
UoS educational processor - instruction set details

UoS educational processor

Characteristics:

• 8-bit, 4 register processor, Von Neumann architecture
• 3 clock cycle per instruction
• 16-bit instruction set (inspired by x86 ISA) with direct, indirect, immediate, register

addressing
• Customizable instructions
• External memory bus (for program/data)
• I/O interface (as in microcontrollers)
• Implemented in VHDL
• Synthesizable

Registers and flags
There are 4 registers. They are encoded as follows in the
instruction:
RA: 00
RB: 01
RC: 10
RD: 11

There are 4 flags, that are set after the "cmp dst, src"
instruction.
 ZF: Zero flag
 SF: Sign flag
 CF: Carry flag
 OF: Overflow flag (not implemented/used yet)

Flags are used to store the result of a comparison operation.
The conditional jump operations check the status of the flag
to determine whether to jump or not.

Generalities
The CPU supports move, ALU, jump and external interface
instructions.

The general format of move and ALU instructions are of the
format:
 instr dst,src

instr is the name of the instruction (e.g. mov, add, sub). All
ALU instructions will take the data of dst, apply the
operation specified with the value of dst and src, and store
the result in dst.

dst is the destination where the result is placed. It is
always a register (dst is one of ra,rb,rc,rd) for an ALU
instruction. For move instructions the destination can be a
register or a memory location contained in a register. The

UoS educational processor - instruction set details

syntax for a mov to a memory location is to put the register
in bracket (e.g. [ra]).
src is the source of the data. It is either a register or an
immediate. An immediate is a value encoded in the instruction.
With move instruction, the source can be directly the register
value or the immediate (direct mode) or it can be fetched from
memory (indirect mode) at the location indicated by the
register or the immediate.

General instruction format
All instructions are 16 bit and follow this format:

instr(15..13) instruction(12..8) instruction(7..0)

Opcode depends on the
instruction

src

The opcode (operation code) indicates the type of operation
corresponding to this instruction. The meaning of the
remaining fields depend on this opcode.
src contains the source of data for the instruction (or is
sometimes unused).
src can be an "immediate" (8-bit of data) that is stored in
the instruction or a register, in which case only the 2 least
significant bits are used to encode the register.

Move instruction (opcode 000)
Format:
 mov dst, src

Instructions instruction(15..8) Instruction(7..0)

Move Opcode IR / dd#m sd#m dreg src (i or rm)
mov rn, rm 0 0 0 0 0 0 r r - - - - - - r r
mov rn, i 0 0 0 1 0 0 r r i i i i i i i i
mov rn, [rm] 0 0 0 0 0 1 r r - - - - - - r r
mov rn, [i] 0 0 0 1 0 1 r r i i i i i i i i
mov [rn], rm 0 0 0 0 1 0 r r - - - - - - r r
mov [rn], i 0 0 0 1 1 0 r r i i i i i i i i

The destination can be a register or a memory location. The
memory location is indicated by putting the name of the
register in bracket.

The source can be a register, an immediate, or a memory
location. If it is a memory location the address of the memory
location can be provided in a register or in an immediate.
Brackets are used to indicate that the source is a memory
location.

UoS educational processor - instruction set details

dreg indicates the register used in the destination assignment.
dd#m indicated whether the destination register is used as the
target of the move, (dd#m=0) or provides the memory location
for the move (dd#m=1).

The source src is an immediate providing the data or memory
location of the source when IR / =1 or a register providing the
data or the memory location of the source when IR / =0.

The source is read from the memory location indicated by src
when sd#m=1, otherwise it is the data specified in src (direct
or immediate according to IR /).

Examples:
 mov ra, rb
Moves the content of register rb into ra
 mov ra, 35h
Moves the immediate 35h into ra
 mov rd, [ra]
Moves the data at memory location ra into register rd
 mov rd, [12h]
Moves the data at memory location 12h into register rd
 mov [rb], rc
Moves the content of register rc to the memory location rb.
 mov [rb], 07h
Moves the immediate 07h to the memory location rb.

ALU operations (opcode 001, 010, 011)

Format:
 instruction dst, src (two operands)
 instruction dst (one operand)

ALU operations include two and one operand arithmetic/logic
operations.

The destination dst is a register.

The source src can be a register or an immediate. The source
is an immediate when IR / =1 or a register when IR / =0.

The instructions take dst as the first operand, src as the
second operand, and place the result in dst. I.e.:
 dst <= instruction(dst,src)
See examples.

UoS educational processor - instruction set details

Two operands logic/arithmetic

Instructions instruction(15..8) Instruction(7..0)

ALU 2 op opcode IR / ALU op dreg src (i or rm)
add rn, rm 0 0 1 0 0 0 r r - - - - - - r r
add rn, i 0 0 1 1 0 0 r r i i i i i i i i
sub rn, rm 0 0 1 0 0 1 r r - - - - - - r r
sub rn, i 0 0 1 1 0 1 r r i i i i i i i i
and rn, rm 0 0 1 0 1 0 r r - - - - - - r r
and rn, i 0 0 1 1 1 0 r r i i i i i i i i
or rn, rm 0 0 1 0 1 1 r r - - - - - - r r
or rn, i 0 0 1 1 1 1 r r i i i i i i i i
xor rn, rm 0 1 0 0 0 0 r r - - - - - - r r
xor rn, i 0 1 0 1 0 0 r r i i i i i i i i

Two operands comparison

Test opcode IR / ALU op dreg immedite or rm
cmp rn, rm 0 1 0 0 0 1 r r - - - - - - r r
cmp rn, i 0 1 0 1 0 1 r r i i i i i i i i

The comparison is realized by performing a subtraction of dst-
src (without storing the result to the destination register).
The result of the comparison is stored in "flags"
Therefore:
 dst=src: Zero flag set, Carry flag clear
 dst>src: Zero flag clear, Carry flag clear
 dst<src: Zero flag clear, Carry flag set

The conditional jump instructions check the flag bits to
decide whether to perform the jump operation.

One operand logic/arithmetic

Instructions instruction(15..8) Instruction(7..0)
ALU 1 op opcode ALU op dreg
not r 0 1 1 0 0 0 r r - - - - - - - -
shr r 0 1 1 0 0 1 r r - - - - - - - -
ror r 0 1 1 0 1 0 r r - - - - - - - -
asr r 0 1 1 0 1 1 r r - - - - - - - -
rol r 0 1 1 1 0 0 r r - - - - - - - -

Examples:

 add ra, rb
Stores ra+rb in rb
 sub ra,3

UoS educational processor - instruction set details

stores ra-3 in ra.
 and rd,55
stores the logical AND of rd and 55h in rd
 ror rb
rotates right rb and store the result in rb.

Jumps (opcode 101)
Format:
 jxxx src

Perform a conditional or unconditional jump (change the
content of the instruction pointer) to a new memory location.
The memory location can be an immediate, or the content of a
register.
The unconditional jump instruction is jmp.

The conditional jump instructions are: je/jz, jne/jnz.

jz/je: jump if zero/equal (Zero set)
jne/njz: jump if not zero/equal (Zero clear)
ja: jump if above (Zero clear, carry clear)
jb: jump if below (Zero clear, carry set)

Instructions instruction(15..8) Instruction(7..0)

Jump
Unsigned:

JA, JAE, JB,
JBE

opcode IR / Jump type immedite / reg

jmp rn 1 0 1 0 0 0 0 0 - - - - - - r r
jmp i 1 0 1 1 0 0 0 0 i i i i i i i i
je/jz rn 1 0 1 0 0 0 0 1 - - - - - - r r
je/jz i 1 0 1 1 0 0 0 1 i i i i i i i i
jne/jnz rn 1 0 1 0 1 0 0 1 - - - - - - r r
jne/jnz i 1 0 1 1 1 0 0 1 i i i i i i i i
ja rn 1 0 1 0 0 0 1 0 - - - - - - r r
ja i 1 0 1 1 0 0 1 0 i i i i i i i i
jae rn 1 0 1 0 0 0 1 1 - - - - - - r r
jae i 1 0 1 1 0 0 1 1 i i i i i i i i
jbe rn 1 0 1 0 1 0 1 0 - - - - - - r r
jbe i 1 0 1 1 1 0 1 0 i i i i i i i i
jb rn 1 0 1 0 1 0 1 1 - - - - - - r r
jb i 1 0 1 1 1 0 1 1 i i i i i i i i
jc rn 1 0 1 0 0 1 0 0 - - - - - - r r
jc i 1 0 1 1 0 1 0 0 i i i i i i i i
jnc rn 1 0 1 0 1 1 0 0 - - - - - - r r
jnc i 1 0 1 1 1 1 0 0 i i i i i i i i
Not implemented

UoS educational processor - instruction set details

External interface (opcode 110)
Syntax:
 out src
 in dst

Reads or write data from the external processor interface

Instructions instruction(15..8) Instruction(7..0)

IO opcode IR / IO type dreg src
out rn 1 1 0 0 0 0 - - - - - - - - r r
out i 1 1 0 1 0 0 - - i i i i i i i i
in rn 1 1 0 - 0 1 r r - - - - - - - -

