

FEATURES

Implements UDP, IPv4, ARP protocols

Zero latency between UDP and MAC layer
= (combinatorial transfer during user data phase)
= See simulation diagram below

Allows full control of UDP src & dst ports on TX.

Provides access to UDP src & dst ports on RX (user filtering)
Couples directly to Xilinx Tri-Mode eth Mac via AXI interface
Separate building blocks to create custom stacks

Easy to tap into the IP layer directly

Supports TX and RX with IP layer broadcast address
Separate clock domains for tx & rx paths

Choice of smaller single slot ARP or multislot up to 255 slots
Tested for 1Gbit Ethernet, but applicable to 100M and 10M

SIMULATION DIAGRAM SHOWING ZERO LATENCY ON RECEIVE

1,324.000 ns|[.000 ns

1,390 ns 1,360 ns
1 1 1 11 I | o] 2] 1 () | l { e A ey |
% our_mac_address[4/: 1508689 /699

U}; mac tx tready
p W@ mac_nx_tdata[7:0]

U@ mac_rx_tlast
U;; udp_rx_start_int i
v B udp_ncint {0,323223p... 3{{{1,3232236.| ¥{{1,... ¥ {1,.. ¥{{1}3232236. {{{1,.. ¥
v B2 .hdr ~ %{0,323223%... {1,3232236801,62618, 98
U;, Jis_valid
p WA srcip_addr 3232P36801

p BE srcport F L

p W@ .dst_port X 9876
p W& .data_length
¥ W2 .data $110... k(0. ¥ {108,1,03 x{11. %
p WA data_in)4 ¥ X 6C '
1% .data_in_valid

-U;, .data_in_last

» 8 ip_nchdr -20 ns ‘0ns 20ns " lons 60 ns

-—a . - e =~ IIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllllllllllll

LIMITATIONS

Does not handle segmentation and reassembly

= Assumes packets offerred for transmission will fit in a single
ethernet frame

= Discards packets received if they require reassembly

OVERALL BLOCK DIAGRAM

Generics (see block level descriptions)
CLOCK_FREQ
ARP_TIMEOUT
ARP_MAX_PKT_TMO
MAX_ARP_ENTRIES

UDP TX bus MAC TX bus

UDP RX bus UDP_Complete_nomac MAC RX bus

IP RX bus

STRUCTURAL DECOMPOSITION

MAC TX bus

Tx_arbitrator
UDP TX bus

IPV4_TX

UDP RX bus
MAC RX bus

IPV4_RX

ARP BLOCHK OPTIONS

ARP can be instantiated in one of the following options:
= arp - simple 1-slot ARP layer with timeout
= arpv2 - multislot ARP layer with timeout

These can be selected in the IP_Complete_nomac.vhd file by
commenting out the appropriate line -

-- for arp layer : arp use entity work.arp; -- single slot arbitrator

for arp layer : arp use entity work.arpv2; -- multislot arbitrator

ARP V2 BLOCK

IP RX bus

INTERFACE

entity UDP_Complete_ nomac is

Port (

-- UDP TX signals
udp_tx_start in std_logic; --
udp_txi in udp_tx_ type; --
downto 0);
udp_tx_data_out_ready: out std_logic; --
-- UDP RX signals

udp_rx_start

udp_tx_result : out std logic_vector (1

out std_logic; --

udp_rxo out udp_rx type;

-- IP RX signals

ip rx_hdr out ipv4_rx header_type;
-- system signals

rx_clk in STD_LOGIC;

tx_clk in STD_LOGIC;

reset in STD_LOGIC;

our_ip address
our_mac_address
control in upd control_type;

-- status signals

out STD_LOGIC_VECTOR (7 downto 0);
out STD_LOGIC VECTOR (7 downto 0);

-- MAC Transmitter

arp pkt_count
ip pkt count
mac_tx tdata out

mac_tx tvalid out

std_logic;

std logic_vector (7 downto 0);

indicates req to tx UDP

UDP tx cxns

-- tx status (changes during tx)
indicates udp_tx is ready to take data

indicates receipt of udp header

in STD_LOGIC_VECTOR (31 downto 0);
in std_logic_vector (47 downto 0);

-- count of arp pkts received
-- number of IP pkts received for us

-- data byte to tx
-- tdata is wvalid

THE AXI INTERFACE

This implementation makes extensive use of the AXI interface (axi.vhd)

package axi is

type axi_in type is record

data_in STD_LOGIC_VECTOR (7 downto 0);
data_in valid : STD_LOGIC; -- indicates data_in valid on clock
data_in last STD_LOGIC; -- indicates last data in frame
end record;
type axi_out type is record
data_out_valid std_logic; -- indicates data out is valid
data_out_ last std_logic; -- indicates

last byte of a frame
data_out std_logic_vector (7 downto 0);
end record;

end axi;

MAC INTERFACE

The MAC interface is fairly simple with separate clocks for receiver and transmitter. Each interface (RX and TX) is based on
the AXI interface and has an 8-bit data bus, a valid signal, a last byte signal, and a backchannel signal to indicate that the
other end is ready to accept data.

The Transmit interface has an additional sighal (mac_tx tfirst) which can be used by MAC blocks that need
something to indicate the start of frame. This signal is asserted simulaneous with the first byte to be transmitted (providing
that tready is high).

On the following diagram, tx_clk and rx_clk are shown sourced from the MAC transmit and receive blocks, but can come
from an independent clock generator that feeds clocks to both the MAC blocks and the UDP_IP_stack. Data is clocked on
the rising edge.

()
Data (7..0) \
UDP_IP_Stack valid
first MAC Transmit
last
ready
tx_clk

-

Data(7..0)
valid

last

ready
rx_clk

MAC Receive

N\

SYNTHESIS STATS

451 occupied slices on Xilinx xc6vIx240t (1%)
(687 flipflops, 1294 LUTS)

Test synthesis using
= Xilinx ISE 13.4

Architecture FF / LUTS Block Rams

Arp (1 slot) 684/ 1283 1%
Arpv2 (255 slot) 674 1139/ 1822 2 1%

MODULE DESCRIPTION: UDP_COMPLETE_NOMAC

Simply wires up the following blocks:
= UDP_TX

= UDP_RX

= |P_Complete_nomac

Propagates the IP RX header info to the UDP_complete_nomac
module interface.

MODULE DESCRIPTION: UDP_TX AND UDP_RX

UDP_TX:

= Very simple FSM to capture data from the supplied UDP TX header,
and send out a UDP header.

= Asserts data ready when in user data phase, and copies bytes from
the user supplied data.

= Assumes user will supply the CRC (specs allow CRC to be zero).

UDP_RX

= Very simple FSM to parse the UDP header from data supplied from the
IP layer, and then to send user data from the IP layer to the interface
(asserts udp_rxo.data.data_in_valid).

= Discards IP pkts until it gets one with protocol=x11 (UDP pkt).

MODULE DESCRIPTION: IPV4

Simply wires up the following blocks:
= |Pv4

= ARP
= Tx_arbitrator

Arp reads the MAX RX data in parallel with the IPv4 RX path. ARP is
looking for ARP pkts, while IPv4 is looking for IP pkts.

IPv4 interacts directly with ARP block during TX to ensure that the
transmit destination MAC address is known.

TX_arbitrator, controls access to the MAC TX layer, as both ARP and IPv4
may want to transmit at the same time.

MODULE DESCRIPTION: IPV4_TX

IPv4_TX comprises two simple FSMs:

= 1o control transmission of the header and user data
= 1o calculate the header checksum

To use,

= set the TX header, and assert ip_tx_start.

= The block begins to calculate the header CRC and transmit the header

= Once in the user data stage, the block asserts ip_tx_data_out_ready and copies
user data over to the MAC TX output

MODULE DESCRIPTION: IPV4_RX

Simple FSM to parse both the ethernet frame header and the IP v4
header.

Ignores packets that

= Are not v4 |IP packets

= Require reassembly

= Are not for our ip address and are not for the broadcast address

Once all these checks are satisfied, the rx header data: ip_rx.hdr is
valid and the module asserts ip_rx_start.

Received user data is available through the ip_rx.data record.

MODULE DESCRIPTION: ARP (SINGLE SLOT VERSION)

Handles receipt of ARP packets

Handles transmission of ARP requests and timeout if no response received
Handles request resolution (check ARP cache and request resolution if not found)
Three FSMs, one for each of the above functions

ARP mapper cache is only 1 deep in this implementation
= which means that it is only really good for point-point commes.
= Use ARPvV2 if you want an implementation with more slots

Input signals to module indicate our IP and MAC addresses

ARP timeout is configured by generics in the ARP, IP, and UDP modules:

CLOCK_FREQ : integer := 125000000;
ARP TIMEOUT : integer := 60

CLOCK_FREQ is used to scale the rx_clk to produce a 1Hz signal for timing.
ARP_TIMEOUT specifies the timeout in seconds.

MODULE DESCRIPTION: ARPV2 (muLti sLoT VERSION)

Handles receipt of ARP packets
Handles transmission of ARP requests and timeout if no response received
Handles request resolution (check ARP cache and request resolution if not found)

Decomposed into modules:

req - handles request response protocol and contains a single slot cache for fast lookup
store - maintains a map of IP->MAC addresses, configurable size to 255

tx - encodes the «l Have» and «who has» ARP tx formats

rx - decodes the ARP protocols «l have» and «who has»

sync - performs clock sync between the RX and TX clock domains

ARPV2 mapper cache is configurable up to 255 slots.
Input signals to module indicate our IP and MAC addresses
ARP ARP MAX PKT TMO?2 is configured by generics in the ARP, IP, and UDP modules:

CLOCK_FREQ : integer := 125000000;
ARP TIMEOUT : integer :=

ARP MAX PKT_ TMO : integer := 5

MAX ARP ENTRIES : integer := 255

CLOCK_FREQ is used to scale the rx_clk to produce a 1Hz signal for timing.
ARP_TIMEOUT specifies the timeout in seconds.

ARP MAX PKT TMO specifies the number of received “I Have” ARP responses which don’t
satisfy our request before timeout.

MODULE DESCRIPTION: TX_ARBITRATOR

FSM to arbitrate access to the MAC TX layer by
= |P TX path
= ARP TX path

One of the sources requests access and must wait until it is granted.

Priority is given to the IP path as it is expected that that path has the highest request
rate.

SIMULATION

Every vdhl module has a corresponding RTL simulation test bench.

Additionally, there are simulation test benches for various module integrations.

In this version, verification is not completely automatic. The test benches test for
some things, but much is left to manual inspection via the simulator waveforms.

TESTBENCH - HW

The HW testbench is built around the Xilinx ML-605 prototyping card.

It directly uses the card’s 200MHz clocks, Eth PHY (copper) and LEDs to
indicate status.

A simple VHDL driver module for the stack replies with a canned response
whenever it receives a UDP pkt on a particular IP addr and port number.

The Xilinx LogiCORE IP Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC v2.1 is
used to couple the UDP/IP stack to the board’s Ethernet PHY. This is used
with the standard FIFO user buffering (which adds a one-frame delay). It
should be possible also to remove this FIFO to reduce latency.

A laptop provides stimulus by way of one of two Java programs:
= UDPTest.java — writes one UDP pkt and waits for a response then prints it
= UDPTestStream.java - writes a number of UDP pkts and prints responses

Xilinx ML605 board

TX Xilinx I Eth

UDP_Complete_
nomac

mac_block

response PHY

process

Async' TX Clocks & Arp & IP pkt
Pushbutton reset count: 4 leds

Java Test Code running on Laptop

TESTBENCH HW - ML605 MODULES

* UDP_Complete - integration of UDP with a mac layer
* |P Complete - integration of IP layer only with a mac layer

* UDP_Integration_Example - test example with vhdl process to reply to received
UDP packets

TEST RESULTS

The xilinx MAC layer used contains a FIFO which therefore introduces a 1
frame delay.

= For tightly coupled low latency requirements, this can be removed.

Output from UDPTest:

= Sending packet: 1=45~34=201~18=23~ on port 2000
Got [@ABC]

Output from UDPTestStream:

Sending price tick 205
Sending price tick 204
Sending price tick 203
Sending price tick 202

