
1

Digital Systems and Microprocessor Design
(H7068)

Daniel Roggen
Richmond 3A13

d.roggen@sussex.ac.uk

9. Exercises /
Laboratory

2014

2

Circuit complexity

CPU with custom instructions

3

Objective / success criteria
• Prerequisite: lab of week 8, knowledge of digital

electronics

• The objective of this laboratory is to:
– Understand how the ALU of the educational processor is

implemented
– Understand how to add instructions to the educational processor

(specifically the ALU)

• Success criteria:
– You have implemented the two custom instructions in the tutorial

of this lab
– You have implemented the random number generator for the

coursework assignment

4

Custom instructions

• The easiest place to add custom instructions is in the
ALU
– The CPU has been designed to have an extensible ALU
– The instruction decoding to feed the ALU with data and store the

result is already in place!

• Modifying or creating instructions unrelated to the ALU
may involve significant changes to the control unit and
other parts of the processor
– For instance creating an instruction that takes 3 parameters

instead of 2 would require to change the register bank
– Creating an instruction that moves from memory to memory

would require more than 3 clock cycles per instruction...

5

Custom ALU instruction

• ALU instructions are have opcodes: 001, 010, 011
• The ALU data path is activated for these opcodes
• The general format of the ALU instruction is:

• The specific ALU operation is defined by the opcode and
the ALUop bits in the instruction: instruction(12..10)

• Instruction(12) is called R'/I, but it can have a different
meaning.
– Single operand ALU instructions use R'/I as part of ALUop

i/
r

i/
r

i/
-

i/
-

i/
-

i/
-

i/
-

i/
-

rrXXXXX0

srcdregALU opopcode

Instruction(7..0)instruction(15..8)

IR /

6

Default ALU data path

• For ALU instructions, the control unit does the following:
– Input A of the ALU receives the data from register dreg
– Input B of the ALU receives either the immediate src or the value

of the register src, depending on instruction(12)
– The output of the ALU is stored in register dreg
– The ALU receives instruction(14..10) to indicate the operation to

perform.
• Providing data to the ALU and storing the result is done

automatically by the control unit
• We simply need to add new function to the ALU - the

rest is taken care of!

i/
r

i/
r

i/
-

i/
-

i/
-

i/
-

i/
-

i/
-

rrXXXXX0

srcdregALU opopcode

Instruction(7..0)instruction(15..8)

IR /

7

Default ALU data path

• The only part of the processor we look at is the ALU in
cpualu.vhd

• It looks like this:

A B

instruction(14..10)

to dst register

from dst register from src register or immediate

8

Tutorial I

• The instruction table shows that the processor has only 3
2-input logic functions: AND, OR, XOR

• The objective is to add a new logic instruction: NAND

• The ALU is defined in cpualu.vhd

9

Tutorial I

• Step 1: define which instruction code corresponds to the
new function
– The opcode has to be 001, 010, 011 (ALU operation)
– Check the instruction table to find which opcode has "space" to

contain a new instruction
– Opcode 001 is full: all combinations instruction(12..10) are used
– Opcode 010 is not full: only 4 combinations of instruction(12..10)

are used for the xor and cmp. This could be used.
– Opcode 011 is not full: only 5 combinations of instruction(12..10)

are used. This could be used.
– To keep some logic in the instruction set we decide to use

opcode 010, as the existing instructions with opcode 010 are
two-operand instructions (xor and cmp)

– However nothing prevents us from using opcode 011!

10

Tutorial I

• Step 2: Decide which ALUop to use for the selected
opcode
– ALUop 00 is xor
– ALUop 01 is cmp
– Choose a value of ALUop for this instruction. Let's say 10!
– We can update our instruction table:

iiiiiiiirr011010nand r, i

rr------rr010010nand r, r

immedite / regdregALU opopcodeCustom
instruction IR / IR /

11

Tutorial I

• Step 3: Prepare to modify cpualu.vhd
– The ALU is realized by a multiplexer selecting one function:

r <= a+b when op(4 downto 3)="01" and op(1 downto 0)="00" else
sub(7 downto 0) when op(4 downto 3)="01" and op(1 downto 0)="01" else
a and b when op(4 downto 3)="01" and op(1 downto 0)="10" else
a or b when op(4 downto 3)="01" and op(1 downto 0)="11" else
a xor b when op(4 downto 3)="10" and op(1 downto 0)="00" else
not a when op(4 downto 0)="11000" else
'0'&a(7 downto 1) when op(4 downto 0)="11001" else
a(0)&a(7 downto 1) when op(4 downto 0)="11010" else
a(7)&a(7 downto 1) when op(4 downto 0)="11011" else
a(6 downto 0)&a(7) when op(4 downto 0)="11100" else
"00000000";

– We must add an input to this multiplexer to get the NAND of
inputs a and b when the opcode is 010 and ALUop is 10

– The current ALU uses op(4..0) to select the operation.
– Where does op come from? Read cpu.vhd to find out!
– op is actually instruction(14..10)

12

Tutorial I

• Step 4: Modify cpualu.vhd
– We want to execute the NAND when instruction(15..10) is

"010010"..... (is this correct??!)
– So op(4..0)="10010" for a NAND
– Thus modify the ALU as follows:

r <= a+b when op(4 downto 3)="01" and op(1 downto 0)="00" else
sub(7 downto 0) when op(4 downto 3)="01" and op(1 downto 0)="01" else
a and b when op(4 downto 3)="01" and op(1 downto 0)="10" else
a or b when op(4 downto 3)="01" and op(1 downto 0)="11" else
a xor b when op(4 downto 3)="10" and op(1 downto 0)="00" else
a nand b when op(4 downto 0)="10010" else
not a when op(4 downto 0)="11000" else
'0'&a(7 downto 1) when op(4 downto 0)="11001" else
a(0)&a(7 downto 1) when op(4 downto 0)="11010" else
a(7)&a(7 downto 1) when op(4 downto 0)="11011" else
a(6 downto 0)&a(7) when op(4 downto 0)="11100" else
"00000000";

13

Tutorial I

• Step 5: create a test program
– We want to test the register mode and the immediate mode!
– We use the instruction table to find the encoding

-- register mode
mov ra,a5h 10a5
mov rb,aah 11aa
nand ra,rb 4801
-- expected result: 5F
mov rc,83h 1283
nand rc,84h 5a84
-- expected result: 7F

iiiiiiiirr011010nand r, i

rr------rr010010nand r, r

immedite / regdregALU opopcodeCustom ALU
instruction IR /

14

Tutorial I

• Step 6: test the program
– Edit the memory to fill it with the instructions:

Address Data
00 10
01 A5
02 11
03 AA
04 48
05 01
06 12
07 83
08 5A
09 84

15

Tutorial I

• Step 7: fix bugs
– The program works with register source, but not with immediate

source!
– The error is in this line in the multiplexer in cpualu.vhd:
a nand b when op(4 downto 0)="10010" else

– Can you fix this?

16

Tutorial II

• The previous instruction was combinational. We will now
see how to make an ALU instruction whose internal
function is clock dependent

• Let's say we want an instruction "tick" that returns the
number of clock cycles since the processor was turned
on.

• We will implement this with a circuit counting up at each
clock cycle, with a synchronous reset

• The counter output will be connected to one input of the
ALU multiplexer and the "tick" instruction will select that
input

17

Tutorial II

• Step 1: define which instruction code corresponds to the
new function
– As before the opcode has to be 001, 010, 011 (ALU operation),

and there is space in the opcodes 010 and 011
– To keep some logic in the instruction set we use opcode 011 this

time: all instructions with this opcode have a single operand, as
does "tick"

• Step 2: Decide which ALUop to use for the selected
opcode
– ALUop 000 is not, 001 is shr, 010 is ror, 011 is asr, 100 is rol.
– Let's choose the next free ALUop: 101
– We can update our instruction table:

--------rr101110tick

dregALU opopcodeCustom ALU
instructions

Instruction(7..0)instruction(15..8)Instructions

18

Tutorial II

• Step 3: Create the tick counter: a counter with reset
– We could create a dedicated VHDL component (in a separate

file), but we are lazy here and put everything in cpualu.vhd
– Add a signal in cpualu.vhd: tick as an 8-bit std_logic_vector
– Add the following counter code somewhere in the architecture:

• We use a handy VHDL operation for the addition!
• This is a D flip-flop with synchronous reset and an increment

process(clk)
begin

if rising_edge(clk) then
if rst='1' then

tick<="00000000";
else

tick<=tick+1;
end if;

end if;
end process;

19

Tutorial II

• Step 4: Modify the multiplexer
– Select "tick", the output of the counter, when instruction(14..10)

is "11101"

r <= a+b when op(4 downto 3)="01" and op(1 downto 0)="00" else
sub(7 downto 0) when op(4 downto 3)="01" and op(1 downto 0)="01" else
a and b when op(4 downto 3)="01" and op(1 downto 0)="10" else
a or b when op(4 downto 3)="01" and op(1 downto 0)="11" else
a xor b when op(4 downto 3)="10" and op(1 downto 0)="00" else
not a when op(4 downto 0)="11000" else
'0'&a(7 downto 1) when op(4 downto 0)="11001" else
a(0)&a(7 downto 1) when op(4 downto 0)="11010" else
a(7)&a(7 downto 1) when op(4 downto 0)="11011" else
a(6 downto 0)&a(7) when op(4 downto 0)="11100" else
tick when op(4 downto 0)="11101" else
"00000000";

20

Tutorial II

• Step 5: Create a test program.
– We will create a loop with register RB that goes from 0 to 4
– We will put the number of clock cycles to complete the look in d

(we can verify later that this is correct!)
– Then the program continuously loads c with the tick

0 mov rb,00 1100
2 add rb,1 3101
4 cmp rb,4 5504
6 jb 2 BB02
8 tick rd 7700
A tick rc 7600
C jmp A B00A

21

Tutorial II

• Step 6: Fill in the memory, reset the CPU and test the
program
– What do you obtain in register C eventually?
– Is this what you expect from the program? Verify this by counting

the number of instructions executed in the program! Hint: the
program loops 4 times the instructions between address 2 and
6....

– You may find that your count is off by one cycle... can you
explain this?

22

Problem 1: Random Number Generator
(coursework assignment)

• Creating a pseudo-random number can be realized with a linear
feedback shift register:

• The 8-bit number represented by bits r7..r0 is pseudo-random
• In reality the sequence is periodical
• If the taps of the XOR are well chosen (as in this circuit) the

periodicity can be of maximal length (here 255 clocks)
• Note that this circuit must be initialized properly: upon reset, at least

one bit must be one. Let's say r7=1 on reset

23

Problem 1: Random Number Generator
(coursework assignment)

• The objective is to add an instruction to the ALU that
returns a random number using the LFSR circuit and
demonstrate that it works with a test program

• You are free to select any unused instruction encoding

• Check the coursework assignment for details on what
you must include in the report.

• Hint: you can create a standalone VHDL module to test
the LFSR independently of the processor, and then
instantiate the circuit in the ALU

