
1

Digital Systems and Microprocessor Design
(H7068)

Daniel Roggen
d.roggen@sussex.ac.uk

9.3. Assembler
memory access

2

Content

• Memory interface

• Memory read move instructions

• Memory write move instructions

• Mapping between C pointers and assembler
instructions

3

Memory interface

• The educational processor has a memory interface allowing to read
or write data from memory (or do nothing with it).

• Von Neumann architecture: the memory can contain code or data.
• When and how is the memory used?
• During fetch cycles:

– The processor reads from memory two bytes (one byte during fetchh
and one during fetchl cycles). This is the instruction to execute.

• During the execute cycle:
– The memory is unused if the instruction is not a mov to/from memory
– If the instruction is a mov to memory: one byte is written to the

destination address
– If the instruction is a mov from memory: one byte is read from the

source address

4

Memory interface

• The UoS processor is connected to the RAM with the following lines:
– ram_we (1 bit, processor output): indicates to write the data on

ram_datawr to address ram_address at the next rising edge
– ram_address (5 bits, processor output): indicates the RAM address to

which to write and from which to read
– ram_datawr (8 bits, processor output): indicates the byte to write
– ram_datard (8 bits, processor input): the byte at address ram_address

RAMProcessor

ram_we
ram_address

ram_datawr
ram_datard

5

8

8

we
address
data
q
clk

5

Memory

• Remember a memory is akin to a table where data can be stored at
an address

• The memory implemented alongside the UoS processor on the
FPGA has the following characteristic:
– Synchronous write: it writes “data” to “address” when “we=1” at the next

clock rising edge
– Asynchronous read: “q” is the data at “address”; changing the address

gives immediately (after the propagation time) the data at this address

RAM

Address Data
00 ??
01 ??
02 ??
03 ??
04 ??

6

Memory

• On reset the program counter PC=0. Therefore the
program starts at address 0, and the first instruction
executed on reset is at address 0.

RAM

Address Data
00 ??
01 ??
02 ??
03 ??
04 ??

First instruction executed
on reset.

7

Accessing the memory

• In the UoS processor, the memory can only be accessed
by “mov” instruction

• Reminder: mov dst, src

iiiiiiiirr011000mov [rn], i

rr------rr010000mov [rn], rm

iiiiiiiirr101000mov rn, [i]

rr------rr100000mov rn, [rm]

iiiiiiiirr001000mov rn, i

rr------rr000000mov rn, rm

src (i or rm)dreg
(rn)

sd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /

8

Reading data from a memory location

• Move from memory location can be done with immediate or register
address.

• Immediate address: mov ra,[07h]
– Reads the data at address 07h and puts it into register ra

• Register address: mov ra,[rb]
– Reads the data at address rb and puts it into register ra.
– For example, if rb=09, it reads data at address 09 and puts it into Ra

iiiiiiiirr101000mov rn, [i]

rr------rr100000mov rn, [rm]

src (i or rm)dreg
(rn)

sd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /

9

Reading data from a memory location
mov ra,[07h]

• When executing this instruction (exec
cycle):

– Control unit has put address (07) on
“ram_address”

– The memory is asynchronous for reads
and the value F1h is placed on the
memory output (ram_datard)

– Control unit enables a register file write.
It selects register a for write. It selects
ram_datard as the data to write.

– On the rising edge in the exec cycle,
the value F1 (coming from the RAM) is
thus stored in RA.

Address Data
00 14
01 07
02 ??
03 ??
04 ??
05 ??
06 ??
07 F1
08 ??
09 DE
0A ??
0B ??
0C ??
0D ??
.. ..

mov ra,[07]

F1 is at
address 07

10

Reading data from a memory location

PC Adr Data Instr RA RB RC RD
0 0 0 0

-> 00 1407 mov ra,[07h]
02 ???? ??
04 ???? ??
06 ??F1 ??
08 ??DE ??
0A ???? ??

11

Reading data from a memory location

PC Adr Data Instr RA RB RC RD
F1 0 0 0

00 1407 mov ra,[07h]
-> 02 ???? ??

04 ???? ??
06 ??F1 ??
08 ??DE ??
0A ???? ??

12

Reading data from a memory location
mov rb,09
mov ra,[rb]

• When executing the memory mov
instruction (exec cycle):

– Control unit has put address, which is in
register ra (09) on “ram_address”

– The memory is asynchronous for reads
and the value DEh is placed on the
memory output (ram_datard)

– Control unit enables a register file write.
It selects register a for write. It selects
ram_datard as the data to write.

– On the rising edge in the exec cycle,
the value F1 (coming from the RAM) is
thus stored in RA.

Address Data
00 11
01 09
02 04
03 01
04 ??
05 ??
06 ??
07 F1
08 ??
09 DE
0A ??
0B ??
0C ??
0D ??
.. ..

mov rb,09

DE is at
address 09

mov ra,[rb]

13

Reading data from a memory location

PC Adr Data Instr RA RB RC RD
0 0 0 0

-> 00 1109 mov rb,09h
02 0401 mov ra,[rb]
04 ???? ??
06 ??F1 ??
08 ??DE ??
0A ???? ??

14

Reading data from a memory location

PC Adr Data Instr RA RB RC RD
0 09 0 0

00 1109 mov rb,09h
-> 02 0401 mov ra,[rb]

04 ???? ??
06 ??F1 ??
08 ??DE ??
0A ???? ??

15

Reading data from a memory location

PC Adr Data Instr RA RB RC RD
DE 09 0 0

00 1109 mov rb,09h
02 0401 mov ra,[rb]

-> 04 ???? ??
06 ??F1 ??
08 ??DE ??
0A ???? ??

16

Writing data to a memory location

• Move to memory location can be done only with register address.
The source can be a register or immediate.
– This is due to the choice of instruction encoding; with 16 bit instructions

the UoS processor cannot have immediate memory destination and
immediate source! A different encoding would be required.

• Immediate source: mov [ra],07h
– Writes 07h to the address ra.
– For example, if ra=09, then 07h is written to addres 09h.

• Register source: mov [ra],rb
– Writes the data rb to the addres ra.

iiiiiiiirr011000mov [rn], i

rr------rr010000mov [rn], rm

src (i or rm)dreg
(rn)

sd#mdd#mOpcodeMove

Instruction(7..0)instruction(15..8)Instructions

IR /

17

Writing data to a memory location
mov ra,09h
mov [ra],07

• When executing this instruction (exec
cycle):

– Control unit has put address (09) on
“ram_address”

– Control unit has put data (07) on
ram_datawr.

– Control unit has enabled ram write
“ram_we=1”

– The memory is synchronous for writes.
On the rising edge in the exec cycle,
the value 07 is stored to address 09.

Address Data
00 10
01 09
02 18
03 07
04 ??
05 ??
06 ??
07 ??
08 ??
09 ??
0A ??
0B ??
0C ??
0D ??
.. ..

mov ra,09

mov [ra],07

18

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
0 0 0 0

-> 00 1000 mov ra,09h
02 1807 mov [ra],07
04 ???? ??
06 ???? ??
08 ???? ??
0A ???? ??

19

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
09 0 0 0

00 1000 mov ra,09h
-> 02 1807 mov [ra],07

04 ????
06 ????
08 ????
0A ????

20

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
09 0 0 0

00 1000 mov ra,09h
02 1807 mov [ra],07

-> 04 ????
06 ????
08 ??07
0A ????

21

Writing data to a memory location
mov rb,08h
mov ra,FCh
mov [rb],ra

• When executing this instruction (exec
cycle):

– Control unit has put address (08) on
“ram_address”

– Control unit has put data (FC) on
ram_datawr.

– Control unit has enabled ram write
“ram_we=1”

– The memory is synchronous for writes.
On the rising edge in the exec cycle,
the value FC is stored to address 08.

Address Data
00 11
01 08
02 10
03 FC
04 09
05 00
06 ??
07 ??
08 ??
09 ??
0A ??
0B ??
0C ??
0D ??
.. ..

mov rb,08

mov ra,FC

mov [rb],ra

22

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
0 0 0 0

-> 00 1108 mov rb,08h
02 10FC mov ra,FCh
04 0900 mov [rb],ra
06 ???? ??
08 ???? ??
0A ???? ??

23

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
0 08 0 0

00 1108 mov rb,08h
-> 02 10FC mov ra,FCh

04 0900 mov [rb],ra
06 ???? ??
08 ???? ??
0A ???? ??

24

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
FC 08 0 0

00 1108 mov rb,08h
02 10FC mov ra,FCh

-> 04 0900 mov [rb],ra
06 ???? ??
08 ???? ??
0A ???? ??

25

Writing data to a memory location

PC Adr Data Instr RA RB RC RD
FC 08 0 0

00 1108 mov rb,08h
02 10FC mov ra,FCh
04 0900 mov [rb],ra

-> 06 ???? ??
08 FC?? ??
0A ???? ??

26

ALU operations with memory operands

• In the UoS processor, ALU operations cannot be directly
performed on memory data. Instead:
– Read the operands from memory and put them in registers
– Perform the ALU operation on the registers
– Write the result register to the destination memory

• Example: read data at address 1C and 1D, add them
together, and store the result at address 1C
mov ra,1Ch
mov rb,[ra]
mov rc,[1Dh]
add rb,rc
mov [ra],rb

27

ALU operations with memory operands

• Other processor architectures may have ALU operations
allowing memory operands.

• This is the case with Intel/AMD x86. The following are
some of the available possibilities:
add reg,reg
add reg,[mem]
add [mem],reg
add reg,imm
add [mem],imm

28

Mixing code and data in memory

• Von Neumann: code and
data can be mixed!

• It is up to the programmer
(or the compiler) to know
where to place data and
code in the memory.

• Only constraint: the first
instruction is at address 0

• This program iterates
between 06-10 according
to the value at address 3

Address Data
00 B0
01 08
02 ??
03 05
04 ??
05 ??
06 14
07 03
08 D0
09 00
0A D0
0B FF
0C 34
0D 01
0E 54
0F 00
10 B9
11 08
.. ??
.. ??
xx B0
xx+1 xx

jmp 08h

mov ra,[03h]

out 00h

out FFh

sub ra,1

cmp ra,0h

jne 08h

This is not executed.
It is either garbage, or
data.

jmp xx

29

Memory move and C pointers

• C pointers directly translate to memory move instructions
– C was designed as a language that easily maps to typical

processor architectures

• C has variables and pointers.
– Pointers are also variables; they allow in addition access to

memory with ‘*’.

• Direct analogy to assembler instructions we have seen!

30

C variables and assembler
• char v1;

– v1 contains a value. May map to a register.
• register char v2;

– v2 contains a value. The keyword “register” indicates the compiler we
wish v2 to be in a register.

• The compiler decides where to store a variable: in memory or in
registers. If registers are available then the compiler will use them
for variables, as this leads to more compact code.

• The “register” keyword indicates the compiler we wish to have the
variable in a register, but it is non-binding.

• Variables can be operated on: incremented, decremented, etc.
• Eg:

register char v1,v2,v3;
v1 = 0x23;
v2 = 0x12;
v3 = v1 + v2; v3 is 0x35 here

31

C variables and assembler

• C:
register char v1,v2,v3;
v1 = 0x23;
v2 = 0x12;
v3 = v1 + v2;

• Let’s assume the human/compiler assigns v1,v2,v3 to ra,rb,rc
respectively.

• Equivalent in assembler:
mov ra,23h
mov rb,12h
mov rc,ra
add rc,rb

Indicates we would like the variables in
registers, but it is non binding.

32

C pointers and assembler

• Pointers are variables that contain a value.... the subtlety is that this
value indicates a memory location that can be read from / written to.

• char *v1;
– v1 contains a value. May map to a register.

• register char *v2;
– v2 contains a value. The keyword “register” indicates the compiler we

wish v2 to be in a register.
• v1 and v2: they contain a value, but this value indicates a memory

location we can read from or write to.
• Eg:

register char *v1,*v2,*v3;
v1 = 0x23;
v2 = 0x12;
v3 = v1 + v2; v3 is 0x35 here

No difference until here!

33

C pointers and assembler

• C:
register char *v1,*v2,*v3;
v1 = 0x23;
v2 = 0x12;
v3 = v1 + v2;

• Pointers are variables that can be modified by arithmetic operations,
just like normal variables.

• Let’s assume the compiler assigns v1,v2,v3 to ra,rb,rc respectively.

• Equivalent in assembler:
mov ra,23h
mov rb,12h
mov rc,ra
add rc,rb

At this point, v3 is 0x35

34

C pointers and assembler

• In addition, pointers can be used to read or write
memory locations.

• Writing byte to address v: *v = x;
– Maps to instructions: mov [rn],i or mov [rn],rm

• Reading byte from address v: x = *v;
– Maps to instruction: mov rn,[i] or mov rn,[rm]

35

C pointers and assembler: writing memory

• Example:
register char *v1,*v2;
v1 = 0x0B;
v2 = 0x0D;
*v1 = 0xFE;
*v2 = 0x3F;

• Assembler:
mov ra,0Bh
mov rb,0Dh
mov [ra],FEh
mov [rb],3Fh

Here writing to memory location 0B and 0D

Here writing to memory location 0B and 0D

36

C pointers and assembler: writing memory

PC Adr Data Instr RA RB RC RD
0 0 0 0

-> 00 100B mov ra,0Bh
02 110D mov rb,0Dh
04 18FE mov [ra],FEh
06 193F mov [rb],3Fh
08 ???? ??
0A ???? ??
0C ???? ??
0E ???? ??

37

C pointers and assembler: writing memory

PC Adr Data Instr RA RB RC RD
0B 0 0 0

00 100B mov ra,0Bh
-> 02 110D mov rb,0Dh

04 18FE mov [ra],FEh
06 193F mov [rb],3Fh
08 ???? ??
0A ???? ??
0C ???? ??
0E ???? ??

38

C pointers and assembler: writing memory

PC Adr Data Instr RA RB RC RD
0B 0D 0 0

00 100B mov ra,0Bh
02 110D mov rb,0Dh

-> 04 18FE mov [ra],FEh
06 193F mov [rb],3Fh
08 ???? ??
0A ???? ??
0C ???? ??
0E ???? ??

39

C pointers and assembler: writing memory

PC Adr Data Instr RA RB RC RD
0B 0D 0 0

00 100B mov ra,0Bh
02 110D mov rb,0Dh
04 18FE mov [ra],FEh

-> 06 193F mov [rb],3Fh
08 ???? ??
0A ??FE ??
0C ???? ??
0E ???? ??

40

C pointers and assembler: writing memory

PC Adr Data Instr RA RB RC RD
0B 0D 0 0

00 100B mov ra,0Bh
02 110D mov rb,0Dh
04 18FE mov [ra],FEh
06 193F mov [rb],3Fh

-> 08 ???? ??
0A ??FE ??
0C ??3F ??
0E ???? ??

41

C pointers and assembler: reading memory

• Example:
register char *v1;
register char v2;
v1 = 0x0B;
v2 = *v1;

• Assembler:
mov ra,0Bh
mov rb,[ra]

Here reading from memory location 0B

Here reading from memory location 0B

42

C pointers and assembler: reading memory

PC Adr Data Instr RA RB RC RD
0 0 0 0

-> 00 100B mov ra,0Bh
02 0500 mov rb,[ra]
04 ???? ??
06 ???? ??
08 ???? ??
0A ??DB ??
0C ???? ??
0E ???? ??

43

C pointers and assembler: reading memory

PC Adr Data Instr RA RB RC RD
0B 0 0 0

00 100B mov ra,0Bh
-> 02 0500 mov rb,[ra]

04 ???? ??
06 ???? ??
08 ???? ??
0A ??DB ??
0C ???? ??
0E ???? ??

44

C pointers and assembler: reading memory

PC Adr Data Instr RA RB RC RD
0B DB 0 0

00 100B mov ra,0Bh
02 0500 mov rb,[ra]

-> 04 ???? ??
06 ???? ??
08 ???? ??
0A ??DB ??
0C ???? ??
0E ???? ??

45

Summary

• Assembler instruction “mov” allows to read/write data to
memory

• This allows to perform computations on much more data
than there are registers available.

• Memory can contain data or code (Von Neumann
architecture)

• Direct mapping between memory move operations and
C pointers

