Digital Systems and Microprocessor Design

(H7068)

9. Exercises /
Laboratory

Daniel Roggen
2014 Richmond 3A13
d.roggen@sussex.ac.uk

Circuit complexity

350

300

250

200

150

100

a0

Circuit complexity

—+— Flip-flop
—=— LUT
fle]

CPU with custom instructions

Obijective / success criteria

* Prerequisite: lab of week 8, knowledge of digital
electronics

* The objective of this laboratory is to:
— Understand how the ALU of the educational processor is
implemented
— Understand how to add instructions to the educational processor
(specifically the ALU)

* Success criteria:
— You have implemented the two custom instructions in the tutorial
of this lab
— You have implemented the random number generator for the
coursework assignment

Custom instructions

* The easiest place to add custom instructions is in the
ALU
— The CPU has been designed to have an extensible ALU

— The instruction decoding to feed the ALU with data and store the
result is already in place!

« Modifying or creating instructions unrelated to the ALU
may involve significant changes to the control unit and
other parts of the processor

— For instance creating an instruction that takes 3 parameters
instead of 2 would require to change the register bank

— Creating an instruction that moves from memory to memory
would require more than 3 clock cycles per instruction...

Custom ALU instruction

* ALU instructions are have opcodes: 001, 010, 011
 The ALU data path is activated for these opcodes

* The general format of the ALU instruction is:

instruction(15..8)

Instruction(7..0)

opcode

R/ ALU op

dreg

Src

X

X X

1/

VARVA

i/ |1/

1/

VAN

r

« The specific ALU operation is defined by the opcode and

the ALUop bits in the instruction: instruction(12..10)
 Instruction(12) is called R'/I, but it can have a different

meaning.

— Single operand ALU instructions use R/l as part of ALUop

Default ALU data path

instruction(15..8)

Instruction(7..0)

opcode R/ ALU op

dreg

Src

X [X | X X X

r r

1/

1/

1/

VARVA

i/ |1

* For ALU instructions, the control unit does the following:
— Input A of the ALU receives the data from register dreg

— Input B of the ALU receives either the immediate src or the value

of the register src, depending on instruction(12)
— The output of the ALU is stored in register dreg
— The ALU receives instruction(14..10) to indicate the operation to

perform.

* Providing data to the ALU and storing the result is done
automatically by the control unit

« We simply need to add new function to the ALU - the

rest is taken care of!

Default ALU data path

« The only part of the processor we look at is the ALU in
cpualu.vhd

* |t looks like this:

from dst register from src register or immediate
A B
Y Y

——————— instruction(14..10)

to dst register

Tutorial |

* The instruction table shows that the processor has only 3
2-input logic functions: AND, OR, XOR

* The objective is to add a new logic instruction: NAND

 The ALU is defined in cpualu.vhd

Tutorial |

« Step 1: define which instruction code corresponds to the
new function

The opcode has to be 001, 010, 011 (ALU operation)

Check the instruction table to find which opcode has "space" to
contain a new instruction

Opcode 001 is full: all combinations instruction(12..10) are used

Opcode 010 is not full: only 4 combinations of instruction(12..10)
are used for the xor and cmp. This could be used.

Opcode 011 is not full: only 5 combinations of instruction(12..10)
are used. This could be used.

To keep some logic in the instruction set we decide to use
opcode 010, as the existing instructions with opcode 010 are
two-operand instructions (xor and cmp)

However nothing prevents us from using opcode 011!

Tutorial |

» Step 2: Decide which ALUop to use for the selected
opcode
— ALUop 00 is xor
— ALUop 01 is cmp
— Choose a value of ALUop for this instruction. Let's say 10!
— We can update our instruction table:

Custom opcode R/ ALU op dreg | iImmedite / reg
Instruction
nand r, r 0|1|0]|0 1 0 rir|-|-|-|-(-|-|r

nand r, 1 O(1(0|1 1 0 r{ir|n|o|n|n|lo|n]|il

10

Tutorial |

« Step 3: Prepare to modify cpualu.vhd

r <=

The ALU is realized by a multiplexer selecting one function:

a+b when op(4 downto 3)="01" and op(1l downto 0)="00" else
sub(7 downto 0) when op(4 downto 3)="01" and op(l downto 0)="01" else
a and b when op(4 downto 3)="01" and op(l downto 0)="10" else
a or b when op(4 downto 3)="01" and op(1l downto 0)="11" else
a xor b when op(4 downto 3)=""10" and op(l1 downto 0)="00" else
not a when op(4 downto 0)=""11000" else
"0"&a(7 downto 1) when op(4 downto 0)="11001" else
a(0)&a(7 downto 1) when op(4 downto 0)="11010" else
a(7)&a(7 downto 1) when op(4 downto 0)="11011" else
a(6 downto 0)&a(7) when op(4 downto 0)="11100" else
**00000000";

We must add an input to this multiplexer to get the NAND of
inputs a and b when the opcode is 010 and ALUop is 10

The current ALU uses op(4..0) to select the operation.
Where does op come from? Read cpu.vhd to find out!
op is actually instruction(14..10)

11

Tutorial |

« Step 4: Modify cpualu.vhd

— We want to execute the NAND when instruction(15..10) is
"010010"..... (is this correct??!)

— So op(4..0)="10010" for a NAND
— Thus modify the ALU as follows:

r <= a+b when op(4 downto 3)="01" and op(1l downto 0)="00" else

sub(7 downto 0) when op(4 downto 3)="01" and op(l downto 0)="01"

a and b when op(4 downto 3)="01" and op(l1 downto 0)="10" else
a or b when op(4 downto 3)="01" and op(1 downto 0)="11" else
a xor b when op(4 downto 3)="10" and op(l1 downto 0)="00" else
a nand b when op(4 downto 0)='"10010" else

not a when op(4 downto 0)="11000" else

"0"&a(7 downto 1) when op(4 downto 0)="11001" else

a(0)&a(7 downto 1) when op(4 downto 0)="11010" else

a(7)&a(7 downto 1) when op(4 downto 0)="11011" else

a(6 downto 0)&a(7) when op(4 downto 0)="11100" else
**00000000";

else

12

Tutorial |

« Step 5: create a test program
— We want to test the register mode and the immediate mode!
— We use the instruction table to find the encoding

(_:ustom AI__U opcode R/ ALU op dreg | iImmedite / reg
Instruction

nand r, r O|1(0]|O0 1 0] r{r|-|-(-|-|-|-1|Fr
nand r, 1 O|1({0|1 0] r{r|o|nfn|jon|n|fn|i
-— register mode

mov ra,abh 10a5b

mov rb,aah 1laa

nand ra,rb 4801

—— expected result: 5F

mov rc,83h 1283

nand rc,84h 5a84

—— expected result: 7F

Tutorial |

« Step 6: test the program

— Edit the memory to fill it with the instructions:
Address Data

00 10
01 A5
02 11
03 AA
04 48
05 01
06 12
07 83
08 SA

09 84

Tutorial |

« Step 7: fix bugs

a

The program works with register source, but not with immediate
source!

The error is in this line in the multiplexer in cpualu.vhd:
nand b when op(4 downto 0)='"10010" else

Can you fix this?

15

Tutorial |l

The previous instruction was combinational. We will now
see how to make an ALU instruction whose internal
function is clock dependent

Let's say we want an instruction "tick" that returns the
number of clock cycles since the processor was turned
on.

We will implement this with a circuit counting up at each
clock cycle, with a synchronous reset

The counter output will be connected to one input of the
ALU multiplexer and the "tick" instruction will select that
iInput

16

Tutorial |l

« Step 1: define which instruction code corresponds to the
new function

— As before the opcode has to be 001, 010, 011 (ALU operation),
and there is space in the opcodes 010 and 011

— To keep some logic in the instruction set we use opcode 011 this
time: all instructions with this opcode have a single operand, as
does "tick"

« Step 2: Decide which ALUop to use for the selected
opcode

— ALUop 000 is not, 001 is shr, 010 is ror, 011 is asr, 100 is rol.

— Let's choose the next free ALUop: 101

— We can update our instruction table:

Instructions instruction(15..8) Instruction(7..0)
Custom ALU opcode | ALU op dreg
instructions

tick o111 0 1 r(ir|-|-|-|-|-|-|-]|-

Tutorial |l

« Step 3: Create the tick counter: a counter with reset

— We could create a dedicated VHDL component (in a separate
file), but we are lazy here and put everything in cpualu.vhd

— Add a signal in cpualu.vhd: tick as an 8-bit std_logic_vector

— Add the following counter code somewhere in the architecture:

* We use a handy VHDL operation for the addition!

« This is a D flip-flop with synchronous reset and an increment
process(clk)
begin
iIT rising _edge(clk) then
iIT rst="1" then
tick<=""00000000";
else
tick<=tick+l;
end 1f;
end 1f;
end process;

18

Tutorial Il

Step 4: Modify the multiplexer

— Select "tick", the output of the counter, when instruction(14..10)
is"11101"

r <= a+b when op(4 downto 3)="01" and op(1l downto 0)="00" else
sub(7 downto 0) when op(4 downto 3)="01" and op(l downto 0)="01" else
a and b when op(4 downto 3)="01" and op(l1 downto 0)="10" else
a or b when op(4 downto 3)="01" and op(1l downto 0)="11" else
a xor b when op(4 downto 3)="10" and op(l1 downto 0)="00" else
not a when op(4 downto 0)=""11000" else
"0"&a(7 downto 1) when op(4 downto 0)="11001" else
a(0)&a(7 downto 1) when op(4 downto 0)="11010" else
a(7)&a(7 downto 1) when op(4 downto 0)="11011" else
a(6 downto 0)&a(7) when op(4 downto 0)="11100" else
tick when op(4 downto 0)="11101" else
"*00000000";

19

Tutorial |l

« Step 5: Create a test program.
— We will create a loop with register RB that goes from 0 to 4

— We will put the number of clock cycles to complete the look in d
(we can verify later that this is correct!)

— Then the program continuously loads ¢ with the tick

O mov rb,00 1100
2 add rb,1 3101
4 cmp rb,4 5504
6 jb 2 BBO2
8 tick rd 7700
A tick rc 7600

C Jgmp A BOOA

Tutorial |l

« Step 6: Fill in the memory, reset the CPU and test the
program
— What do you obtain in register C eventually?

— Is this what you expect from the program? Verify this by counting
the number of instructions executed in the program! Hint: the
program loops 4 times the instructions between address 2 and
6....

— You may find that your count is off by one cycle... can you
explain this?

21

Problem 1: Random Number Generator
(coursework assignment)

« Creating a pseudo-random number can be realized with a linear
feedback shift register:

Do QP QP QP 3 Qf Py QP s QP g QP 7 Q

PCIK PCIK PCIK PCIK PCIK PCIK PCIK PCIK
e i i i — —

* The 8-bit number represented by bits r7..r0 is pseudo-random
* In reality the sequence is periodical

» |f the taps of the XOR are well chosen (as in this circuit) the
periodicity can be of maximal length (here 255 clocks)

* Note that this circuit must be initialized properly: upon reset, at least
one bit must be one. Let's say r7=1 on reset

Problem 1: Random Number Generator
(coursework assignment)

The objective is to add an instruction to the ALU that
returns a random number using the LFSR circuit and
demonstrate that it works with a test program

You are free to select any unused instruction encoding

Check the coursework assignment for details on what
you must include in the report.

Hint: you can create a standalone VHDL module to test
the LFSR independently of the processor, and then
iInstantiate the circuit in the ALU

23

