
UART to Bus

Core Specifications

Written for publication on:

File name: UART to Bus Core Specifications

Version: 0.1

Creation Date: February 12, 2010

Update Date: February 13, 2010

Author: Moti Litochevski

February 13, 2010

Table of Contents
1. Preface..3

1.1. Scope..3
1.2. Revision History...3
1.3. Abbreviations...3

2. Introduction..4
3. Architecture..5
4. Operation..6

4.1. Text Mode Protocol..6
4.2. Binary Mode Protocol..7

5. Core Interfaces...9

Index of Tables
Table 1: Synthesis Results for Different FPGA Devices...4
Table 2: Text Protocol Read Command Format..7
Table 3: Text Protocol Write Command Format...7
Table 4: Binary Protocol Command Format..8
Table 5: Binary Protocol Return Message Format..8
Table 6: Core Interfaces Description...9

Index of Figures
Figure 1: UART to Bus Core Block Diagram...5
Figure 2: Parser State Diagram..6

UART to Bus Core Specifications Page 2 of 9

February 13, 2010

1. Preface

1.1. Scope
This document describes the UART to Bus IP core operation, architecture and interfaces.

1.2. Revision History
Rev Date Author Description

0.1 02/13/10 Moti Litochevski First Draft

1.3. Abbreviations
UART Universal Asynchronous Receiver / Transmitter

UART to Bus Core Specifications Page 3 of 9

February 13, 2010

2. Introduction
The UART to Bus IP Core is a simple command parser that can be used to access an internal bus
via a UART interface. This core can be used during initial board debugging or as a permanent
solution when high speed interfaces are not required. The internal bus is designed with address bus
of 16 bits and data bus of 8 bits.

The core implements a very basic UART transmit & receive blocks which share a common baud
rate generator and a command parser. The parser supports two modes of operation: text mode
commands and binary mode commands. Text mode commands are designed to be used with a
hyper terminal software and enable easy access to the internal bus. Binary mode commands are
more efficient and also support buffered read & write operations with or without automatic address
increment.

The was verified using Icarus Verilog simulator with two test benches: the first tests the text mode
protocol and the second tests the binary protocol. The test bench uses a register file model to
simulate write and read operations.

The following table summarizes the synthesis results of the core for different FPGA families.

Manufacturer Family Device Device
Utilization

Elements
Utilization

Fmax

Xilinx Spartan 3 xc3s50-5pq208 25.00% 195 Slices >150MHz
Xilinx Virtex 5 xc5vlx30-3ff324 2.00% 99 Slices >200MHz
Altera Cyclone III ep3c5f256c6 5.00% 235 LEs >200MHz
Altera Startix III ep3sl50f484c2 <1% 165 Registers

186 ALUTs
>200MHz

Table 1: Synthesis Results for Different FPGA Devices

The above results where obtained using the following software versions:

• Xilinx ISE Webpack 11.1

• Altera Quartus Web Edition 9.0p2

NOTE:
The UART to Bus core is not Wishbone compatible although modifying it for
Wishbone is probably possible.

UART to Bus Core Specifications Page 4 of 9

February 13, 2010

3. Architecture
The UART to Bus architecture is fairly simple. The core is includes a UART interface module,
which includes both receive and transmit modules, and the command parser. The following figure
depicts a block diagram of the core.

Figure 1: UART to Bus Core Block Diagram

The UART interface is based on an implementation found in the c16 project in OpenCores
(http://www.opencores.org/project,c16). The interface includes a UART receive and transmit
modules that share a single baud rate generator module. The baud rate is set using two constants
defined at the core top module which are calculated as follows:

D_BAUD_FREQ= 16⋅BaudRate
gcd GlobalClockFreq ,16∗BaudRate

D_BAUD_LIMIT= GlobalClockFreq
gcd GlobalClockFreq ,16⋅BaudRate

−D_BAUD_FREQ

A short Scilab script which calculates the above parameters is added under the “scilab” directory
with the core files.

The interface between the “uart_parser.v” module and the “uart_top.v” is very simple and uses only
five signals. For cases where the UART interface is not possible or another interface is preferred,
the “uart_parser.v” module can be used as is with a different interface implementation.

UART to Bus Core Specifications Page 5 of 9

uart_tx.v

uart_rx.v

baud_gen.v

uart_top.v

uart_parser.v

uart2bus_top.v

ser_out

ser_in

int_address

int_wr_data
16

8
int_write

int_read

int_rd_data

8

clock

reset

http://www.opencores.org/project,c16

February 13, 2010

4. Operation
This section describes the protocols used to access the internal bus from the UART interface. As
mentioned above the parser supports two modes of operation: text & binary commands. To
distinguish between the two protocols all binary commands start with a value of zero which will not
be sent when using the text protocol. The following drawing depicts a simplified state machine of
the parser. The figure does not include some transitions used to abort illegal command sequences.

Figure 2: Parser State Diagram

In the state diagram above the states on the right are used for the text mode protocol and the states
on the left are used for the binary mode protocol.

The following sub-sections describe each of the protocols.

4.1. Text Mode Protocol
The text mode protocol includes only two commands: address read and address write. All values
are in HEX format. The parser checks for both upper and lower characters, detects both space
(0x20) and tab (0x09) as white spaces and both LF (0x0A) and CR (0x0D) as end of line.
Commands which do not follow the required sequence or contain illegal characters are aborted.

UART to Bus Core Specifications Page 6 of 9

IDLE

WHITE1

DATA

WHITE2

ADDR

EOL

BIN_
CMD

BIN_
ADRH

BIN_
ADRL

BIN_
LEN

BIN_
DATA

White char af ter
“w ” command

White char af ter
“r” command

White char
or CR or LF

not(CR or LF)

Legal Hex char

Legal Hex char

White char

CR or LF

0 byte value

Repeats LEN
times

February 13, 2010
Address read command format:

1st Field 2nd Field 3rd Field 4th Field
'R' or 'r' White space – single or

multiple
Address to read in Hex
format, for example:
'D5A0'.

End of line, CR or LF
characters.

Table 2: Text Protocol Read Command Format

On the reception of the EOL character the core will read the given address and transmit the read
value in two Hex characters followed by CR & LF characters.

Address write command format:

1st Field 2nd Field 3rd Field 4th Field 5th Field 6th Field
'W' or 'w' White space –

single or
multiple

Data to write
in Hex format,
for example:
'4F'.

White space –
single or
multiple

Address to
write in Hex
format, for
example:
'D5A0'.

End of line,
CR or LF
characters.

Table 3: Text Protocol Write Command Format

On the reception of the EOL character the core will write the given address. No transmission is sent
back to the sender.

4.2. Binary Mode Protocol
The binary mode protocol is much more efficient since it parsers the sent values and does not need
to convert them from ASCII. The protocol uses a single command which can be either read or write
operation of a configurable number of bytes. Commands are optionally acknowledged on
completion. The binary command format is detailed in Table 4.

Byte # Name Description
1 Binary Command

Indicator
Constant zero byte prefix to indicate the start of a binary command.

2 Command This byte is the command selection and options byte and has the
following bit assignment:

Bit # Description
[7:6] Not used
[5:4] Command selection:

2'b00 = NOP command, sends ACK if requested.
2'b01 = Read command.
2'b10 = Write command.

[3:2] Not used

UART to Bus Core Specifications Page 7 of 9

February 13, 2010

1 Address Auto Increment Enable:
Set to 0 to enable address auto increment.
Set to 1 to disable address auto increment.

0 Send ACK Flag:
Set to 1 to send ACK byte at command
completion.

Notes:
• The NOP command can be used to verify that the core is

responding on the UART.
• The address auto increment option increments the internal

bus address after every bus read or write operation. This is
required when reading a buffer from a RAM. When reading
data from a FIFO it is more convenient to turn auto address
increment off.

3 Address High
Byte

High 8-bits of the 16-bit operation start address.

4 Address Low Byte Low 8-bits of the 16-bit operation start address.
5 Length This byte indicates the length of buffer to read or write. Note that a

value of 0 signs a buffer length of 256 bytes which is the maximum
buffer length.

6 to
5+LEN

Data This field only exists in write commands and it contains the data to
be written. The data length should equal the length indicated by the
Length field.

Table 4: Binary Protocol Command Format

In response to read command and when an acknowledge byte is requested the following binary
message is transmitted by the core.

Byte # Name Description
1 to
LEN

Data This field only exists in response to read commands and it contains
the data read. The data length equals the length indicated by the
Length field in the command.

LEN+1 ACK The value of the ACK byte is 0x5a and is only sent if bit 0 in the
command byte is set.

Table 5: Binary Protocol Return Message Format

UART to Bus Core Specifications Page 8 of 9

February 13, 2010

5. Core Interfaces
The following table summarizes the core interface ports.

Name Direction Width Description
clock input 1 Global core clock signal.
reset input 1 Global core asynchronous reset, active high.
ser_in input 1 UART serial input to the core.
ser_out output 1 UART serial output from the core.
int_address output 16 Internal address bus.
int_wr_data output 8 Data value to write to address on the clock cycle with

int_write active.
int_write output 1 An active high write control signal. This signal shall only be

valid for a single clock cycle per address to be written to.
int_read output 1 An active high read control signal. This signal shall only be

valid for a single clock cycle per address to be read from.
int_rd_data input 8 Data value read from address. This signal is sampled by the

core on the next clock cycle following int_read signal active
cycle.

Table 6: Core Interfaces Description

Note:
The port direction in the table above is as defined in the core top module.

UART to Bus Core Specifications Page 9 of 9

	1.1. Scope
	1.2. Revision History
	1.3. Abbreviations
	4.1. Text Mode Protocol
	4.2. Binary Mode Protocol

