

Thor Guide

This document contains information pertaining to the Thor processor including
the instruction set and formats and softcore interfacing.

2015

robfinch@Finitron.ca
Finitron

1/1/2015

1 | P a g e

Table of Contents
Overview ... 9

Design Objectives .. 9

Programming Model ... 10

General Registers .. 10

Code Address Registers ... 12

Program Counter ... 13

Predicates.. 14

Predicate Conditions ... 14

Compiler Usage ... 15

Status Register (SR) ... 16

Debug Address Register (61,0 to 61,3) ... 17

Debug Control Register (61,4) .. 18

Debug Status Register (61,5)... 18

Operating Modes .. 19

Segmentation .. 20

Software Support .. 20

Address Formation: ... 20

Selecting a segment register ... 20

Non-Segmented Code Area .. 20

Changing the Code Segment ... 21

Segment Usage Conventions .. 21

Power-up State ... 21

Segment Registers... 21

TLB ... 22

TLB Registers ... 24

TLBWired (#0h) ... 24

TLBIndex (#1h) .. 24

TLBRandom (#2h) .. 24

TLBPageSize (#3h) ... 24

TLBPhysPage (#5h) .. 24

TLBVirtPage (#4h) .. 25

2 | P a g e

TLBASID (#7h) .. 25

Memory Operations: ... 26

Basic Operations ... 26

Memory Addressing Modes .. 26

Pre-fetching data .. 26

Bypassing the Data Cache ... 26

Push Operations .. 26

Load Speculation ... 26

Store Issuing .. 26

Address Reservation ... 26

Synchronization Operations .. 27

Exceptions ... 28

Precision .. 28

Nesting .. 28

Vectors .. 28

Vector table:.. 28

Hardware Ports ... 30

Reset ... 30

Clock Cycle Counts .. 31

Core Parameters ... 32

Instruction Formats ... 33

RR - Register-Register ... 33

RI - Register-Immediate .. 33

CMP Register-Register Compare ... 33

CMPI Register-Immediate Compare ... 33

TST - Register Test Compare ... 33

CTRL- Control .. 33

BR - Relative Branch .. 33

BRK/NOP ... 33

RTS... 33

JSR - Jump To Subroutine .. 33

Instruction Set Summary .. 35

3 | P a g e

Branch Instructions ... 35

Branch Speculation ... 35

Loops ... 35

Subroutine Call / Return ... 35

Comparison Operations .. 35

Arithmetic Operations .. 35

Bitwise Operations .. 36

Logical Operations .. 36

Detailed Instruction Set .. 37

2ADDU - Register-Register .. 37

2ADDUI - Register-Immediate ... 38

4ADDU - Register-Register .. 39

4ADDUI - Register-Immediate ... 40

8ADDU - Register-Register .. 41

8ADDUI - Register-Immediate ... 42

16ADDU - Register-Register .. 43

16ADDUI - Register-Immediate ... 44

ABS – Absolute Value Register .. 45

ADD - Register-Register ... 46

ADDI - Register-Immediate ... 47

ADDU - Register-Register .. 48

ADDUI - Register-Immediate ... 49

AND - Register-Register .. 50

ANDC – And with Complement ... 51

ANDI - Register-Immediate ... 52

BCDADD - Register-Register .. 53

BCDMUL - Register-Register ... 54

BCDSUB - Register-Register... 55

BFCHG – Bit-field Change .. 56

BFCLR – Bit-field Clear ... 57

BFEXT – Bit-field Extract .. 58

BFEXTU – Bit-field Extract Unsigned ... 59

4 | P a g e

BFINS – Bit-field Insert .. 60

BFINSI – Bit-field Insert Immediate ... 61

BFSET – Bit-field Set .. 62

BITI – Test bits Register-Immediate .. 63

BR - Relative Branch .. 64

BRK –Break .. 65

BSR - Branch to Subroutine ... 66

CACHE – Cache Command .. 67

CAS – Compare and Swap ... 68

CLI – Clear Interrupt Mask .. 69

CMP Register-Register Compare ... 70

CMPI Register-Immediate Compare ... 71

CNTLO- Count Leading Ones ... 72

CNTLZ- Count Leading Zeros ... 73

CNTPOP- Population Count ... 74

COM – Bitwise Complement ... 75

CPUID – CPU Identification ... 76

DIV - Register-Register Divide ... 77

DIVI - Register-Immediate Divide .. 78

DIVIU – Unsigned Register-Immediate Divide .. 80

DIVU – Unsigned Register-Register Divide .. 81

ENOR - Register-Register... 82

EOR - Register-Register ... 83

EORI - Register-Immediate .. 84

INC – Increment Memory ... 85

IMM64,IMM56,IMM48,IMM40,IMM32,IMM24,IMM16.. 86

INT –Interrupt ... 87

JMP - Jump To Address ... 88

JSR - Jump To Subroutine Instruction ... 89

LB – Load Byte ... 90

LBU – Load Byte Unsigned .. 91

LBUX – Load Byte Unsigned Indexed .. 92

5 | P a g e

LBX – Load Byte Indexed ... 93

LC – Load Character .. 94

LCL – Load Cache Line ... 95

LCU – Load Character Unsigned .. 96

LCUX – Load Character Unsigned Indexed .. 97

LCX – Load Character Indexed .. 98

LDI - Load-Immediate .. 99

LDIS - Load-Immediate Special .. 100

LEA – Load Effective Address .. 101

LH – Load Half-Word ... 102

LHU – Load Half-word Unsigned ... 104

LHUX – Load Half-word Unsigned Indexed ... 105

LHX – Load Half-word Indexed .. 106

LOOP – Loop Branch ... 107

LVB – Load Volatile Byte ... 108

LVC – Load Volatile Character ... 109

LVH – Load Volatile Half-word .. 110

LVW – Load Volatile Word .. 111

LVWAR – Load Volatile Word and Reserve ... 112

LW – Load Word .. 113

LWS – Load Word Special .. 114

LWX – Load Word Indexed .. 115

MAX - Register-Register .. 116

MEMDB – Memory Data Barrier ... 117

MEMSB – Memory Synchronization Barrier ... 118

MFSPR – Special Register-Register.. 119

MIN - Register-Register ... 120

MLO – Mystery Logical Operation .. 121

MOV - Register-Register.. 122

MOVS – Move Special Register- Special Register ... 123

MTSPR –Register-Special Register .. 124

MUL - Register-Register Multiply .. 125

6 | P a g e

MULI - Register-Immediate Multiply .. 126

MULU – Unsigned Register-Register Multiply .. 127

MULUI – Unsigned Register-Immediate Multiply ... 128

MUX – Multiplex ... 129

NAND - Register-Register .. 130

NEG - Negate Register ... 131

NOP – No Operation ... 132

NOR - Register-Register .. 133

NOT – Logical Not .. 134

OR - Register-Register ... 135

ORC – Or with Complement .. 136

ORI - Register-Immediate .. 137

ROL – Rotate Left .. 138

ROLI – Rotate Left by Immediate .. 147

ROR – Rotate Right .. 148

RORI – Rotate Right by Immediate ... 149

RTD – Return from Debug Exception Routine... 150

RTE – Return from Exception Routine .. 151

RTI – Return from Interrupt Routine .. 152

RTS – Return from Subroutine .. 153

SB – Store Byte .. 155

SBX – Store Byte Indexed .. 156

SC – Store Character ... 157

SCX – Store Character Indexed ... 158

SEI – Set Interrupt Mask .. 159

SH – Store Half-word ... 160

SHL – Shift Left .. 161

SHLI – Shift Left by Immediate .. 162

SHLU – Shift Left Unsigned .. 163

SHLUI – Shift Left Unsigned by Immediate ... 164

SHR – Shift Right.. 165

SHRI – Shift Right by Immediate ... 166

7 | P a g e

SHRU – Shift Right Unsigned ... 167

SHRUI – Shift Right Unsigned by Immediate ... 168

SHX – Store Half-word Indexed ... 169

STCMP – String Compare .. 170

STFND – String Find ... 171

STI – Store Immediate ... 172

STIX – Store Immediate Indexed ... 173

STMV – String Move .. 174

STP – Stop / Slow Down .. 175

STSB – Store String Byte .. 176

STSC – Store String Character ... 177

STSH – Store String Half-word ... 178

STSW – Store String Word... 179

SUB - Register-Register ... 180

SUBI - Register-Immediate .. 181

SUBU - Register-Register ... 182

SUBUI - Register-Immediate ... 183

SW – Store Word ... 184

SWCR – Store Word and Clear Reservation .. 185

SWS – Store Word Special ... 186

SWX – Store Word Indexed ... 187

SXB – Sign Extend Byte .. 188

SXC – Sign Extend Character ... 189

SXH – Sign Extend Half-word .. 190

SYNC – Synchronization Barrier .. 191

SYS –Call system routine ... 192

TLB – TLB Command.. 193

TST - Register Test Compare ... 195

ZXB – Zero Extend Byte ... 196

ZXC – Zero Extend Character .. 197

ZXH – Zero Extend Half-word .. 198

Opcode Map.. 199

8 | P a g e

9 | P a g e

Overview

Thor is a powerful 64 bit superscalar processor that represents a generational refinement of processor
architecture. The processor contains 64, 64 bit general purpose integer registers. Thor uses variable length
instructions varying between one and eight bytes in length and handles 8, 16, 32, and 64 bit data within a 64
bit address space.

Design Objectives

This processor is somewhat pedantic in nature and targeted towards high performance operation as a
general purpose processor. Following are some of the criteria that were used on which to base the design.

 Designed for Superscalar operation - the ability to execute more than one instruction at a
time. To achieve high performance it is generally accepted that a processor must be able
to execute more than a single instruction in any given clock cycle.

 Simplicity - architectural simplicity leads to a design that is easy to implement resulting in
reliability and assured correctness along with easy implementation of supporting tools
such as compilers. Simplicity also makes it easier to obtain high performance and results in
lower overall cost.

 Extensibility - the design must be extensible so that features not present in the first
release can easily be added at a later date.

 Low Cost

This design meets the above objectives in the following ways. The instruction set has been designed to
minimize the interactions between instructions, allowing instructions to be executed as independent units
for superscalar operation. There are a sufficient number of registers to allow the compiler to schedule
parallel processing of code. A reasonably large general purpose register set is available making the design
reasonably compatible with many existing compilers and assemblers. Where needed, additional specialized
instructions have been added to the processor to support a sophisticated operating system and interrupt
management.

10 | P a g e

Programming Model

General Registers
There are 64 general purpose registers. General purpose registers are 64 bits wide. The general

registers may hold integer or floating point values.

Register #0 is always zero.

r0 always zero LC Loop Counter

r1 return value

r2 return value C0 always zero

r3 C1 return address

r4 C2

r5 C3

r6 C4

r7 C5

r8 C6

r9 C7

r10 C8

r11 C9

r12 C10 catch link address

r13 C11 debug return address

r14 C12 exception table pointer

r15 C13 exceptioned PC

r16 C14 interrupted PC

r17 C15 program counter, read only

r18

r19 ZS zero segment

r20 DS data segment

r21 ES extra segment

r22 FS

r23 GS

r24 HS

r26 Base Pointer SS stack segment

r27 User Stack Pointer1 CS code segment

r28 Accessible only in kernel
mode

r29 DBAD0 Debug Address #0

r30 DBAD1 Debug address #1

r31 DBAD2 Debug address #2

r32/F0 Floating point DBAD3 Debug Address #3

… DBCTRL Debug Control

r63/F31 DBSTAT Debug Status

11 | P a g e

 1 this register is implied in the push and rts instructions, and updated by hardware

12 | P a g e

Code Address Registers
The processor contains sixteen code address registers (C0-C15). Several of the registers are

reserved for predefined purposes. A code address register is used in the formation and storage

of code addresses.

Reg # Usage

0 Always Zero Absolute address formation

1 Subroutine return address

2 This register is available for general use.

3 This register is available for general use.

4 This register is available for general use.

5 This register is available for general use.

6 This register is available for general use.

7 This register is available for general use.

8 This register is available for general use.

9

10 Catch Link Register Used by the compiler to link to try/catch handlers.

11 Debug Exception PC This register is set when a debug exception occurs

12 Exception Table Pointer This register points to the exception table in memory.

13 Exceptioned PC This register is set when an exception occurs

14 Interrupted PC This register is automatically set during a hardware
interrupt

15 Program Counter Relative address formation.

Code address registers may be used to point to a block of code from which the JSR instruction

can index into with its 24 bit offset. For instance a register may contain a pointer to a class

method jump list; the JSR instruction can then index into this list in order to invoke a method.

The presence of multiple code address registers allows multi-level return addresses to be used

for performance. Leaf routines may use C1 as the return address. Next to leaf routines may use

C2, etc. So that memory operations are avoided when implementing subroutine call and return.

The program counter register is read-only. The program counter cannot be modified by moving

a value to this register.

Setting of code address register #12 should be followed with a SYNC instruction. The core

assumes c12 is essentially static and does not provide full bypassing for this register. The

register value may be stale until the sync instruction executes.

13 | P a g e

Program Counter

63 32 31 0

Program Bank Program Counter

The program counter is special in that it is always incrementing by the size of the instructions

fetched as a program runs. Program code is byte aligned. To improve performance only the low

order 32 bits of the program counter increment. The entire program counter may be loaded

with a jump instruction. If the upper four bits of the program counter/ bank are all ones, then

segmentation with the code segment is ignored.

14 | P a g e

Predicates
The processor features predicated execution of all instructions. Whether or not an instruction is

executed depends on the contents of a predicate register and the predicate condition specified

in the predicate byte. There are 16 predicate registers each of which hold three flags. These

flags are set as the result of a compare operation. The flags represent equality (eq) signed less

than (lt) and unsigned less than (ltu).

3 2 1 0

~ ltu lt eq

All instructions are executed conditionally determined by the value of a predicate register. The

special predicate 00 executes the break vector.

Predicate Conditions

Cond. Test

0 PF 0 Always false – Instructions predicated with condition zero never
execute regardless of the predicate register contents. This is used
for extended immediate values as well. The false predicate byte
for instructions is 90h.

1 PT 1 Always True – The instruction predicated with an always true
condition always executes regardless of the predicate register
contents. The always true predicate byte is 01h. Other true
predicates are instruction short-forms.

2 PEQ eq Equal – instruction executes if the predicate register equal flag is
set

3 PNE !eq Not Equal – instruction executes if the predicate register equal
flag is clear

4 PLE lt|eq Less or Equal – predicate less or equal flag is set

5 PGT !(lt|eq) greater than

6 PGE !lt greater or equal

7 PLT lt less than

8 PLEU ltu|eq unsigned less or equal

9 PGTU !(ltu|eq) unsigned greater than

10 PGEU
POR

!ltu unsigned greater or equal
Ordered for floating point

11 PLTU
PUN

ltu unsigned less than
Unordered for floating point

12

13 PSIG signal execute if external signal is true

14

15

15 | P a g e

Compiler Usage

The compiler uses predicate register #15 to conditionally move TRUE / FALSE values to a register

when evaluating a logical operation.

Predicate registers beginning with P0 and incrementing are applied for use as the control flow

nesting level increases. The compiler does not support control flow nesting more than 14 levels

in a single subroutine. Predicate registers beginning with P14 and decrementing are used in the

evaluation of the hook operator. Care must be taken such that the number of predicate

registers in use does not exceed the number available.

Pred. Usage

P0 control flow level 0

P1 control flow nesting level 1

P2 control flow nesting level 2

…

Pn control flow nesting level n (n not to exceed 14)

…

P12 third hook operator in an expression

P13 second hook operator in an expression

P14 first hook operator in an expression

P15 conditionally moves TRUE/FALSE for logical expressions

16 | P a g e

Status Register (SR)

This register contains bits that control the overall operation of the processor or reflect the processor’s
state. Bits are included for interrupt masking, and system / application mode indicator. This register is
split into two halves with both halves having the same format. The lower half of the register is what
determines how the processor works. The upper half of the register maintains a backup copy of the lower
half for interrupt processing. There are instructions provided for manipulating the interrupt mask.

31..16 15 14 13 12 11..8 7..0

same format as

15..0

Interrupt

Mask
Reserved

Kernel / Application

Mode Indicator

Float Except.

Enable

 IM ~ S FXE

 The Kernel / Application Mode indicator is read-only.

IM = interrupt mask

Maskable interrupts are disabled when this bit is set.

17 | P a g e

Debug Address Register (61,0 to 61,3)
These registers contain addresses of instruction or data breakpoints.

63 0

Address 63..0

18 | P a g e

Debug Control Register (61,4)
This register contains bits controlling the circumstances under which a debug interrupt will

occur.

bits

3 to 0 Enables a specific debug address register to do address matching. If
the corresponding bit in this register is set and the address
(instruction or data) matches the address in the debug address
register then a debug interrupt will be taken.

17, 16 This pair of bits determine what should match the debug address
register zero in order for a debug interrupt to occur.

17:16

00 match the instruction address

01 match a data store address

10 reserved

11 match a data load or store address

19, 18 This pair of bits determine how many of the address bits need to
match in order to be considered a match to the debug address
register. These bits are ignored when matching instruction addresses,
which are always half-word aligned.

19:18 Size

00 all bits must match byte

01 all but the least significant bit should match char

10 all but the two LSB’s should match half

11 all but the three LSB’s should match word

23 to 20 Same as 16 to 19 except for debug address register one.

27 to 24 Same as 16 to 19 except for debug address register two.

31 to 28 Same as 16 to 19 except for debug address register three.

62

63

Debug Status Register (61,5)
This register contains bits indicating which addresses matched. These bits are set when an

address match occurs, and must be reset by software.

bit

0 matched address register zero

1 matched address register one

2 matched address register two

3 matched address register three

63 to 4 not used, reserved

19 | P a g e

Operating Modes
The core operates in one of two modes: application/user mode or kernel mode. Kernel mode is

switched to when an interrupt or exception occurs. On power-up the core is running in kernel

mode. An RTI instruction must be executed in order to leave kernel mode after power-up.

A subset of instructions is limited to kernel mode.

20 | P a g e

Segmentation
The processor contains eight segment registers. The segment register to use during address

formation for data addresses is identified by a field in the instruction. This field is set to default

values by the assembler. For code addresses segment register #7 (the CS) is always used.

 If segmentation is not desired then segmentation can effectively be ignored by setting all

the segment registers to zero. The processor can also be built without segmentation by

commenting out the ‘SEGMENTATION’ definition.

Software Support
Segment registers may only be transferred to or from one of the general purpose registers. The

mtspr and mfspr instructions can be used to perform the move. A segment register may also be

loaded using the LDIS instruction. After loading a segment register the instruction stream should

be synchronized with a memory barrier (MEMSB) to ensure the segment value can be ready for

a following memory operation.

Address Formation:
Non-segmented address bits 0 to 11 pass through the segmentation module unchanged.

Address bits 63 to 12 are added to the contents of the segment register to form the final

segmented address. Note that there is no shift associated with the segment addition. Future

implementations of the processor may include additional low order address bits in the segment

register in order to allow a finer grain for memory page / paragraph size.

Address[63:12] Address[11:0]

+ +

Segment register value[63:12] 00012

=

Segmented address[63:0]

Selecting a segment register
A specific segment register for a memory operation may be selected using a segment prefix in

assembler code. Segment prefixes apply to data addresses only. Code addresses always use

segment register #7 – the code segment.

Non-Segmented Code Area
The address range defined as 64’hFxxxxxxxxxxxxxxx (the top nibble is ‘F’) is a non-segmented

code area. This area allows the operating system to work without paying attention to the code

segment. Interrupt and exception vectors should vector into the non-segmented code area. The

only way to change the code segment is by transferring to the operating system via a sys call

instruction.

21 | P a g e

Changing the Code Segment
The only way to change the code segment is by transferring to the operating system via a sys call

instruction. The operating system, while operating in the non-segmented code area, can alter

the code segment without causing a transfer of control. The operating system establishes the

code segment for a task while running in the non-segmented code area.

Segment Bounds
If an address is greater than or equal to the limit specified in the segment limit register then a

segment limit exception occurs. This applies for all segments including code and data segments.

Segment Usage Conventions
Segment register #7 is the code segment (CS) register. All program counter addresses are

formed with the code segment register unless the upper nibble of the address is ‘F’ in which

case the code segment is ignored.

Segment register #6 is the stack segment (SS) register by convention. Future versions of the core

may use this register implicitly for stack accesses. Segment register #1 is the data segment (DS)

by convention.

Power-up State
On reset the value in the segment registers are undefined. Note that the processor begins

executing instructions out of the non-segmented code area as the reset address is

64’hFFFFFFFFFFFFEFF0. One of the first tasks of the boot program would be to initialize the

segment registers to known values. The segment register must be setup to perform data

accesses properly.

Segment Registers

Num Long name Comment

0 ZS zero (NULL) segment by convention contains zero

1 DS data segment by convention – default for loads/stores

2 ES extra segment by convention

3 FS

4 GS

5 HS

6 SS Stack segment default for stack load/stores

7 CS Code segment always used for code addressing

22 | P a g e

TLB

The processor uses a 64 entry TLB (translation look-aside buffer) in order to support virtual memory. The TLB

supports variable page sizes from 4kB to 1MB. The TLB is organized as an eight-way eight-set cache.

The TLB is updated by first placing values into the TLB holding registers using the TLB instruction, then issuing

a TLB write command using the TLB command instruction.

Address translations will not take place until the TLB is enabled. An enable TLB command must be issued

using the TLB command instruction.

TLB Entries:

G = Global

The global bit marks the TLB entry as a global address translation where the ASID field is

not used to match addresses.

ASID = address space identifier

The ASID field in the TLB entry must match the processor’s current ASID value in order

for the translation to be considered valid, unless the G bit is set. If the G bit is set in the

TLB entry, then the ASID field is ignored during the address comparison.

C = cachability bits

If the cachability bits are set to 001b then the page is uncached, otherwise the page is

cached.

D = dirty bit

The dirty bit is set by hardware when a write occurs to the virtual memory page

identified by the TLB entry.

Virtual Page
51...0

 Physical Page
51...0

ASID
7...0

 G V D C
2..0

23 | P a g e

V = valid bit

This bit must be set in order for the address translation to be considered valid. The

entire TLB may be invalidated using the invalidate all command.

24 | P a g e

TLB Registers

TLBWired (#0h)

This register limits random updates to the TLB to a subset of the available number of

ways. TLB ways below the value specified in the Wired register will not be updated

randomly. Setting this register provides a means to create fixed translation settings. For

instance if the wired register is set to two, the sixteen fixed entries will be available.

TLBIndex (#1h)

 This register contains the entry number of the TLB entry to be read from or written to.

TLBRandom (#2h)

This register contains a random three bit value used to update a random TLB entry

during a TLB write operation.

TLBPageSize (#3h)

The TLBPageSize register controls which address bits are significant during a TLB lookup.

TLBPhysPage (#5h)
The TLBPhysPage register is a holding register that contains the page number for an associated

virtual address. This register is transferred to or from the TLB by TLB instructions.

63 0

Physical Page Number

N Page Size

0 4KiB

1 16kiB

2 64kiB

3 256kiB

4 1MiB

25 | P a g e

TLBVirtPage (#4h)

The TLBVirtPage register is a holding register that contains the page number for an associated

physical address. This register is transferred to or from the TLB by TLB instructions.

63 0

Virtual Page Number

TLBASID (#7h)

The TLBASID register is a holding register that contains the address space identifier (ASID) , valid,

dirty, global, and cachability bits associated with a TLB entry. This register is transferred to or

from the TLB by TLB instructions.

63 16 15 8 6 4 2 1 0

----- ASID C G D V

26 | P a g e

Memory Operations:

Basic Operations
Basic memory operations include loads, stores, pushes, pops and string operates. Other than

those operations there are no other instructions that access memory. Note that return

addresses are not pushed onto the stack automatically.

Memory Addressing Modes
The core supports both register indirect with displacement and scaled indexed addressing.

Indexed addressing is supported only with the general purpose register load store operations.

Pre-fetching data
The load instructions may be used to pre-fetch data by specifying a load into register R0. If R0 is

used as the load target register then the load operation will not cause any exception.

Bypassing the Data Cache
There are several load instructions that bypass the data-cache when loading – see the load

volatile (LVx) instructions. These instructions are useful for I/O operations or for when it is

better if the data cache is not loaded for performance reasons.

The volatile load instructions only offer sign extension and not zero extension. To zero extend

data loaded by a volatile load operation follow it with one of the zero extension (ZXx)

instructions.

Push Operations
The core supports a data push to stack and data pop operation. The data push operation both

decrements the stack pointer and stores data to the stack. Argument pushing is commonly used

in high-level languages. Subroutine arguments pushed to the stack in high-level languages are

usually popped off the stack simply by adding to the stack pointer.

An additional push operation includes pushing an effective address to the stack.

Load Speculation
The core may load data speculatively in advance of its use provided there is no address overlap

with a preceding store instruction.

Store Issuing
Stores will only be issued if there are no instructions that can exception before the store in the

instruction queue. Since many instructions do not cause any exceptions this happens fairly

often.

Address Reservation
The address reservation instructions rely on the external memory system to support address

reservation. There are only two instruction (LVWAR, SWCR) associated with address reservation.

27 | P a g e

The load instruction creates an address reservation and the store instruction clears it. In a multi-

core system the reservation may be created or cleared by another processing core.

Synchronization Operations
The core includes memory data barrier and memory instruction barrier instructions to allow

data to be synchronized during program runs.

28 | P a g e

Exceptions

Precision
Thor’s exceptions are precise. They are processed in order at the location of the exception. For

instance if a divide by zero exception occurred then the exception return address is the address

of the divide by zero instruction. Instructions after the divide by zero are not committed to the

machine state (the results are dropped).

Nesting
Software exceptions are allowed to nest up to 255 levels. The nesting level is tracked by the core

and when it is non-zero the core is in kernel mode. When an exception occurs the nesting level

increases, when a return from exception is performed (RTE or RTD) the nesting level decreases.

From a software standpoint this allows exceptions to occur in an exception handler. For instance

it may be desirable for a debug exception to occur in the handler.

Hardware interrupts do not track the nesting level. The core does not allow nested hardware

interrupts. When a hardware interrupt occurs the core is switched to kernel mode.

Vectors
The processor vectors to $FFFFFFFFFFFFEFF0 on a reset. All other vectoring is done through a

vector table. The vector table allows for 256 entries. The vector table base address is established

by code address register C12. During an external IRQ the processor looks at a vector number bus

to determine the vector to use for the IRQ. This vector number may be hard-coded in which

case all IRQ’s will be vectored to the same location. The address vectored to is the sum of C12

and an offset supplied in the instruction multiplied by sixteen. The contents of C12 are

undefined at reset; this register must be loaded before interrupts can be processed. Note that

segmentation is temporarily disabled during exception processing to allow the vector to be

accessed.

Vector table:

Vector
Number

Usage / Description

0 BREAK instruction vector

1 SLEEP vector (branch to self)

2 Task reschedule interrupt

…

192 Spurious interrupt

193 IRQ level 1 1000 Hz interrupt

194 IRQ level 2 100 Hz interrupt

… Other IRQ levels

207 IRQ level 15 keyboard interrupt

…

240 overflow (integer)

241 divide by zero (integer)

29 | P a g e

242 floating point

243 debug

244 segmentation

…

248 DTLBMiss

249 ITLB Miss

250 Unimplemented instruction

251 Bus error – data load / store

252 Bus error – instruction fetch

253 reserved

254 NMI interrupt vector

255 - reserved

30 | P a g e

Hardware Ports
Thor uses a WISHBONE bus to communicate with the outside world.

 I/O Width WB

corenum I 32 core number – this number is used to identify the
core and is reflected in the cpuid register. Meant to
be a hardcoded constant.

rst_i I 1 WB reset signal

clk_i I 1 WB clock

clk_o O 1 output (gated) clock

km O 1 kernel mode indicator

nmi_i I 1 non-maskable interrupt input

irq_i I 1 maskable interrupt input

vec_i I 8 interrupt vector

bte_o O 2 WB burst type extension

cti_o O 3 WB cycle type indicator

bl_o O 5 burst length output

lock_o O 1 WB bus lock

resv_o O 1 reserve address

resv_i I 1 address reservation status in

cres_o O 1 clear address reservation

cyc_o O 1 WB cycle is valid

stb_o O 1 WB data transfer is taking place

ack_i I 1 WB data transfer acknowledge

err_i I 1 WB bus error occurred input

we_o O 1 WB write enable

sel_o O 8 WB byte lane selects

adr_o O 64 WB address output

dat_i I 64 WB data input bus

dat_o O 64 WB data output bus

WB = see the WISHBONE spec rev B3

Reset
On reset the core begins fetching and executing instruction at address $FFFFFFFFFFFFEFF0. Note

that the last 4k bytes of memory are unreachable to the processing core due to limitations in

the segment boundary checking. The last 4k bytes should not be used to store instructions or

data.

On power-up or reset interrupts are disabled automatically, In order to enable interrupts the RTI

instruction must be executed. An RTI automatically enables interrupts. Note that the interrupt

mask must also be cleared with the CLI instruction to allow maskable interrupts to occur.

31 | P a g e

After reset or NMI the core begins processing at a half the maximum clock rate. The STP

instruction must be issued to get the processer running at full speed.

Clock Cycle Counts
The core has a minimum CPI of 0.5 clocks per instruction running trivial sample code. Many

instructions can be done in pairs provided there are no dependencies between the instructions.

Due to the out of order execution ability of the core the latency of longer running instructions

may be hidden. The core may be busy working on up to four instructions at once: two ALU or an

ALU and memory op, a floating point op and a branch instruction.

32 | P a g e

Core Parameters
DBW 32 The parameter controls the width of data processed by the core. Set to 64

for 64 bit processing. This parameter should be either 64 or 32. If the width
is set to 32 bit then double precision floating point operations are
unavailable.

ABW 32 This parameter controls the width of the external address bus.

ALU1BIG 0 This parameter controls whether or not ALU1 supports all instructions or
only a subset of instructions. The default is to support only the most
common instructions. (0 = limited, 1 = all) in order to reduce the size of the
core.
Limiting the number of instructions supported may impact performance of
the core because it may not be possible to issue two instructions in the
same cycle.

33 | P a g e

Instruction Formats
Instructions vary in length from one to eight bytes. There are only a few of single byte

instructions consisting of only a predicate. Some of the more common formats are shown

below.

All instruction sequences begin with a predicate byte that determines the conditions under

which the instruction executes. With the exception of special predicate values, the next field in

the instruction is always the opcode byte. All instructions may be preceded by an extended

constant value.

RR - Register-Register

39 34 33 28 27 22 21 16 15 8 7 0

Func Rt Rb Ra Opcode Predicate

Func6 Rt6 Rb6 Ra6 Opcode8 Pn4 Pc4

RI - Register-Immediate

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 Opcode8 Pn4 Pc4

CMP Register-Register Compare

31 28 27 22 21 16 15 12 11 8 7 0

Opc4 Rb6 Ra6 14 Pt4 Pn4 Pc4

CMPI Register-Immediate Compare

31 22 21 16 15 12 11 8 7 0

Immed9..0 Ra6 24 Pt4 Pn4 Pc4

TST - Register Test Compare

CTRL- Control
2322 21 16 15 12 11 8 7 0 15 8 7 0

O2 Ra6 04 Pt4 Pn4 Pc4 Opcode8 Pn4 Pc4

BR - Relative Branch

BRK/NOP RTS
23 16 15 8 7 0 7 0 7 0

 Disp7..0 34 D11..8 Pn4 Pc4 0/14 04 14 14

JSR - Jump To Subroutine

47 24 23 16 15 8 7 0

Offset23..0 Cr4 Crt4 Opcode8 Pn4 Pc4

34 | P a g e

35 | P a g e

Instruction Set Summary
A number of rarely used instructions may only execute on ALU #0. These instructions are

identified in the text.

Branch Instructions
The core has only a single relative branch instruction which branches relative to the address of

the next instruction. This single branch instruction may be used to implement branching on

multiple complex conditions when combined with a predicate. The branch instruction supports a

12 bit displacement field.

Branch Speculation

Branches are performed speculatively in the fetch stage of the core according to branch

predictor output. Branches use a (2, 2) co-relating branch predictor with a 256 entry branch

history table. Both global and local branch histories are maintained.

Loops
There is a loop instruction and corresponding loop count register to support counted loops. The

loop instruction is predicted as always taken and does not consume room in the branch history

table. Like a branch instruction a loop instruction takes place at the fetch stage of the core. The

loop instruction supports only and eight bit displacement field which may not be extended.

Subroutine Call / Return
Program counter relative jumps and calls may be achieved using the program counter as the

index register in jump instructions. The jump instruction directly supports up to 24 bit

addressing. A shorter jump instruction is available that supports 16 bit addressing. The

addressing capabilities of the jump instruction may be increased by applying an immediate

prefix to the instruction. It is envisioned that the 16/24 bit jump addressing is sufficient for most

cases when combined with usage of the code segment.

Comparison Operations
Comparison operations include CMP and TST (compare to zero). Comparison operations set a

predicate register to the result status of the comparison.

Arithmetic Operations
Mnemonic

ADD addition

ADDU unsigned addition

SUB subtraction

SUBU unsigned subtraction

MUL multiplication

MULU

DIV division

DIVU

NEG negative

36 | P a g e

ABS absolute value

MIN minimum value

MAX maximum value

Bitwise Operations
Bitwise operations include ‘and’, ‘or’ and exclusive ‘or’ along with their inverted versions.

Mnemonic Has Immediate Form

AND Y

OR Y

EOR Y

NAND N

NOR N

ENOR N

ANDC N

ORC N

COM N invert bits

Logical Operations
The core includes the logical ‘not’ (NOT) operation. The NOT operation reduces the value to a

one or zero result.

37 | P a g e

Detailed Instruction Set

2ADDU - Register-Register

Description:

Multiply Ra by two and add Rb and place the sum in the target register. This instruction will

never cause an overflow exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

08h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 2 + Rb

Exceptions: none

38 | P a g e

2ADDUI - Register-Immediate

Description:

Multiply Ra by two and add immediate and place the sum in the target register. This instruction

will never cause an overflow exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 6Bh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 2 + immediate

Exceptions: none

39 | P a g e

4ADDU - Register-Register

Description:

Multiply Ra by four and add Rb and place the sum in the target register. This instruction will

never cause an exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

09h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 4 + Rb

Exceptions: none

40 | P a g e

4ADDUI - Register-Immediate

Description:

Multiply Ra by four and add immediate and place the sum in the target register. This instruction

will never cause an exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immed11..0 Rt6 Ra6 6Ch8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 4 + immediate

Exceptions: none

41 | P a g e

8ADDU - Register-Register

Description:

Multiply Ra by eight and add Rb and place the sum in the target register. This instruction will

never cause an exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

0Ah6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 8 + Rb

Exceptions: none

42 | P a g e

8ADDUI - Register-Immediate

Description:

Multiply Ra by eight and add immediate and place the sum in the target register. This instruction

will never cause an exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immed11..0 Rt6 Ra6 6Dh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 8 + immediate

Exceptions: none

43 | P a g e

16ADDU - Register-Register

Description:

Multiply Ra by sixteen and add Rb and place the sum in the target register. This instruction will

never cause an exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

0Bh6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 16 + Rb

Exceptions: none

44 | P a g e

16ADDUI - Register-Immediate

Description:

Multiply Ra by sixteen and add immediate and place the sum in the target register. This

instruction will never cause an exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immed11..0 Rt6 Ra6 6Eh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra * 16 + immediate

Exceptions: none

45 | P a g e

ABS – Absolute Value Register

Description:

This instruction takes the absolute value of a register and places the result in a target register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

34 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

If Ra < 0

 Rt = -Ra

 else

 Rt = Ra

Exceptions: none

46 | P a g e

ADD - Register-Register

Description:

Add two registers and place the sum in the target register. This instruction may cause an

overflow exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

00h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra + Rb

Exceptions: integer overflow

47 | P a g e

ADDI - Register-Immediate

Description:

Add a register and immediate value and place the sum in the target register. This instruction

may cause an overflow exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 48h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra + immediate

Exceptions: integer overflow

48 | P a g e

ADDU - Register-Register

Description:

Add registers Ra and Rb and place the result into register Rt. This instruction will never cause

any exceptions.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

04h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra + Rb

Exceptions: none

49 | P a g e

ADDUI - Register-Immediate

Description:

Add a register and immediate value and place the sum in the target register. This instruction will

never cause an exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 4Ch8 Pn4 Pc4

31 22 21 16 15 8 7 0

Immediate9..0 Rt6 47h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra + Immediate

Exceptions: none

50 | P a g e

AND - Register-Register

Description:

Bitwise and’s two registers and places the result in a target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

00h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra & Rb

Exceptions: none

51 | P a g e

ANDC – And with Compliment

Description:

Bitwise and’s a register Ra with the compliment of register Rb and places the result in a target

register. There is no immediate form for this instruction.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

06h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra & ~Rb

Exceptions: none

52 | P a g e

ANDI - Register-Immediate

Description:

Bitwise and’s register and an immediate value and places the result in a target register.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 53h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra & immediate

Exceptions: none

53 | P a g e

BCDADD - Register-Register

Description:

Adds two registers using BCD arithmetic and places the result in a target register. Only the low

order byte of the register is used. The result is an eight bit BCD number.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

00h6 Rt6 Rb6 Ra6 F5h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra + Rb

Exceptions: none

54 | P a g e

BCDMUL - Register-Register

Description:

Multiplies two registers using BCD arithmetic and places the result in a target register. Only the

low order byte of the register is used. The result is a 16 bit BCD value.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

02h6 Rt6 Rb6 Ra6 F5h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 Only

Operation:

Rt = Ra * Rb

Exceptions: none

55 | P a g e

BCDSUB - Register-Register

Description:

Subtracts two registers using BCD arithmetic and places the result in a target register. Only the

low order byte of the register is used. The result is an eight bit BCD number.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

01h6 Rt6 Rb6 Ra6 F5h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra - Rb

Exceptions: none

56 | P a g e

BFCHG – Bit-field Change

Description:

Inverts the bit-field in Ra located between the mask begin (mb) and mask end (me) bits and

stores the result in the target register.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 34 me6 mb6 Rt6 Ra6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

57 | P a g e

BFCLR – Bit-field Clear

Description:

Sets the bits to zero of the bit-field in Ra located between the mask begin (mb) and mask end

(me) bits and stores the result in the target register.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 24 me6 mb6 Rt6 Ra6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

58 | P a g e

BFEXT – Bit-field Extract

Description:

Extracts a bit-field from register Ra located between the mask begin (mb) and mask end (me)

bits and places the sign extended result into the target register.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 54 me6 mb6 Rt6 Ra6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

59 | P a g e

BFEXTU – Bit-field Extract Unsigned

Description:

Extracts a bit-field from register Ra located between the mask begin (mb) and mask end (me)

bits and places the zero extended result into the target register.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 44 me6 mb6 Rt6 Ra6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

60 | P a g e

BFINS – Bit-field Insert

Description:

Inserts a bit-field into the target register located between the mask begin (mb) and mask end

(me) bits from the low order bits of Ra.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 04 me6 mb6 Rt6 Ra6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

61 | P a g e

BFINSI – Bit-field Insert Immediate

Description:

Inserts a bit-field into the target register located between the mask begin (mb) and mask end

(me) bits from the bits specified in the instruction.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 64 me6 mb6 Rt6 Imm6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

62 | P a g e

BFSET – Bit-field Set

Description:

Sets the bits to one of the bit-field in Ra located between the mask begin (mb) and mask end

(me) bits and stores the result in the target register.

Instruction Format:

4744 43 40 39 34 33 28 27 22 21 16 15 8 7 0

~4 14 me6 mb6 Rt6 Ra6 AAh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

63 | P a g e

BITI – Test bits Register-Immediate

Description:

Logically and’s register and an immediate value and places the result in a predicate register. If

the result of the ‘and’ operation is zero the predicate register’s zero flag is set, otherwise it is

cleared. If the result is negative the predicate’s less than flag is set, otherwise it is cleared.

Instruction Format:

39 28 26 25 22 21 16 15 8 7 0

Immediate11..0 ~2 Pt4 Ra6 46h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pt = flag results(Ra & immediate)

Predicate Results:

Predicate flag Setting

eq set if result is zero

lt set if result is negative

ltu set if result is odd (bit 0 is set)

Exceptions: none

64 | P a g e

BR - Relative Branch

Description:

A branch is made relative to the address of the next instruction.

 The twelve bit displacement field cannot be extended with an immediate constant prefix.

Branches are executed immediately in the instruction fetch stage of the processor before it is

known if there is a prefix present.

Instruction Format:

23 16 15 8 7 0

Disp7..0 3h4 D11..8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s / Branch

Operation:

PC <= PC + displacement

Exceptions: none

65 | P a g e

BRK –Break

Description:

This instruction contains only a predicate byte. The Break exception is executed. The core will be

switched to kernel mode.

Instruction Format:

7 0

04 04

66 | P a g e

BSR - Branch to Subroutine

Description:

This is an alternate mnemonic for the JSR instruction. A jump is made to the sum of the sign

extended displacement supplied in the displacement field of the instruction and the specified

code address register Cr.

The subroutine return address is stored in a code address register specified in the Crt field of the

instruction.

Typically code address register #1 is used to store the return address.

Instruction Formats:

47 24 23 20 19 16 15 8 7 0

Displacement23..0 154 Crt4 A2h8 Pn4 Pc4

39 24 23 20 1916 15 8 7 0

Displacement15..0 154 Crt4 A1h8 Pn4 Pc4

Clock Cycles: 1

Exceptions: none

67 | P a g e

CACHE – Cache Command

Description:

This instruction issues a command to the cache.

Instruction Format:

31 26 2524 23 22 21 16 15 8 7 0

Func6 ~2 ~2 Ra6 9Fh8 Pn4 Pc4

Operation:

Commands:

Func6

0 Invalidate entire instruction cache

1 Invalidate instruction cache line (address in Ra)

32 Invalidate entire data cache

33 Invalidate data cache line (address in Ra)

68 | P a g e

CAS – Compare and Swap

Description:

If the contents of the addressed memory cell is equal to the contents of Rb then a sixty-four bit

value is stored to memory from the source register Rc. The original contents of the memory cell

are loaded into register Rt. The memory address is the sum of the sign extended displacement

and register Ra. The memory address must be word aligned. If the operation was successful

then Rt and Rb will be the same value. The compare and swap operation is an atomic operation;

the bus is locked during the load and potential store operation. This operation assumes that the

addressed memory location is part of the volatile region of memory and bypasses the data

cache.

Instruction Format:

47 40 39 34 33 28 27 22 21 16 15 8 7 0

Displacement7..0 Rt6 Rc6 Rb6 Ra6 97h8 Pn4 Pc4

Operation:

Rt = memory [Ra + displacement]

if memory[Ra + displacement] = Rb

memory[Ra + displacement] = Rc

Assembler:

CAS Rt,Rb,Rc,offset[Ra]

69 | P a g e

CLI – Clear Interrupt Mask

Description:

This instruction is used to enable interrupts. This instruction is available only while operating in

kernel mode.

Instruction Format:

15 8 7 0

FAh8 Pn4 Pc4

Clock Cycles: 1

Operation:

im = 0

Exceptions: privilege violation

70 | P a g e

CMP Register-Register Compare

Description:

The register compare instruction compares two registers and sets the flags in the target predict

register as a result.

Instruction Format:

3128 27 22 21 16 15 12 11 8 7 0

04 Rb6 Ra6 14 Pt4 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

if signed Ra < signed Rb

 P.lt = true

else

 P.lt = false

if unsigned Ra < unsigned Rb

 P.ltu = true

else

 P.ltu = false

if Ra = Rb

 P.eq = true

else

 P.eq = false

Exceptions: none

71 | P a g e

CMPI Register-Immediate Compare

Description:

The register immediate compare instruction compares a register to an immediate value and sets

the flags in the target predict register as a result. Both a signed and unsigned comparison take

place at the same time.

Instruction Format:

31 22 21 16 15 12 11 8 7 0

Immed10 Ra6 24 Pt4 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

if signed Ra < signed immediate

 P.lt = true

else

 P.lt = false

if unsigned Ra < unsigned immediate

 P.ltu = true

else

 P.ltu = false

if Ra = immediate

 P.eq = true

else

 P.eq = false

72 | P a g e

CNTLO- Count Leading Ones

Description:

This instruction counts the number of leading ones in a register and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

64 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Exceptions: none

73 | P a g e

CNTLZ- Count Leading Zeros

Description:

This instruction counts the number of leading zeros in a register and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

54 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Exceptions: none

74 | P a g e

CNTPOP- Population Count

Description:

This instruction counts the number of one bits in a register and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

74 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Exceptions: none

75 | P a g e

COM – Bitwise Compliment

Description:

This instruction performs a bitwise compliment on a register and places the result in a target

register. If bit is a one then the bit is replaced with is zero otherwise it is replaced with a one.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

B4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = ~ Ra

Exceptions: none

76 | P a g e

CPUID – CPU Identification

Description:

This instruction returns general information about the core. Register Ra is used as a table index

to determine which row of information to return.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

04 Rt6 Ra6 41h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Info[Ra]

Exceptions: none

Index bits Information Returned

0 63 to 0 The processor core identification number. This field is
determined from an external input. It would be hard wired to the
number of the core in a multi-core system.

2 63 to 0 Manufacturer name first eight chars “Finitron”

3 63 to 0 Manufacturer name last eight characters

4 63 to 0 CPU class “64BitSS”

5 63 to 0 CPU class

6 63 to 0 CPU Name “Thor”

7 63 to 0 CPU Name

8 63 to 0 Model Number “M1”

9 63 to 0 Serial Number “1234”

10 63 to 0 Features bitmap

11 31 to 0 Instruction Cache Size (32kB)

11 63 to 32 Data cache size (16kB)

77 | P a g e

DIV - Register-Register Divide

Description:

Performs a signed division of two registers and places the quotient in the target register. This

instruction may cause an overflow or divide by zero exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

03h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 65

Execution Units: ALU #0 only

Operation:

Rt = Ra / Rb

Exceptions: divide by zero

78 | P a g e

DIVI - Register-Immediate Divide

Description:

Performs a signed divide of a register and an immediate value and places the result in a target

register. This instruction may cause an overflow or divide by zero exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 4Bh8 Pn4 Pc4

Clock Cycles: 65

Execution Units: ALU #0 only

Operation:

Rt = Ra / immediate

Exceptions: divide by zero

79 | P a g e

80 | P a g e

DIVIU – Unsigned Register-Immediate Divide

Description:

Performs an unsigned divide of a register and an immediate value and places the result in a

target register. This instruction will not cause an overflow or divide by zero exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 4Fh8 Pn4 Pc4

Clock Cycles: 65

Execution Units: ALU #0 only

Operation:

Rt = Ra / immediate

Exceptions: none

81 | P a g e

DIVU – Unsigned Register-Register Divide

Description:

Performs an unsigned division of two registers and places the quotient in the target register.

This instruction not cause an overflow or divide by zero exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

07h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 65

Execution Units: ALU #0 only

Operation:

Rt = Ra / Rb

Exceptions: none

82 | P a g e

ENOR - Register-Register

Description:

Bitwise exclusive or register with register and place inverted result in target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

05h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = ~(Ra ^ Rb)

Exceptions: none

83 | P a g e

EOR - Register-Register

Description:

Bitwise exclusive or register with register and place result in target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

02h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra ^ Rb

Exceptions: none

84 | P a g e

EORI - Register-Immediate

Description:

Bitwise exclusive or register with immediate and place result in target register.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 55h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra ^ immediate

Exceptions: none

85 | P a g e

INC – Increment Memory

Description:

Memory is incremented by the amount specified in the instruction. The memory address is the

sum of the sign extended displacement and register Ra. The amount is between -128 and +127.

Note that the increment is not an atomic memory operation. The bus is not locked during the

increment to allow cached data to be incremented. For atomic memory operations see the CAS

instruction.

Instruction Format:

47 40 3937 36 28 27 22 21 16 15 8 7 0

Amt8 Sg3 Displacement8..0 O3 Sz3 Ra6 C7h8 Pn4 Pc4

Execution Units: All Memory

Operation:

(mem[Ra+offset]) = (mem[Ra+offset]) + amt

86 | P a g e

IMM64,IMM56,IMM48,IMM40,IMM32,IMM24,IMM16

Immediate Extensions

The immediate extension predicates are used to extend the immediate constant of the following

instruction. The extensions may add from one to seven bytes more to the constant. Most, but

not all instructions can accept a predicated immediate.

Immediate Predicate

Immediate63..8 84 04

Immediate55..8 74 04

Immediate47..8 64 04

Immediate39..8 54 04

Immediate31..8 44 04

Immediate23..8 34 04

Immediate15..8 24 04

Clock Cycles: 1

Execution Units: Enqueue

Exceptions: none

87 | P a g e

INT –Interrupt

Description:

This instruction calls a system function located as the sum of the zero extended offset times 16

plus code address register 12. The return address is stored in the IPC register (code address

register #14).

The offset field of this instruction cannot be extended.

Note that this instruction is automatically invoked for hardware interrupt processing. This

instruction would not normally be used by software and is not supported by the assembler. The

return address stored is the address of the interrupt instruction, not the address of the next

instruction. To call system routines use the SYS instruction.

Instruction Format:

31 24 23 20 19 16 15 8 7 0

Offset7..0 Ch4 Eh4 A6h8 Pn4 Pc4

88 | P a g e

JMP - Jump To Address

Description:

This is an alternate mnemonic for the JSR instruction.

A jump is made to the sum of the zero extended offset supplied in the offset field of the

instruction and the specified code address register Cr. The JMP instruction may be used with an

immediate predicate constant in order to extend the address range of the jump.

Instruction Formats:

47 24 23 20 19 16 15 8 7 0

Offset23..0 Cr4 04 A2h8 Pn4 Pc4

39 24 23 20 19 16 15 8 7 0

Offset15..0 Cr4 04 A1h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

pc = Cr[n] + offset

Exceptions: none

89 | P a g e

JSR - Jump To Subroutine Instruction

Description:

 A jump is made to the sum of the zero extended offset supplied in the offset field of the

instruction and the specified code address register Cr. The JSR instruction may be used with an

immediate predicate constant in order to extend the address range of the jump.

The subroutine return address is stored in a code address register specified in the Crt field of the

instruction. Typically code address register #1 is used.

An immediate constant prefix applied to this instruction overrides offset bits 8 to 23 and acts

like an eight bit immediate constant extension used by other instructions.

Instruction Formats:

47 24 23 20 19 16 15 8 7 0

Offset23..0 Cr4 Crt4 A2h8 Pn4 Pc4

39 24 23 20 19 16 15 8 7 0

Offset15..0 Cr4 Crt4 A1h8 Pn4 Pc4

23 20 19 16 15 8 7 0

Cr4 Crt4 A0h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Cr[t] = pc

pc = Cr[n] + offset

Exceptions: none

90 | P a g e

LB – Load Byte

Description:

An eight bit value is loaded from memory and sign extended, then placed in the target register.

The memory address is the sum of the sign extended offset and register Ra.

This instruction will load data from the cache and cause a cache load operation if the data isn’t

in the cache. To bypass the cache use the LVB instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 80h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra+offset])

Exceptions: data bus error, segment limit, tlb miss

91 | P a g e

LBU – Load Byte Unsigned

Description:

An eight bit value is loaded from memory and zero extended, then placed in the target register.

The memory address is the sum of the sign extended offset and register Ra.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 81h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = zero extend (mem[Ra+offset])

Exceptions: data bus error, segment limit, tlb miss

92 | P a g e

LBUX – Load Byte Unsigned Indexed

Description:

An eight bit value is loaded from memory zero extended and placed in the target register Rt. The

memory address is the sum of register Ra and scaled register Rb.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B1h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = mem[Ra+Rb]

Exceptions: data bus error, segment limit, tlb miss

93 | P a g e

LBX – Load Byte Indexed

Description:

An eight bit value is loaded from memory and placed in the target register. The memory address

is the sum of register Ra and scaled register Rb.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B0h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra+Rb])

Exceptions: data bus error, segment limit, tlb miss

94 | P a g e

LC – Load Character

Description:

A sixteen bit value is loaded from memory and sign extended, then placed in the target register.

The memory address is the sum of the sign extended displacement and register Ra. The memory

address must be character aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 82h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra + displacement])

Exceptions: data bus error, segment limit, tlb miss

95 | P a g e

LCL – Load Cache Line

Description:

The cache line is loaded from memory into the cache (instruction or data). The memory address

is the sum of the sign extended offset and register Ra.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Tgt6 Ra6 8Fh8 Pn4 Pc4

Execution Units: Cache / Memory

Operation:

Rt = sign extend (mem[Ra+offset])

Target:

Tgt6 Cache

0 instruction cache

1 data cache

96 | P a g e

LCU – Load Character Unsigned

Description:

A sixteen bit value is loaded from memory and zero extended, then placed in the target register.

The memory address is the sum of the sign extended displacement and register Ra. The memory

address must be character aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 83h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = zero extend (mem[Ra + displacement])

Exceptions: data bus error, segment limit, tlb miss

97 | P a g e

LCUX – Load Character Unsigned Indexed

Description:

A sixteen bit value is loaded from memory, zero extended and placed in the target register Rt.

The memory address is the sum of register Ra and scaled register Rb. The memory address must

be character aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B3h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = mem[Ra + Rb * scale]

Exceptions: data bus error, segment limit, tlb miss

98 | P a g e

LCX – Load Character Indexed

Description:

A sixteen bit value is loaded from memory, sign extended and placed in the target register Rt.

The memory address is the sum of register Ra and scaled register Rb. The memory address must

be character aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B2h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = mem[Ra + Rb * scale]

Exceptions: data bus error, segment limit, tlb miss

99 | P a g e

LDI - Load-Immediate

Description:

This instruction loads a sign extended immediate constant into a register. The immediate

constant may be extended by using an immediate prefix instruction.

Instruction Format:

31 22 21 16 15 8 7 0

Immediate9..0 Rt6 6Fh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = immediate

100 | P a g e

LDIS - Load-Immediate Special

Description:

This instruction loads a sign extended immediate constant into a special purpose register. The

immediate constant may be extended by using an immediate prefix instruction. Typical usage is

to initialize a code address register with a target address.

Instruction Format:

31 22 21 16 15 8 7 0

Immediate9..0 Spr6 9Dh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Spr = immediate

101 | P a g e

LEA – Load Effective Address

Description:

This is an alternate mnemonic for the ADDUI instruction. The memory address is placed in the

target register. The memory address is the sum of the sign extended offset and register Ra.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Offset11..0 Rt6 Ra6 4Ch8 Pn4 Pc4

Operation:

Rt = Ra+offset

Execution Units: All ALU’s

102 | P a g e

LH – Load Half-Word

Description:

A thirty-two bit value is loaded from memory and sign extended, then placed in the target

register Rt. The memory address is the sum of the sign extended displacement and register Ra.

The memory address must be half-word aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 84h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra + displacement])

Exceptions: data bus error, segment limit, tlb miss

103 | P a g e

104 | P a g e

LHU – Load Half-word Unsigned

Description:

A thirty-two bit value is loaded from memory and zero extended, then placed in the target

register Rt. The memory address is the sum of the sign extended displacement and register Ra.

The memory address must be half-word aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 85h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = zero extend (mem[Ra + displacement])

Exceptions: data bus error, segment limit, tlb miss

105 | P a g e

LHUX – Load Half-word Unsigned Indexed

Description:

A thirty-two bit value is loaded from memory, zero extended and placed in the target register.

The memory address is the sum of register Ra and register Rb. The memory address must be

half-word aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B5h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = mem[Ra+Rb*scale]

Exceptions: data bus error, segment limit, tlb miss

106 | P a g e

LHX – Load Half-word Indexed

Description:

A thirty-two bit value is loaded from memory sign extended and placed in the target register Rt.

The memory address is the sum of register Ra and scaled register Rb. The memory address must

be half-word aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B4h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra + Rb * scale])

Exceptions: data bus error, segment limit, tlb miss

107 | P a g e

LOOP – Loop Branch

Description:

A branch is made relative to the address of the next instruction if the loop count register is non-

zero. The loop count register is decremented by this instruction. The predicate condition must

also be met. The loop branch is predicted as always taken and does not consume room in the

branch predication tables. The displacement constant may not be extended as the loop takes

place in the instruction fetch stage of the core.

Instruction Format:

23 16 15 8 7 0

Disp7..0 A4h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s / Branch

Operation:

If LC <> 0

PC <= PC + displacement

LC = LC - 1

108 | P a g e

LVB – Load Volatile Byte

Description:

An eight bit value is loaded from memory and sign extended, then placed in the target register.

The memory address is the sum of the sign extended displacement and register Ra. This

instruction bypasses the data cache. Use this instruction to load data from volatile memory

regions such as I/O devices. This instruction may also be used when it is known that the data is

better not cached.

There is no indexed or unsigned form for this instruction. The value loaded may be zero

extended rather than sign extended by following it with the ZXB instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 ACh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra+offset])

Exceptions: data bus error, segment limit, tlb miss

109 | P a g e

LVC – Load Volatile Character

Description:

A sixteen bit value is loaded from memory and sign extended, then placed in the target register.

The memory address is the sum of the sign extended offset and register Ra. This instruction

bypasses the data cache. Use this instruction to load data from volatile memory regions such as

I/O devices.

There is no indexed or unsigned form for this instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 ADh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra+offset])

Exceptions: data bus error, segment limit, tlb miss

110 | P a g e

LVH – Load Volatile Half-word

Description:

A thirty-two bit value is loaded from memory and sign extended, then placed in the target

register. The memory address is the sum of the sign extended offset and register Ra. This

instruction bypasses the data cache. Use this instruction to load data from volatile memory

regions such as I/O devices.

There is no indexed or unsigned form for this instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 AEh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra+offset])

Exceptions: data bus error, segment limit, tlb miss

111 | P a g e

LVW – Load Volatile Word

Description:

A sixty-four bit value is loaded from memory and sign extended, then placed in the target

register. The memory address is the sum of the sign extended offset and register Ra. This

instruction bypasses the data cache. Use this instruction to load data from volatile memory

regions such as I/O devices.

There is no indexed or unsigned form for this instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 AFh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra + displacement])

Exceptions: data bus error, segment limit, tlb miss

112 | P a g e

LVWAR – Load Volatile Word and Reserve

Description:

A sixty-four bit value is loaded from memory and sign extended, then placed in the target

register. The memory address is the sum of the sign extended offset and register Ra.

Additionally the reserve signal is activated on the bus to tell the memory system to place an

address reservation. This instruction bypasses the data cache. Use this instruction to load data

from volatile memory regions such as I/O devices. The primary purpose of this instruction is to

setup semaphores. See also the SWCR, CAS instructions.

There is no indexed form for this instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 8Bh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = sign extend (mem[Ra + displacement]); reserve = 1

Exceptions: data bus error, segment limit, tlb miss

113 | P a g e

LW – Load Word

Description:

A sixty-four bit value is loaded from memory and placed in the target register. The memory

address is the sum of the sign extended displacement and register Ra. The memory address

must be word aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 86h8 Pn4 Pc4

31 29 28 27 22 21 16 15 8 7 0

Sg3 ~ Rt6 Ra6 D6h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Exceptions:

If the target register is R0 then this instruction will not cause an exception. Otherwise an

exception may be caused by a data-bus error signal input or a TLB miss.

Operation:

Rt = mem[Ra + displacement]

Exceptions: data bus error, segment limit, tlb miss

114 | P a g e

LWS – Load Word Special

Description:

A sixty-four bit value is loaded from memory and placed in the special purpose register. The

memory address is the sum of the sign extended offset and register Ra. The memory address

must be word aligned.

There is no indexed form for this instruction.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 8Eh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Spr = mem[Ra + displacement]

Exceptions: data bus error, segment limit, tlb miss

115 | P a g e

LWX – Load Word Indexed

Description:

A sixty-four bit value is loaded from memory and placed in the target register. The memory

address is the sum of register Ra and scaled register Rb. The memory address must be word

aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 B6h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = mem[Ra + Rb*scale]

Exceptions: data bus error, segment limit, tlb miss

116 | P a g e

MAX - Register-Register

Description:

Determines the maximum of two values in registers Ra and Rb and places the result in the target

register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

11h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

IF Ra < Rb

Rt = Rb

 else

 Rt = Ra

117 | P a g e

MEMDB – Memory Data Barrier

Description:

All memory accesses before the MEMDB command are completed before any memory accesses

after the data barrier are started. Note that this instruction has an effect even if the predicate is

false; this does not affect the correct operation of the program, only performance is affected.

Instruction Format:

15 8 7 0

F9h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: Memory

118 | P a g e

MEMSB – Memory Synchronization Barrier

Description:

All instructions before the MEMSB command are completed before any memory access is

started. Note that this instruction has an effect even if the predicate is false; this does not affect

the correct operation of the program, only performance is affected.

Instruction Format:

15 8 7 0

F8h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: Memory

119 | P a g e

MFSPR – Special Register-Register

Description:

This instruction moves from a special purpose register into a general purpose one.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

~4 Rt6 Spr6 A8h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Spr[n]

Special Purpose Registers

Reg # R/W

00-15 RW PRED specific predicate register #0 to 15

16-31 RW CREGS Code address register array (C0 to C15)

32-39 RW SREGS Segment base register array (zs,ds,es,fs,gs,hs,ss,cs)

40-47 - reserved for segmentation

48 R MID Machine ID

49 R FEAT Features

50 R TICK Tick count

51 RW LC Loop Counter

52 RW PREGS Predicate register array

53 RW ASID address space identifier

59 RW EXC exception cause register

60 W BIR Breakout index register

61 RW Breakout register - additional spr’s

63 reserved

Additional Spr’s are available by setting the breakout index register to an Sor index value, then

accessing the Spr through the breakout register.

120 | P a g e

MIN - Register-Register

Description:

Determines the minimum of two values in registers Ra and Rb and places the result in the target

register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

10h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

IF Ra < Rb

Rt = Ra

 else

 Rt = Rb

121 | P a g e

MLO – Mystery Logical Operation

Description:

The MLO instruction performs an operation that is determined at run-time as opposed to

compile time. The operation to be performed is one of the register-register logical operations.

Register Rc contains the function code for the operation. Registers Ra and Rb are the operands

to the instruction. The result is placed in register Rt.

The MLO instruction is provided to help avoid writing self-modifying code for performance

reasons.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Rt6 Rc6 Rb6 Ra6 51h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra op(Rc) Rb

122 | P a g e

MOV - Register-Register

Description:

This instruction moves one general purpose register to another. This instruction is shorter and

uses one less register port than using the OR instruction to move between registers.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

04 Rt6 Ra6 A78 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra

123 | P a g e

MOVS – Move Special Register- Special Register

Description:

This instruction moves one special purpose register to another. The primary purpose of this

instruction is to allow transfers directly between code address or segment registers.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

~4 Sprt6 Spr6 AB8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Sprt = Spra

124 | P a g e

MTSPR –Register-Special Register

Description:

Move a general purpose register into a special purpose register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

~4 Spr6 Ra6 A9h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Spr[n] = Ra

125 | P a g e

MUL - Register-Register Multiply

Description:

Performs a signed multiply of two registers and places the product in the target register. This

instruction may cause an overflow exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

02h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 5

Execution Units: ALU #0 Only

Operation:

Rt = Ra * Rb

126 | P a g e

MULI - Register-Immediate Multiply

Description:

Performs a signed multiply of a register and an immediate value and places the result in a target

register. This instruction may cause an overflow exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 4Ah8 Pn4 Pc4

Clock Cycles: 5

Execution Units: ALU #0 only

Operation:

Rt = Ra * immediate

127 | P a g e

MULU – Unsigned Register-Register Multiply

Description:

Performs an unsigned multiply of two registers and places the product in the target register.

This instruction will never cause an overflow exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

06h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 5

Execution Units: ALU #0 only

Operation:

Rt = Ra * Rb

Exceptions: none

128 | P a g e

MULUI – Unsigned Register-Immediate Multiply

Description:

Performs an unsigned multiply of a register and an immediate value and places the result in a

target register. This instruction will never cause an overflow exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 4Eh8 Pn4 Pc4

Clock Cycles: 5

Execution Units: ALU #0 only

Operation:

Rt = Ra * immediate

Exceptions: none

129 | P a g e

MUX – Multiplex

Description:

If a bit in Ra is set then the bit of the target register is set to the corresponding bit in Rb,

otherwise the bit in the target register is set to the corresponding bit in Rc.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Rt6 Rc6 Rb6 Ra6 72h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

For n = 0 to 63

If Ra[n] is set then

Rt[n] = Rb[n]

else

Rt[n] = Rc[n]

Exceptions: none

130 | P a g e

NAND - Register-Register

Description:

Bitwise and’s two registers inverts the result and places the result in a target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

03h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = ~(Ra & Rb)

Exceptions: none

131 | P a g e

NEG - Negate Register

Description:

This instruction negates a register and places the result in a target register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

14 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = - Ra

132 | P a g e

NOP – No Operation

Description:

This instruction contains only a predicate byte. This is a single byte no-operation code. It can be

used to align code addresses or as a fill byte.

The NOP operation is not queued by the processing core and is not present in the pipeline.

Instruction Format:

7 0

14 04

Two byte Format:

18 8 7 0

F4 14 Pn4 Pc4

Clock Cycles: 1

Execution Units: None

Operation:

<none>

Exceptions: none

133 | P a g e

NOR - Register-Register

Description:

Bitwise inclusively or two registers and place inverted result in the target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

04h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = ~(Ra | Rb)

Exceptions: none

134 | P a g e

NOT – Logical Not

Description:

This instruction performs a logical NOT on a register and places the result in a target register. If

the value in a register is non-zero then the result is zero. If the value in the register is zero then

the result is one. This instruction results in either a one or zero being placed in the target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

24 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = ! Ra

Exceptions: none

135 | P a g e

OR - Register-Register

Description:

Bitwise inclusively or two registers and place the result in the target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

01h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra | Rb

Exceptions: none

136 | P a g e

ORC – Or with Compliment

Description:

Bitwise inclusively or register Ra and the compliment of register Rb and place the result in the

target register.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

07h6 Rt6 Rb6 Ra6 50h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra | ~Rb

Exceptions: none

137 | P a g e

ORI - Register-Immediate

Description:

Bitwise inclusively or register with immediate and place the result in the target register.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 54h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra | imm

Exceptions: none

138 | P a g e

PAND – Predicate And

Description:

Bitwise and’s the specified predicate register bits and places the result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

06 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = Pr[Ra] & Pr[Rb]

Exceptions: none

139 | P a g e

PANDC – Predicate And Compliment

Description:

Bitwise and’s the specified predicate register bits and places the result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

66 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = Pr[Ra] & ~Pr[Rb]

Exceptions: none

140 | P a g e

PEOR – Predicate Exclusive Or

Description:

Bitwise exclusive or’s the specified predicate register bits and places the result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

26 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = Pr[Ra] ^ Pr[Rb]

Exceptions: none

141 | P a g e

PENOR – Predicate Exclusive Nor

Description:

Bitwise exclusive or’s the specified predicate register bits and places the inverted result in a

target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

56 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = ~(Pr[Ra] ^ Pr[Rb])

Exceptions: none

142 | P a g e

PNAND – Predicate Nand

Description:

Bitwise and’s the specified predicate register bits and places the inverted result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

36 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = ~(Pr[Ra] & Pr[Rb])

Exceptions: none

143 | P a g e

POR – Predicate Or

Description:

Bitwise or’s the specified predicate register bits and places the result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

16 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = Pr[Ra] | Pr[Rb]

Exceptions: none

144 | P a g e

PORC – Predicate Or Compliment

Description:

Bitwise or’s the specified predicate register bits and places the result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

76 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = Pr[Ra] | ~Pr[Rb]

Exceptions: none

145 | P a g e

PNOR – Predicate Nor

Description:

Bitwise or’s the specified predicate register bits and places the inverted result in a target bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

46 Bt6 Bb6 Ba6 42h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Pr[Rt] = ~(Pr[Ra] | Pr[Rb])

Exceptions: none

146 | P a g e

ROL – Rotate Left

Description:

Rotate register Ra left by Rb bits and place the result into register Rt. The most significant bit is

shifted into the least significant bit. The rotation takes place modulo 64 of the value in register

Rb (only the lower six bits of the register are used).

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

04h6 Rt6 Rb6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra << Rb

Exceptions: none

147 | P a g e

ROLI – Rotate Left by Immediate

Description:

Rotate register Ra left by n bits and place the result into register Rt. The most significant bit is

shifted into the least significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

14h6 Rt6 Imm6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra << #n

Exceptions: none

148 | P a g e

ROR – Rotate Right

Description:

Rotate register Ra right by Rb bits and place the result into register Rt. The least significant bit is

shifted into the most significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

05h6 Rt6 Rb6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra >> Rb

Exceptions: none

149 | P a g e

RORI – Rotate Right by Immediate

Description:

Rotate register Ra right by n bits and place the result into register Rt. The least significant bit is

shifted into the most significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

15h6 Rt6 Imm6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra >> #n

Exceptions: none

150 | P a g e

RTD – Return from Debug Exception Routine

Description:

The program counter is loaded with the value contained in code address register #11 which is

the DPC register. This instruction may cause the core to transition back to applications mode. It

is only available while the core is in kernel mode.

Instruction Format:

15 8 7 0

FCh8 Pn4 Pc4

Operation:

PC = Cr[11]

 if (StatusEXL > 0) StatusEXL = StatusEXL - 1

Exceptions: PRIV

151 | P a g e

RTE – Return from Exception Routine

Description:

The program counter is loaded with the value contained in code address register #13 which is

the EPC register. This instruction may cause the core to transition back to applications mode. It

is only available while the core is in kernel mode.

Instruction Format:

15 8 7 0

F3h8 Pn4 Pc4

Operation:

PC = Cr[13]

if (StatusEXL > 0) StatusEXL = StatusEXL - 1

Exceptions: PRIV

152 | P a g e

RTI – Return from Interrupt Routine

Description:

The program counter is loaded with the value contained in code address register #14 which is

the IPC register. Additionally the interrupt mask is cleared to enable interrupts. This instruction

will cause the core to transition back to applications mode. It is only available while the core is in

kernel mode.

Instruction Format:

15 8 7 0

F4h8 Pn4 Pc4

Operation:

pc = Cr[14]

Flags = FlagsBackup

Flags.im = 0

StatusHWI = 0

Exceptions: PRIV

153 | P a g e

RTS – Return from Subroutine

Description:

The program counter is loaded with the value contained in the specified code address register

plus a zero extended four bit immediate constant. The constant may not be extended. This

allows the return instruction to return a few bytes past the usual return address. This is used to

allow static parameters to be passed to the subroutine in inline code. The stack pointer may also

be adjusted using the proper form of the RTS instruction for which the immediate constant must

be a multiple of eight.

Note that the JMP instruction may also be used to return from a subroutine. Similarly this

instruction may also be used to perform a jump to one of the first sixteen addresses relative to a

code address register.

This instruction has a single byte short form that always executes when encountered. For the

short form the program counter is loaded from code address register one.

Instruction Formats:

Return past calling address

23 20 19 16 15 8 7 0

Cr4 Im4 A3h8 Pn4 Pc4

Stack pointer adjusting

31 24 23 20 19 16 15 8 7 0

Immed8 Cr4 Im4 F2h8 Pn4 Pc4

Short Form:

7 0

14 14

Execution Units: All ALU’s / Branch

Operation:

PC = Cr[N] + Imm4

Short Form Operation:

PC = Cr[1] + Imm4

154 | P a g e

Stack Pointer Adjust:

PC = Cr[1] + Imm4

SP = SP + Imm

Exceptions: none

155 | P a g e

SB – Store Byte

Description:

An eight bit value is stored to memory from the source register Rb. The memory address is the

sum of the sign extended displacement and register Ra.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 90h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+offset] = Rb[7..0]

Exceptions: DBE, DBG, TLB, LMT

156 | P a g e

SBX – Store Byte Indexed

Description:

An eight bit value is stored to memory from the source register Rc. The memory address is the

sum of register Ra and Rb.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 C0h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+Rb] = Rb

Exceptions: DBE, DBG, TLB, LMT

157 | P a g e

SC – Store Character

Description:

A sixteen bit value is stored to memory from the source register Rb. The memory address is the

sum of the sign extended displacement and register Ra. The memory address must be character

aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 91h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+displacement] = Rb[15..0]

Exceptions: DBE, DBG, TLB, LMT

158 | P a g e

SCX – Store Character Indexed

Description:

A sixteen bit value is stored to memory from the source register Rc. The memory address is the

sum of register Ra and scaled register Rb. The memory address must be character aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 C1h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+Rb*scale] = Rb

Exceptions: DBE, DBG, TLB, LMT

159 | P a g e

SEI – Set Interrupt Mask

Description:

The interrupt mask is set, disabling maskable interrupts. This instruction is available only in

kernel mode.

Instruction Format:

15 8 7 0

FBh8 Pn4 Pc4

Clock Cycles: 1

Operation:

im = 1

Exceptions: none

160 | P a g e

SH – Store Half-word

Description:

A thirty-two bit value is stored to memory from the source register Rb. The memory address is

the sum of the sign extended displacement and register Ra. The memory address must be half-

word aligned.

Instruction Format:

39 37 36 28 27 22 21 16 15 8 7 0

Seg3 Displacement8..0 Rb6 Ra6 92h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra + displacement] = Rb[31..0]

Exceptions: DBE, DBG, TLB, LMT

161 | P a g e

SHL – Shift Left

Description:

Shift register Ra left by Rb bits and place result into register Rt. A zero is shifted into the least

significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

00h6 Rt6 Rb6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra << Rb

Exceptions: none

162 | P a g e

SHLI – Shift Left by Immediate

Description:

Shift register Ra left by n bits and place result into register Rt. A zero is shifted into the least

significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

10h6 Rt6 Imm6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra << #n

Exceptions: none

163 | P a g e

SHLU – Shift Left Unsigned

Description:

Shift register Ra left by Rb bits and place the result into register Rt. A zero is shifted into the

least significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

02h6 Rt6 Rb6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra << Rb

Exceptions: none

164 | P a g e

SHLUI – Shift Left Unsigned by Immediate

Description:

Shift register Ra left by n bits and place the result into register Rt. A zero is shifted into the least

significant bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

12h6 Rt6 Imm6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra << #n

Exceptions: none

165 | P a g e

SHR – Shift Right

Description:

Shift register Ra right by Rb bits and place result in register Rt. The sign bit is preserved.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

01h6 Rt6 Rb6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra >> Rb

Exceptions: none

166 | P a g e

SHRI – Shift Right by Immediate

Description:

Shift register Ra right by n bits and place result into register Rt. The sign bit is preserved.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

11h6 Rt6 Imm6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra >> #n

Exceptions: none

167 | P a g e

SHRU – Shift Right Unsigned

Description:

Shift register Ra right by register Rb bits. A zero is shifted into the sign bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

03h6 Rt6 Rb6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra >> Rb

Exceptions: none

168 | P a g e

SHRUI – Shift Right Unsigned by Immediate

Description:

Shift register Ra right by n bits and place result into register Rt. A zero is shifted into the sign bit.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

13h6 Rt6 Imm6 Ra6 58h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra >> #n

Exceptions: none

169 | P a g e

SHX – Store Half-word Indexed

Description:

A thirty-two bit value is stored to memory from the source register Rb. The memory address is

the sum of register Ra and scaled register Rb. The memory address must be half-word aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 C2h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+Rb] = Rb

Exceptions: DBE, DBG, TLB, LMT

170 | P a g e

STCMP – String Compare

Description:

This instruction compares data from the memory location addressed by Ra plus Rc to the

memory location addressed by Rb plus Rc until the loop counter LC reaches zero or until a

mismatch occurs. Rc acts as an index and increments or decrements by the size of the operation

as the move takes place. This instruction is interruptible. The data must be in the same segment

and appropriately aligned. The loop counter is set to zero when a mismatch occurs. The index of

the mismatch is contained in register Rc.

Instruction Format:

37 34 33 28 27 22 21 16 15 8 7 0

Sg3 O3 Rc6 Rb6 Ra6 9Ah8 Pn4 Pc4

O3 Assembler Mnemonic

0 STCMPBI bytes incrementing

1 STCMPCI characters incrementing

2 STCMPHI half-word incrementing

3 STCMPWI words incrementing

4 STCMPBD bytes decrementing

5 STCMPCD characters decrementing

6 STCMPHD half-word decrementing

7 STCMPWD word decrementing

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

mem[Rb + Rc] = mem[Ra + Rc]

Rc = Rc +/- amt

LC = LC – 1

171 | P a g e

STFND – String Find

Description:

This instruction compares data from the memory location addressed by Ra plus Rc to the data

in register Rb until the loop counter LC reaches zero or until a match occurs. Rc acts as an index

and increments or decrements by the size of the operation as the move takes place. This

instruction is interruptible. The data must be appropriately aligned. The loop counter is set to

zero when a match occurs. The index of the match is contained in register Rc.

Instruction Format:

37 34 33 28 27 22 21 16 15 8 7 0

Sg3 O3 Rc6 Rb6 Ra6 9Bh8 Pn4 Pc4

O3 Assembler Mnemonic

0 STFNDBI bytes incrementing

1 SFNDCI characters incrementing

2 STFNDHI half-word incrementing

3 STFNDWI words incrementing

4 STFNDBD bytes decrementing

5 STFNDCD characters decrementing

6 STFNDHD half-word decrementing

7 STFNDWD word decrementing

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

if (mem[Ra + Rc] = Rb)

 stop

Rc = Rc +/- amt

LC = LC – 1

172 | P a g e

STI – Store Immediate

Description:

A six bit value is zero extended to sixty-four bits and stored to memory. The memory address is

the sum of the sign extended displacement and register Ra. The memory address must be word

aligned.

Instruction Format:

39 37 36 28 27 22 21 16 15 8 7 0

Seg3 Displacement8..0 Imm6 Ra6 96h8 Pn4 Pc4

Execution Units: All ALU’s / Memory

Operation:

memory[Ra + displacement] = zero extend (Imm[5..0])

173 | P a g e

STIX – Store Immediate Indexed

Description:

A ten bit value is zero extended to sixty-four bits and stored to memory. The memory address is

the sum of register Ra and scaled register Rb. The memory address must be word aligned.

Instruction Format:

39 36 35 34 33 28 27 22 21 16 15 8 7 0

Imm9..6 Sc2 Imm5..0 Rb6 Ra6 C6h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra + Rb * scale] = zero extend (Imm[9..0])

174 | P a g e

STMV – String Move

Description:

This instruction moves a data from the memory location addressed by Ra plus Rc to the

memory location addressed by Rb plus Rc until the loop counter LC reaches zero. Rc acts as an

index and increments or decrements by the size of the operation as the move takes place. This

instruction is interruptible. The data moved must be in the same segment and appropriately

aligned.

Instruction Format:

37 34 33 28 27 22 21 16 15 8 7 0

Sg3 O3 Rc6 Rb6 Ra6 99h8 Pn4 Pc4

O3 Assembler Mnemonic

0 STMVBI move bytes incrementing

1 STMVCI move characters incrementing

2 STMVHI move half-word incrementing

3 STMVWI move words incrementing

4 STMVBD move bytes decrementing

5 STMVCD move characters decrementing

6 STMVHD move half-word decrementing

7 STMVWD move word decrementing

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

mem[Rb + Rc] = mem[Ra + Rc]

Rc = Rc +/- amt

LC = LC – 1

175 | P a g e

STP – Stop / Slow Down

Description:

This instruction controls the core clock rate which affects power consumption. The immediate

constant is loaded into a shift register that controls the frequency of clock pulses seen by the

processor. Setting the constant to FFFFh provides the maximum clock rate. Setting the constant

to zero stops the clock completely. With the clock stopped completely the core must be reset or

an NMI interrupt must occur before the core will continue processing. After reset or NMI the

core begins processing at a half the maximum clock rate.

Instruction Format:

31 16 15 8 7 0

Immediate16 F6h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra[31:0]

Typical Values For Shift Register

Value

0000 Stop clock completely

8888 25% rate

AAAA 50% rate

EEEE 75% rate

FFFF Full power, max clock rate

Exceptions: none

176 | P a g e

STSB – Store String Byte

Description:

This instruction stores a byte contained in register Rb to consecutive memory locations

beginning at the address in Ra until the loop counter LC reaches zero. Ra is updated with by the

number of bytes written. This instruction is interruptible.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Sg3 03 ~6 Rb6 Ra6 98h8 Pn4 Pc4

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

mem[Ra] = Rb[7:0]

Ra = Ra + 1

LC = LC – 1

177 | P a g e

STSC – Store String Character

Description:

This instruction stores a character (16 bit value) to consecutive memory locations beginning at

the address in Ra until the loop counter reaches zero. The memory address must be character

aligned. Ra is updated by the number of bytes written. This instruction is interruptible.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Sg3 13 ~6 Rb6 Ra6 98h8 Pn4 Pc4

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

mem[Ra] = Rb[15:0]

Ra = Ra + 2

LC = LC – 1

178 | P a g e

STSH – Store String Half-word

Description:

This instruction stores a half-word (32 bit value) to consecutive memory locations beginning at

the address in Ra until the loop counter reaches zero. The memory address must be half-word

aligned. Ra is updated by the number of bytes written. This instruction is interruptible.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Sg3 23 ~6 Rb6 Ra6 98h8 Pn4 Pc4

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

mem[Ra] = Rb[31:0]

Ra = Ra + 4

LC = LC – 1

179 | P a g e

STSW – Store String Word

Description:

This instruction stores a word (64 bit value) to consecutive memory locations beginning at the

address in Ra until the loop counter reaches zero. The memory address must be half-word

aligned. Ra is updated by the number of bytes written. This instruction is interruptible.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Sg3 33 ~6 Rb6 Ra6 98h8 Pn4 Pc4

Execution Units: Memory

Operation:

temp = 0

while LC <> 0

mem[Ra] = Rb[63:0]

Ra = Ra + 8

LC = LC – 1

180 | P a g e

SUB - Register-Register

Description:

This instruction subtracts one register from another and places the result into a third register.

This instruction may cause an overflow exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

01h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra - Rb

181 | P a g e

SUBI - Register-Immediate

Description:

This instruction subtracts an immediate value from a register and places the result into a

register. This instruction may cause an overflow exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 49h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra – Imm

182 | P a g e

SUBU - Register-Register

Description:

This instruction subtracts one register from another and places the result into a third register.

This instruction never causes an exception.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

05h6 Rt6 Rb6 Ra6 40h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra - Rb

183 | P a g e

SUBUI - Register-Immediate

Description:

This instruction subtracts an immediate value from a register and places the result into a

register. This instruction never causes an exception.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Immediate11..0 Rt6 Ra6 4Dh8 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

Rt = Ra – Imm

184 | P a g e

SW – Store Word

Description:

A sixty-four bit value is stored to memory from the source register Rb. The memory address is

the sum of the sign extended offset and register Ra. The memory address must be word aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rt6 Ra6 93h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+offset] = Rb

Exceptions: DBE, DBG, TLB, LMT

185 | P a g e

SWCR – Store Word and Clear Reservation

Description:

If there is a reservation present on the memory address then a sixty-four bit value is stored to

memory from the source register Rs and the reservation is cleared. If there is no reservation

present then memory is not updated. If the update was successful then predicate register zero is

set to ‘ne’ status, otherwise the predicate register is set to ‘eq’ status. The memory address is

the sum of the sign extended offset and register Ra. The memory address must be word aligned.

This instruction relies on the memory system for implementation.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Rs6 Ra6 8Ch8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+offset] = Rb, reservation cleared

Exceptions: DBE, DBG, TLB, LMT

186 | P a g e

SWS – Store Word Special

Description:

A sixty-four bit value is stored to memory from the source special purpose register Spr. The

memory address is the sum of the sign extended displacement and register Ra. The memory

address must be word aligned.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

Sg3 Displacement8..0 Spr6 Ra6 9Eh8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra + displacement] = Spr

Exceptions: DBE, DBG, TLB, LMT

187 | P a g e

SWX – Store Word Indexed

Description:

A sixty-four bit value is stored to memory from the source register Rc. The memory address is

the sum of register Ra and scaled register Rb. The memory address must be word aligned.

Instruction Format:

39 37 36 3534 33 28 27 22 21 16 15 8 7 0

Seg3 ~ Sc2 Rc6 Rb6 Ra6 C3h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[Ra+Rb] = Rc

Exceptions: DBE, DBG, TLB, LMT

188 | P a g e

SXB – Sign Extend Byte

Description:

This instruction sign extends a register from bit 8 to 63 and places the result in a target register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

C4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = {56{Ra[7]}},Ra[7:0]

Exceptions: none

189 | P a g e

SXC – Sign Extend Character

Description:

This instruction sign extends a register from bit 16 to 63 and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

D4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = {48{Ra[15]}},Ra[15:0]

Exceptions: none

190 | P a g e

SXH – Sign Extend Half-word

Description:

This instruction sign extends a register from bit 32 to 63 and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

E4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = {32{Ra[31]}},Ra[31:0]

Exceptions: none

191 | P a g e

SYNC – Synchronization Barrier

Description:

All instructions before the SYNC command are completed before any following instructions are

started. Note that this instruction has an effect even if the predicate is false; this does not affect

the correct operation of the program, only performance is affected.

Instruction Format:

15 8 7 0

F7h8 Pn4 Pc4

Clock Cycles: 1

Exceptions: none

192 | P a g e

SYS –Call system routine

Description:

This instruction calls a system function located as the sum of the offset times 16 plus code

address register 12. The return address is stored in the EPC register (code address register #13).

This instruction causes the core to switch to kernel mode.

Instruction Format:

31 24 23 20 19 16 15 8 7 0

Offset7..0 Ch4 Dh4 A5h8 Pn4 Pc4

Operation:

PC = offset * 16 + c12

if (StatusEXL < 255) StatusEXL = StatusEXL + 1

193 | P a g e

TLB – TLB Command

Description:

The command is executed on the TLB unit. The command results are placed in internal TLB

registers which can be read or written using TLB command instruction. If the operation is a read

register operation then the register value is placed into Rt. If the operation is a write register

operation, then the value for the register comes from Rb. Otherwise the Rb/Rt field in the

instruction is ignored.

This instruction is only available in kernel mode.

Instruction Format:

3130 29 24 23 16 15 8 7 0

~2 Rb/Rt6 Tn4 Cmd4 F0h8 Pn4 Pc4

Clock Cycles: 3

Tn4 – This field identifies which TLB register is being read or written.

Reg no. Assembler

0 Wired Wired

1 Index Index

2 Random Random

3 Page Size PageSize

4 Virtual page VirtPage

5 Physical page PhysPage

7 ASID ASID

8 Data miss address DMA

9 Instruction miss address IMA

10 Page Table Address PTA

11 Page Table Control PTC

TLB Commands

Cmd Description Assembler

0 No operation

1 Probe TLB entry TLBPB

2 Read TLB entry TLBRD

3 Write TLB entry corresponding to random register TLBWR

4 Write TLB entry corresponding to index register TLBWI

5 Enable TLB TLBEN

6 Disable TLB TLBDIS

194 | P a g e

7 Read register TLBRDREG

8 Write register TLBWRREG

9 Invalidate all entries TLBINV

Probe TLB – The TLB will be tested to see if an address translation is present.

Read TLB – The TLB entry specified in the index register will be copied to TLB holding registers.

Write Random TLB – A random TLB entry will be written into from the TLB holding registers.

Write Indexed TLB – The TLB entry specified by the index register will be written from the TLB holding

registers.

 Disable TLB – TLB address translation is disabled so that the physical address will match the supplied

virtual address.

Enable TLB – TLB address translation is enabled. Virtual address will be translated to physical addresses

using the TLB lookup tables.

The TLB will automatically update the miss address registers when a TLB miss occurs only if the registers

are zero to begin with. System software must reset the registers to zero after a miss is processed. This

mechanism ensures the first miss that occurs is the one that is recorded by the TLB.

PageTableAddr – This is a scratchpad register available for use to store the address of the page table.

PageTableCtrl – This is a scratchpad register available for use to store control information associated

with the page table.

195 | P a g e

TST - Register Test Compare

Description:

The register test compare compares a register against the value zero and sets the predicate flags

appropriately.

Instruction Format:

2322 21 16 15 12 11 8 7 0

02 Ra6 04 Pt4 Pn4 Pc4

Clock Cycles: 1

Operation:

if Ra < 0

 Pt.lt = 1

else

 Pt.lt = 0

if Ra = 0

 Pt.eq = 1

else

 Pt.eq = 0

Pt.ltu = 0

Exceptions: none

196 | P a g e

ZXB – Zero Extend Byte

Description:

This instruction zero extends a register from bit 8 to 63 and places the result in a target register.

This instruction is typically used to perform an unsigned load operation with the LVB instruction.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

C4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra[7:0]

Exceptions: none

197 | P a g e

ZXC – Zero Extend Character

Description:

This instruction zero extends a register from bit 16 to 63 and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

D4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra[15:0]

Exceptions: none

198 | P a g e

ZXH – Zero Extend Half-word

Description:

This instruction zero extends a register from bit 32 to 63 and places the result in a target

register.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

E4 Rt6 Ra6 A7h8 Pn4 Pc4

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra[31:0]

Exceptions: none

199 | P a g e

Opcode Map
 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x
TST / FTST / FSTST

1x
CMP / FCMP / FSCMP

2x
CMPI

3x
BR

4x
{RR} {R} {P} BITI ADDUI ADDI SUBI MULI DIVI ADDUI SUBUI MULUI DIVUI

5x
{logic} MLO ANDI ORI EORI {shift}

6x
 _2ADD

UI
_4ADD
UI

_8ADD
UI

_16ADD
UI

LDI

7x
NEG NOT MUX {FMAC} {double

r}
{float rr} {single

r}

8x
LB LBU LC LCU LH LHU LW LFS LFD LVWAR SWCR LEA LWS LCL

9x
SB SC SH SW SFS SFD STI CAS STS STMV STCMP STFND LDIS SWS CACHE

Ax
JSR JSR JSR RTS LOOP SYS INT {R} MFSPR MTSPR {bitfld} MOVS LVB LVC LVH LVW

Bx
LBX LBUX LCX LCUX LHX LHUX LWX

Cx
SBX SCX SHX SWX STIX INC PUSH PEA POP LINK UNLINK

Dx
 LW

Ex

Fx
{TLB} NOP RTS RTE RTI {BCD} STP SYNC MEMSB MEMDB CLI SEI RTD IMM

{RR} Opcodes –Func6

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x ADD SUB MUL DIV ADDU SUBU MULU DIVU 2ADDU 4ADDU 8ADDU 16ADDU

1x MIN MAX

2x

3x

{logic} Opcodes – Func6

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x AND OR EOR NAND NOR ENOR ANDC ORC

1x

2x

3x

{BCD} Opcodes – Func6

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x BCDADD BCDSUB BCDMUL

200 | P a g e

{float -rr} Opcodes –Func6

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x FCMP FADD FSUB FMUL FDIV

1x FCMPS FADDS FSUBS FMULS FDIVS

2x

3x

77 - Double {R} Opcodes – Func4

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x FMOV FTOI ITOF FNEG FABS FSIGN FMAN FNABS FSTAT FRM

79 - Single {R} Opcodes – Func4

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x FMOVS FTOIS ITOFS FNEGS FABSS FSIGNS FMANS FNABSS FTX FCX FEX FDX

A7 {R} Opcodes – Func4

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x MOV NEG NOT ABS SGN CNTLZ CNTLO CNTPOP SXB SXC SXH COM ZXB ZXC ZXH

41 {R} Opcodes – Func4

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x CPUID REDOR REDAND PAR

