
Stack Operations
Stack based operations are currently not supported. This document outlines proposed stack

based instructions.

Stack based operations require en-queueing two sub-instructions in place of the stack

instruction specified in program code. Logic cell requirements for the additional operations

approx. 10,000 LC’s.

LINK – Link Stack

Description:

The specified base pointer register Rt is pushed onto the stack, the stack pointer is loaded into

register Rt and then is adjusted by the amount specified. The adjustment field of the instruction

is multiplied by eight and sign extended before being applied allowing up to 128k bytes to be

allocated. Note the adjustment field may not be extended with an immediate prefix. Also note

the adjustment field value should be eight less than the desired value.

Instruction Format:

39 28 27 22 21 16 15 8 7 0

Adjustment11..0 Rt6 Adj17..12 CBh8 Pn4 Pc4

Clock Cycles: 4 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

memory[SP-8] = Rt

Rt = SP - 8

SP = SP + adjustment

PEA – Push Effective Address

Description:

An address value is calculated as the sum of the sign extended displacement and register Ra

then pushed onto the stack.

Push and pop operations are unique as they enque as two instructions. This has a tendency to

serialize the operation of the processor. It may improve performance in some applications to

manually adjust the stack pointer, and use load / store operations instead.

Instruction Format:

3937 36 28 27 22 21 16 15 8 7 0

~3 Displacement8..0 ~6 Ra6 C9h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

SP = SP - 8

memory[SP] = Ra + displacement

POP – Pop Register

Description:

The register is popped from the stack then the stack pointer is incremented.

Push and pop operations are unique as they enque as two instructions. This has a tendency to

serialize the operation of the processor. It may improve performance in some applications to

manually adjust the stack pointer, and use load / store operations instead.

Instruction Format:

23 22 16 15 8 7 0

~1 Rt7 CAh8 Pn4 Pc4

Clock Cycles: 4 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

Rt = mem[r27]

r27 = r27 + 8

Registers Popped:

Regno (Rt7) Register Pushed

00 to 63 general register file

64 to 79 predicate registers #0 to #15

80 to 95 code address registers

96 to 111 segment registers

112 predicate register array

115 loop counter

PUSH – Push Register

Description:

The stack pointer is decremented then the register is pushed onto the stack.

Push and pop operations are unique as they enque as two instructions. This has a tendency to

serialize the operation of the processor. It may improve performance in some applications to

manually adjust the stack pointer, and use load / store operations instead.

Instruction Format:

23 22 16 15 8 7 0

~1 Ra7 C8h8 Pn4 Pc4

Clock Cycles: 3 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

r27 = r27 - 8

mem[r27] = Ra

Registers Pushed:

Regno (Ra7) Register Pushed

00 to 63 general register file

64 to 79 predicate registers #0 to #15

80 to 95 code address registers

96 to 111 segment registers

112 predicate register array

115 loop counter

UNLINK – Unlink Stack

Description:

The specified base pointer register Ra is loaded into the stack pointer, then register Ra is popped

from the stack.

Instruction Format:

2322 21 16 15 8 7 0

~2 Ra6 CCh8 Pn4 Pc4

Clock Cycles: 4 (one memory access)

Execution Units: All ALU’s / Memory

Operation:

SP = Ra

Ra = memory[SP]

SP = SP + 8

