

switch .. 15

then .. 15

throw ... 16

2 | P a g e

thread... 16

try { } .. 16

typenum() .. 16

until ... 17

using .. 17

name mangler .. 17

&&& ... 17

||| .. 17

?? ... 18

Character Constants .. 18

Block Naming ... 18

Array Handling Differences from ‘C’ ... 19

Exception handling ... 19

Garbage Collection ... 20

Return Block ... 20

3 | P a g e

Overview

CC64 supports an extended ‘C’ language compiler. CC64 is able to compile most C

language programs with little or no modification required. In addition to the standard ‘C’

language CC64 adds the following:

run-time type identification (via typenum())

exception handling (via try/throw/catch)

function prolog / epilog control

multiple case constants eg. case ‘1’,’2’,’3’:

assembler code (asm)

pascal calling conventions (pascal)

no calling conventions (nocall / naked)

inline code

additional loop constructs (until, loop, forever)

true/false are defined as 1 and 0 respectively

thread storage class

structure alignment control

firstcall blocks

block naming

branch prediction hints

4 | P a g e

Compiler Options
Option Description

-fno-exceptions This option tells the compiler not to generate code for processing

exceptions. It results in smaller code, however the try/catch

mechanism will no longer work.

-o[pxrc] This option disables optimizations done by the compiler causing really

poor code to be generated.

 p – this disables the peephole optimization step

 x – this disables optimization of expressions (constants)

 r – this disables the allocation of register variables and common

subexpression elimination. Also turns off constant optimizations.

 c – this disables optimizations done during code generation

-o by itself disables all optimizations done by the compiler

-w This option disables wchar_t as a keyword. This keyword is

sometimes #defined rather than being built into some compilers.

-S generate assembly code with source code in comments.

FT64 Register Usage

Register Description / Suggested Usage Saver

r0 always reads as zero

r1-r2 return values / exception caller

r3-r10 temporaries caller

r11-r17 register variables callee

r18-r22 function arguments caller

r23 assembler usage

r24 type number / function argument caller

r25 class pointer / function argument caller

r26 thread pointer callee

r27 global pointer

r28 exception link register caller

r29 return address / link register caller

r30 base / frame pointer callee

r31 stack pointer (hardware) callee

5 | P a g e

The following additions have been made:

typenum(<type>)

allow run-time type identification. It returns a hash code for the type specified. It works

the same way the sizeof() operator works, but it returns a code for the type, rather than

the types size.

CC64 supports a simple try/throw/catch mechanism. A catch statement without a variable

declaration catches all exceptions.

try { <statement> }

catch(var decl) {

}

catch(var decl)

{

}

catch {

}

Types:

A byte is one byte (8 bits) in size.

A char is two bytes (16 bits) in size.

An int is eight bytes (64 bits) wide.

An short int is four bytes (32 bits) wide

Pointers are eight bytes (64 bits) wide.

6 | P a g e

__attribute__
__attribute__ defines attributes associated with functions. Currently the only

defined attribute is __no_temps which indicates to the compiler that the function

does not use any temporary registers. This allows the compiler to omit code to

save and restore temporaries around function calls. This is used primarily for

functions defined in assembly language.

Example:

extern signed byte KeybdGetStatus() __attribute__(__no_temps);
extern byte KeybdGetScancode() __attribute__(__no_temps);

__check

__check causes the compiler to output a bounds checking instruction. The bounds

expression must be of the format shown in the example.

Example:

__check (hMbx; 0; 1024);

The first expression must be greater than or equal to the second expression and

less than the third expression or a processor check interrupt will be invoked. Note

any valid expressions may be used.

__mulf
__mulf causes the compiler to output a fast, single cycle multiply instruction. The

fast multiply instruction is limited to 24 x 16 bits.

Example:

ndx = __mulf (row, 56);

align()

The align keyword is used to specify structure alignment in memory. For example

the following structure will be aligned on 64 byte boundaries even though the

structure itself is smaller in size.

struct my_struct align(64) {

 byte name[40];

}

Place the align keyword just before the opening brace of a structure or union

declaration.

7 | P a g e

Note that specifying the structure alignment overrides the compiler’s capability to

automatically determine structure alignment. Care must be taken to specify a

structure alignment that is at least the size of the structure.

Taking the size of a structure with an alignment specified returns the alignment.

and
‘and’ is defined as a keyword and is a synonym for ‘&&’. It can make code a little

more readable.

Example:

if (a and b) {

}

asm [__leafs]
The asm keyboard allows assembler code to be placed in a ‘C’ function. The

compiler does not process the block of assembler code, It simply copies it

verbatim to the output. Global variables may be referenced by name by following

the compiler convention of adding an ‘_’ to the name. Stack arguments have to be

specifically addressed referenced to the fp register. Register arguments can use

the register directly.

pascal void SetRunningTCB(hTCB ht)

{

 asm {

 lw tr,32[fp] ; this references the ht variable

 asli tr,tr,#10

 add tr,tr,#_tcbs ; this is a global variable reference

 }

}

The __leafs keyword indicates that the assembler code contains leafs (calls to

other functions). Using the __leafs keyword causes the compiler to emit code to

save and restore the subroutine linkage register.

// --

// Set an IRQ vector
// --

pascal void set_vector(unsigned int vecno, unsigned int rout)
{
 if (vecno > 255) return;
 if (rout == 0) return;
 asm __leafs {
 lw r2,32[fp]

8 | P a g e

 lw r1,40[fp]
 call set_vector
 }
}

9 | P a g e

case

Case statement may have more than one case constant specified by separating the

constants with commas.

CC64:

switch (option) {

case 1,2,3,4:

 printf(“option 1-4);

case 5:

 printf(“option 5”);

}

Standard C:

switch (option) {

case 1:

case 2:

case 3:

case 4:

 printf(“option 1-4);

case 5:

 printf(“option 5”);

}

catch (<type>)

The catch statement “catches” a specific type of object used for exception

handling. A catch handler corresponds to object type used in the throw statement.

If the thrown object is not of a type caught by a local catch handler, then a search

for the correct catch handler will continue at a more outer level.

class
CC64 features a simple class keyword which may be used to implement classes.

A class is very similar to a struct except that class methods may be declared to be

part of the class. Classes in CC64 can have only single inheritance.

10 | P a g e

delete (not working yet)
delete calls the run-time function __delete() to delete an object allocated by the

new operator. __delete() takes a pointer to the object and a pointer to the

function’s object list and removes the object from the object list. It then also

deallocates the object from the heap. If an object is deleted it is immediately

deallocated and is not garbage collected. Delete does not call an object destructor.

The object should be destroyed before using delete.

enum
The stride may be specified for the enumeration by following the enum keyword

with the parenthesized stride value. The value must be a constant. If not specified

the enumeration will increment by one.

In the following example the enumeration will decrement by 1 the value for each

enumerated constant. so BADARG is equal to -1. This may be useful in cases

where functions return a negative value indicating error or a positive value

indicating proper operation.

enum(-1) {

 OKAY = 0,

 BADARG

}

The following will increment the enumeration value by 32.

enum (0x20) {

 ErrorClass0 = 0,

ErrorClass1,

ErrorClass2

}

This may be useful to define constants for bit-fields. The following example

shows usage for a bit-field at bit position 7.

enum (0x80) {

GFX_POINT = 0,

GFX_LINE, // will equal 0x080

GFX_RECT // will equal 0x100

 }

epilog
The epilog keyword identifies a block of code to be executed as the function

epilog code. An epilog block maybe placed anywhere in a function, but the

compiler will output it at the function’s return point.

11 | P a g e

nocall myfunction()

{

 // other code

 epilog asm {

 // do some epilog work here, eg. setup return values

}

}

12 | P a g e

firstcall

The firstcall keyword defines a statement that is to be executed only once the first

time a function is called.

 firstcall {

 printf(“this prints the first time.”);

 }

The compiler automatically generates a static variable in the data segment that

controls the firstcall block. The firstcall statement is equivalent to:

static char first=1;

if (first) {

 first = 0;

 <other statements>

}

forever

Forever is a loop construct that allows writing an unconditional loop.

 forever {

 printf(“this prints forever.”);

 }

gcnew (not working yet)
The new operator generates a call to the run-time library function __gcnew().

__gcnew() takes the size and type of the object and a pointer to the function’s

object list. __gcnew() will allocate storage for the object on the heap, then add the

object to the list of objects created in the function. Objects allocated with gcnew

that are not deleted before the function exits are added to the garbage collection

list.

13 | P a g e

inline
The inline keyword may be applied to a function declaration to cause the compiler

to emit the function “inline” with other code. Every time the inline function is

called, the code for the function is replicated inline.

if
If statements can accept a branch hint to indicate if the branch should be statically

predicted as taken (1) or not taken (0). The prediction must be a constant value

determined at compile time. The syntax adds an options second expression ‘;’ into

the expression clause as shown below.

 if (a < 10; 1) // predict taken all the time

 …

nocall / naked

The nocall or naked keyword causes the compiler to omit all the conventional

stack operations required to call a function. (Omits function prologue and

epilogue code) It’s use is primarily to allow inline assembler code to handle

function calling conventions instead of allowing the compiler to handle the calling

convention. The naked keyword may also be applied to the switch() statement to

cause the compiler to omit bounds checking on the switch.

nocall myfunction()

{

 asm {

}

}

new (not working yet)
The new operator generates a call to the run-time library function __new().

__new() takes the size and type of the object and a pointer to the function’s object

list. __new() will allocate storage for the object on the heap, then add the object to

the list of objects created in the function. Objects allocated with new that are not

deleted before the function exits are added to the garbage collection list.

or
‘or’ is defined as a keyword and is a synonym for ‘||’. It can make code a little

more readable.

Example:

if (a or b) {

}

14 | P a g e

pascal

The pascal keyword causes the compiler to use the pascal calling convention

rather than the usual C calling convention. For the pascal calling convention,

function arguments are popped off the stack by the called routine. This may allow

slightly faster and smaller code in some circumstances.

pascal char myfunction(int arg1, int arg2)

{

}

prolog
The prolog keyword identifies a block of code to be executed as the function

prolog. A prolog block may be placed anywhere in a function, but the compiler

will output it at the function’s entry point.

nocall myfunction()

{

 prolog asm {

 // do some prolog work here, eg. setup stack parameters

}

}

15 | P a g e

switch
The naked keyword may be applied to the switch() statement to cause the

compiler to omit bounds checking. Normally the compiler will check the switch

variable to ensure that it’s within the range of the defined case values. With a

naked switch the compiler assumes that the switch value is between the minimum

and maximum case value in the switch statement. Naked switches result in faster

code, but results are undefined if the switch is out of range. For a naked switch if

the switch value isn’t valid then the program will likely crash. So use with

caution.

Regular switch:

; switch(btn) {
 lw r3,-32[bp]
 ldi r4,#1
 ldi r5,#9
 chk r3,r4,r5,BIOSMain_13
 sub r3,r3,#1
 shl r3,r3,#3
 lw r3,BIOSMain_19[r3]
 jal r0,0[r3]

Naked Switch:

; switch(btn; naked) {
 lw r3,-32[bp]
 sub r3,r3,#1
 shl r3,r3,#3
 lw r3,BIOSMain_19[r3]
 jal r0,0[r3]

Note that if the minimum case value is zero then the code may omit the subtract

of the minimum value making the switch slightly faster.

then
‘Then’ is defined as a keyword. It’s only purpose is to make code more readable.

It may be used with ‘if’ statements in which case it is ignored.

16 | P a g e

throw
Throw acts in a similar fashion to the return statement. Throw returns to the latest

catch handler. The latest catch handler does not have to be defined in the current

routine or a previous routine. Throwing an exception will walk backwards up the

stack to the most recently defined catch handler. Unlike c++ throw does not

automatically destroy objects created in the subroutine or method.

thread

The ‘thread’ keyword may be applied in variable declarations to indicate that a

variable is thread-local. Thread local variables are treated like static declarations

by the compiler, except that the variable’s storage is allocated in the thread-local-

storage segment (tls).

thread int varname;

try { }
Try defines a try – catch block. A block of statements followed by a series of

catch statements. Try causes the compiler to output code to point to the catch

block of the try statement. This pointer will be used by subsequent throw

statements.

typenum()

Typenum() works like the sizeof() operator, but it returns a hashcode representing

the type, rather than the size of the type. Typenum() can be used to identify types

at run-time.

struct tag { int i; };

main()

{

int n;

 n = typenum(struct tag);

}

17 | P a g e

The compiler numbers the types it encounters in a program, up to 10,000 types are

supported. Pointers to types add 10,000 to the hash number for each level of

pointer.

until

Until is a loop construct that allows writing a loop that continues until a condition

is true. Until and while are almost the same except that until waits for the inverted

condition.

 x = 0;

 until (x==10) {

 printf(“this prints 10 times.”);

 x = x + 1;

 }

using
The using keyword is used to activate features of CC64. In particular a name

mangler used for classes can be activated by using the phrase ‘using name

mangler;’ Without activating the name mangler all class methods have global

scope.

name mangler
The name mangler generates unique names for methods so that there is no name

clash for overloaded or derived methods. A hash string representing the type,

method parameter and return value types is added to the method name.

&&&
The &&& operator indicates to the compiler that a safe optimization is to

generate code that executes both sides of the operator then uses an ‘and’ operation

to determine the result. This may eliminate branches.

|||
The ||| operator indicates to the compiler that a safe optimization is to generate

code that executes both sides of the operator then uses an ‘and’ operation to

determine the result. This may eliminate branches.

18 | P a g e

??
The ?? ternary operator indicates to the compiler that a safe optimization is to

generate code that executes both sides of the operator then select between the

result. This may eliminate branches.

Character Constants
String constants may be pre-pended with one of ‘B’, ‘C’, ‘H’, or ‘W’ to indicate

the size of encoded characters. ‘B’ = byte, ‘C’ = char (16-bit), ‘H’ = halfword

(32-bit), and ‘W’ = word (64-bit).

Example: The following string is encoded as bytes:

B”? = display help”

String constants may also be placed inline with code using the letter ‘I’ as a

prefix. Inlined string constants are automatically 16-bit encoded to remain aligned

with instructions.

Block Naming
The compiler supports named compound statement blocks. To name a compound

statement follow the opening brace with a colon then the name.

void SomeFunc()

{

 while (x) {: x_name

 <other statements>

 }

}

An eventual goal for the compiler is to have the break statement be able to

identify which block statement to break out of.

19 | P a g e

Array Handling Differences from ‘C’

The following is “in the works”. It may or may not work.

Arrays may be passed by value using the standard declaration of an array as a

parameter. In ‘C’ arrays are always passed by reference.

In CC64:

SomeFn(int ary[50]) {

}

Declares a function that accepts an array of 50 integers passed by value. Declaring

the function the same way in ‘C’ results in a reference to the array being passed to

the function rather than the array values.

In order to pass an array by reference in CC64 the pointer indicator ‘*’ must be

used as in the following:

SomeFn(int *ary) {

}

It is not recommended to pass large arrays or structures around in a program by

value as program performance may be adversely affected. Passing aggregate types

by value causes the compiler to output code to copy the values. The alternative,

passing references around is significantly faster.

Exception handling
CC64 stores the current exception handler address in register r28. As the program

runs and try / catch blocks are encountered register r28 is updated to match the

current exception handler address. All a throw statement does then is load

registers with the exception type and exception value then jump to wherever r28

points.

 On function entry, the exception handler address of the calling function (r28) is

stored on the stack, and then register r28 is loaded with the address of the default

exception handler for the function. The default exception handler does nothing

more than move the stacked exception handler address into the link register and

then jump to the function return code. This causes an unhandled exception to

unwind the stack just as a return would, then return to the caller’s exception

handler address rather than the normal return address.

20 | P a g e

Because of the simplicity of the exception handling mechanism objects created in

the function are not automatically destroyed. That means it’s necessary to keep

track of which objects got created and destroy them in the catch handler.

Garbage Collection
If a function or method uses the new operator, then a call is made to the run-time

library function __AddGarbage() when the function returns. The __AddGarbage()

function moves objects off the function’s object list onto the garbage collector’s

list.

Return Block

