
1

Digital Systems and Microprocessor Design 
(H7068)

Daniel Roggen
d.roggen@sussex.ac.uk

8.1. Intro to UoS
educational
processor



2

UoS Educational Processor

• Developed in 2014 for "Digital Systems and Microprocessor Design" 
at University of Sussex by Daniel Roggen

• License: LGPL 2.1

• https://github.com/droggen/uos_educational_processor.git

• https://opencores.org/project,uos_processor



3

General processor

• Instruction and data memory outside of processor
– One reason: different semiconductor technologies

– Higher densities with dedicated chips

program counter



4

What's next: Educational Processor

• 8-bit, 4 register processor, Von Neumann architecture

• 3 clock cycle per instruction

• 16-bit instruction set (inspired by x86 ISA)
– Direct, indirect, immediate, register addressing

• Customizable instructions

• External memory bus (for program/data)

• I/O interface (as in microcontrollers)

• Implemented in VHDL

• Synthesizable



5



6

Educational processor overview

• Control unit: loads the instruction from memory and controls its execution
– Memory interface: whether to read or write memory (we: write enable), where to read 

(address), the data to write (datawr) and gets the data from memory with datard

– External interface: whether to write or read

– The ALU operation

– The input to the register bank

– The input to the ALU



7

Educational processor overview

• Register bank: 4 8-bit registers RA,RB,RC,RD
– Provides two outputs from any two registers (asynchronous output). Registers to read from are 

specified by control lines. 

– Allows to synchronously write to one register. Register to write to, and whether to write, is 
controlled by control lines.

– Registers (to read or write) are identified by a 2-bit code: RA=00, RB=01, RC=10, RD=11



8

Educational processor overview

• Register bank input: select data written to the register bank (if a write occurs 
in the register bank)

• Data to register bank can come from: ALU output, memory interface, external 
interface, another register, or the instruction



9

Educational processor overview

• ALU input: select data fed to ALU

• ALU input data can come from the register bank or from the instruction



10

Educational processor overview

• The ALU takes two inputs and performs a logical or arithmetic operation 
defined according to the control line



11

Educational processor overview

• The external interface allows to read or write data from a parallel interface on the 
processor

• This is commonly used in microcontrollers to connect peripherals (LEDs, buttons)

• During a write the interface stores the value to put on ext_out (D FF).

• No special operation during read, however more advanced external interfaces could 
perform signal conditioning (e.g. debouncing)



12

Educational processor overview

• The memory interface allows to connect to an external memory

• In this educational processor the memory interface is transparent (no special function).

• More advanced processors may have special interfaces to read from DRAM, SRAM, 
SD cards, etc.



13

Educational processor overview

• Processor ports: memory interface, exernal interface, clock and reset

• Reset is synchronous! (occurs on the rising edge of clock)

• More advanced processors may have several memory and external 
interfaces, additional pins to generate "interrupts" (branch of the 
execution flow when a pin is toggled), etc.



14

Educational processor on FPGA

• The processor is synthesized on the FPGA as any other component 
with the entity port map syntax.

• A 32 bytes memory is synthesized alongsize the processor for 
program and data. It has 32 entries (5 bit address) of 8 bits

• Push buttons allow to generate single clocks to test the processor

• LED and switches connected to external interface

Memory

From switches

To LEDsPush button



15

Stored program (von Neumann)

• Instructions represented as number in memory

• Programs are just like data

• However:
– Program goes to the control unit

– Data goes to the data path



16

Instruction

• An instruction defines the operation of the processor
when it is executed

• An instruction is defined by it's bit-width and whether it is 
fixed-length or variable length
– Fixed length lead to easier implementation but use more 

memory

– Variable length can optimize the size for frequent instruction 

• It comprises multiple fields: opcode (operation code), 
source, destination, etc.

• Different processor architectures have different 
instruction sets with their own encoding



17

Instructions in the educational CPU

• All instructions are 16-bit wide (fixed size)

• 3-bit opcode (operation code): indicates the type of 
operation 

• The meaning of the remaining bits depends on the 
opcode!

srcdepends on the 
instruction

Opcode

instruction(7..0)instruction(12..8)instr(15..13)



18

Program counter / Instruction pointer

• PC or IP: register in the processor control unit that 
indicates the memory location where the instruction is 
fetched

• PC starts at zero on reset 

• As instructions are 16 bits, the first instruction is at 
memory location 00 and 01; the second instruction at 
memory location 02 and 03;...

• PC incremented continuously for usual instructions

• Except with "jump" instructions: the PC changed to fetch 
instruction from another location



19

Encoding v.s. "assembler" instruction

• All instructions are 16-bit data stored in memory

• The instructions can be specified by their binary code:
– 1000001010101

• Or to simplify reading by their hex code:
– 1055h

• To further simplify reading we use a human readable
format:
– mov ra,55h

• We refer to this format as an "assembler" instruction
because a software (or human) would read the text "mov
ra,55h" and "assemble" the various parts of the 
encoding to obtain 1055h



20

Opcodes

• Defines the "category" of the instruction

• 3-bit opcode: total of 8 "categories" of instructions

• Defined in order to help the decoding of the instruction.

• All instructions of the same opcode share the same encoding

• Opcode 000: move instructions

• Opcode 001: ALU instructions

• Opcode 010: ALU instructions

• Opcode 011: ALU instructions

• Opcode 100: unused

• Opcode 100: ALU instructions

• Opcode 101: jump instructions

• Opcode 110: external interface instructions

• Opcode 111: unused



21

Move instructions (opcode 000)

• Moves data between registers, immediate and memory

• mov dst,src
– moves the data specified by source into destination

iiiiiiiirr011000mov [r], i

rr------rr010000mov [r], r

iiiiiiiirr101000mov r, [i]

rr------rr100000mov r, [r]

iiiiiiiirr001000mov r, i 

rr------rr000000mov r, r

srcdregsd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /



22

immediate/register

• the src field contains the "source" data for the instruction 
(sometimes unused)

• Source can be immediate or register depending on R'/I

• R’/I=1: src is an immediate: the 8 LSBs in the instruction 
are used as the data

• R’/I=0: src is a register: the data comes from a register. 
The register is specified by the 2 least significant bits in 
src
– RA: 00

– RB: 01

– RC: 10

– RD: 11

srcdregsd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /



23

direct/indirect

• Source: direct or memory mode specified by sd#m

• Direct mode: the value of a register or immediate is moved to dst

• Memory mode: the instruction fetch the data from the memory 
location specified by src (which can be immediate or register)

• Syntax: use brackets around src to indicate memory mode
– mov ra,[55h]

srcdregsd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /



24

destination

• Destination is always a register (direct) or a memory location 
(memory mode) specified by a register, depending on dd#m

• Direct mode: the value of source is moved to a register

• Memory mode: the instruction will fetch the data from a memory 
location. 

• Syntax: use brackets around dst to indicate memory mode
– mov [ra],55h

srcdregsd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /



25

Move examples

• mov ra,rb:
– src is direct, register: moves the content of reg b into reg a

– dst is direct register

• mov ra,13h:
– src is direct, immediate: moves 13h into reg a

– dst is direct register

• mov ra,[rb]
– src is memory, register: moves the data at the memory location b into a

– dst is direct register

• mov ra,[13h]:
– src is memory, immediate: moves the data at the memory location 13h

into a

– dst is direct register

• mov [ra],rb:
– src is register: 

– dst is memory: moves the content of reg b into reg a



26

ALU (opcodes 001,010,011)

• Performs an arithmetic/logic operation on one or two 
operands

• instr dst, src
– Performs a two operand operation on dst and src and puts the 

result in dst

• instr dst
– Performs a single operand operation on dst and puts the result in 

dst

• dst is always a register

• src is a register or an immediate



27

ALU: two operands

• ALU op indicates which ALU operation

• src: source (immediate/register according to R'/I)

• dst: destination

iiiiiiiirr001010xor r, i

rr------rr000010xor r, r

iiiiiiiirr111100or r, i

rr------rr110100or r, r

iiiiiiiirr011100and r, i

rr------rr010100and r, r

iiiiiiiirr101100sub r, i

rr------rr100100sub r, r

iiiiiiiirr001100add r, i

rr------rr000100add r, r

srcdregALU opopcodeALU 2 op

Instruction(7..0)instruction(15..8)Instructions

IR /



28

Examples

• add RA,RB
– Stores RA+RB in RA

• sub RA,03h
– stores RA-3 in RA.

• and RD,55h
– stores the logical AND of RD and 55h in RD

Always indicate numbers by a 2 digit with an h at the end for hex!
Avoids confusion between register RA and value Ah



29

ALU: comparison

• Comparison: cmp dst,src

• src: source (immediate/register according to R'/I)

• dst: destination

• Comparison is performed by subtracting src from dst!

• Result of the comparison is stored in flags: carry and 
zero
– Zero=1 Carry=0: dst=src

– Zero=0 Carry=0: dst>src

– Zero=0 Carry=1: dst<src

• Result of comparison used by conditional jump

iiiiiiiirr101010cmp r, i

rr------rr100010cmp r, r

immedite / 
reg

dr
eg

ALU opopco
de

Test
IR /



30

ALU: one operand

• Format: instr dst

• The operation is applied on dst and the result is in dst

• Example:
– not ra

– asr rb

--------rr001110rol r

--------rr110110asr r

--------rr010110ror r

--------rr100110shr r

--------rr000110not r

dregALU opopcodeALU 1 op

Instruction(7..0)instruction(15..8)Instructions



31

Jumps (opcode 101)

• Unconditional jumps: changes the value of PC to 
destination
– jmp dst

• Conditional jumps: changes the value of PC if a 
condition is met. Condition is tested by checking the 
flags (carry, zero). Flags are set by a prior comparison

• JA: jump if above
– Jumps if Zero=0 and Carry=0

• JB: jump if below
– Jumps if Zero=0 and Carry=1

• JE: jump if equal
– Jumps if Zero=1



32

Compare / jump examples

Carry Zero

mov ra,0Ah 0 0

cmp ra,09h 0 0

cmp ra,0Ah 0 1

cmp ra,0Bh 1 0



33

Compare / jump examples

Carry Zero

mov ra,0Ah 0 0

cmp ra,09h 0 0

jb dst1 -- not taken: RA not below 9h

je dst2 -- not taken: RA not equal 9h

ja dst3 -- taken: RA above 9h



34

Compare / jump examples

Carry Zero

mov ra,0Ah 0 0

cmp ra,0Ah 0 1

jb dst1 -- not taken: RA not below Ah

je dst2 -- taken: RA not equal Ah

ja dst3 -- not taken: RA not above Ah



35

Compare / jump examples

Carry Zero

mov ra,0Ah 0 0

cmp ra,0Bh 1 0

jb dst1 -- taken: RA below Bh

je dst2 -- not taken: RA not equal Bh

ja dst3 -- not taken: RA above Bh



36

External interface (opcode 110)

• Out: write register or immediate to the external interface 

• In: read data from the external interface into a register

--------rr10-011in r

iiiiiiii--001011out i

rr--------000011out r

srcdregIO typeopcodeIO

Instruction(7..0)instruction(15..8)Instructions

IR /



37

Instruction fetch and execution

• Instructions are 16 bit but memory is 8 bit!

• Two cycles needed to fetch the instruction

• One cycle for execution

• Consequence: 3 clock cycles per instruction



38

Summary 

• The architecture and features of the processor are clear 
at a high level

• The characteristics of the instruction set are understood:
– Instruction execution time

– Instruction encoding

– Instruction set (move, alu, jump, external) and its characteristics 
(register/immediate, direct/memory)


