
Versatile FIFO
A versatile FIFO supporting both sync and
async implementations with multiple parallell
channels
Brought to You By ORSoC / OpenCores

http://www.opencores.org/
http://www.orsoc.se/

Versatile FIFO

Legal Notices and Disclaimers

Copyright Notice
This ebook is Copyright © 2009 ORSoC

General Disclaimer
The Publisher has strived to be as accurate and complete as possible in the
creation of this ebook, notwithstanding the fact that he does not warrant or
represent at any time that the contents within are accurate due to the rapidly
changing nature of information.

The Publisher will not be responsible for any losses or damages of any kind
incurred by the reader whether directly or indirectly arising from the use of the
information found in this ebook.

This ebook is not intended for use as a source of legal, business, accounting,
financial, or medical advice. All readers are advised to seek services of
competent professionals in the legal, business, accounting, finance, and
medical fields.

No guarantees of any kind are made. Reader assumes responsibility for use of
the information contained herein. The Publisher reserves the right to make
changes without notice. The Publisher assumes no responsibility or liability
whatsoever on the behalf of the reader of this report.

Distribution Rights
The Publisher grants you the following rights for re-distribution of this ebook.

[YES] Can be given away.
[YES] Can be packaged.
[YES] Can be offered as a bonus.
[NO] Can be edited completely and your name put on it.
[YES] Can be used as web content.
[NO] Can be broken down into smaller articles.
[NO] Can be added to an e-course or auto-responder as content.
[NO] Can be submitted to article directories (even YOURS) IF at least half is

rewritten!
[NO] Can be added to paid membership sites.
[NO] Can be added to an ebook/PDF as content.
[NO] Can be offered through auction sites.
[NO] Can sell Resale Rights.
[NO] Can sell Master Resale Rights.
[NO] Can sell Private Label Rights.

Back toTOC Copyright © 2009 ORSoC Page 2 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Table of Contents

Chapter 1 Introduction __ 4
Asynchronous FIFO implementation __ 4

Synchronous FIFO implementation ___ 4

Multiple FIFO implementation __ 5

Chapter 2 FIFO building blocks _________________________________ 6
Dual port memory ___ 6

Single clock dual port RAM __ 6

Single clock true dual port RAM ___ 6

Dual clock dual port RAM __ 7

Dual clock true dual port RAM ___ 8

Read and write pointers ___ 8

FIFO flag generation ___ 8

Asynchronous compare ___ 9

Chapter 3 Example implementations _________________________ 11
SD FLASH controller __ 11

Submodules ___ 12

Recommended Resources ______________________________________ 13

Back to TOC Copyright © 2009 ORSoC Page 3 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Chapter 1 Introduction
The FIFO implementation outlined in this document can easily be configured to
suit the following

• asynchronous FIFO with different clock domains for read and write sides

• synchronous FIFO with programmable flags

• multiple FIFO sharing the same memory resource

Asynchronous FIFO implementation

This configuration uses gray counter as FIFO pointers and an asynchronous
compare function. The read and write pointers are within different clock
domains. To be able to have glitch free compare function it is important that
the pointers are clocked signals and that no more than one signal can change
its value on any clock signal.

For read and write pointers use "Versatile counter" found at OpenCores.
Configured as gray counter.

This FIFO has one clock domain for the write side and an other for the read
side.

Synchronous FIFO implementation

Back to TOC Copyright © 2009 ORSoC Page 4 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

For minimal area and highest performance this implementation uses linear
feedback shift registers, LFSR, as memory pointers. The logic generating FIFO
flags could either be a compare function based on q_next from address
counters or based on an up/down counter keeping track of number of data
words in memory.

For read and write pointers use "Versatile counter" found at OpenCores.
Configured as LFSR counter. This applies also to FIFO content counter.

This FIFO has one clock domain for the write side and the read side.

Multiple FIFO implementation
In some cases more than one FIFO can share the same memory. This makes
better use of the FPGA resources. Most FPGA has built-in memories with 4 kbits
to 8 kbits. These memories can in many cases be configured as true dual port
memories, that is with read and write possibilities on both sides.

This is the case for the following FPGA families

• ACTEL ProASIC3

• ALTERA Cyclone III

Many application have one wishbone interface and many FIFO channels with
different type of real time data. In this case only one FIFO can be written to
from the system bus side meaning that there is no problem sharing the dual
port memory.

An example of a system that can use this type of implementation is a system
with an interface towards an external AC´97 compatible audio codec. The
external interface is a bit stream with audio data. System bus interface could
have 6 FIFO channels (for 5.1 audio support). From the system side there will
be 6 individual FIFO queues. Internally all queues can share one memory
instance. A FSM will read out audio data from the FIFO sequentially.

Back to TOC Copyright © 2009 ORSoC Page 5 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Chapter 2 FIFO building blocks

All FIFO implementations are based on the following building blocks. Each block
is available as a Verilog RTL module.

1. dual port memory

2. read and write pointers

3. logic generating FIFO empty and FIFO
full and optionally other FIFO flags

4. optional multiplexer used for multiple
FIFO queues sharing a common
memory

From this a large number of different FIFO can be constructed. Pick your bricks

Dual port memory
There are a few variants of the dual port memory implementations. The
memory could have read/write support on both sides (true dual port) or have
one read and one write side. Also there can be one individual clock signals for
read or write or one clock per side.

All variants come from the same source, dual_port_ram.v". The Makefile in
rtl/verilog builds all targets, make dual_port_ram.

Single clock dual port RAM

A dual port memory with one write side and one read side with one common
read and write clock.

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_sc_sw.v

Module name versatile_fifo_dual_port_ram_sc_sw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

adr_a input

we_a input

B side

q_b output

adr_b output

common

clk input

Single clock true dual port RAM

A dual port memory with two read/write sides with one common clock.

Back to TOC Copyright © 2009 ORSoC Page 6 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_sc_sw.v

Module name versatile_fifo_dual_port_ram_sc_sw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

q_a output

adr_a input

we_a input

B side

d_a input

q_b output

adr_b output

we_b input

common

clk input

Dual clock dual port RAM

A dual port memory with one write side and one read side with individual read
and write clock.

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_dc_sw.v

Module name versatile_fifo_dual_port_ram_dc_sw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

adr_a input

we_a input

clk_a input

B side

q_b output

adr_b output

clk_b input

Back to TOC Copyright © 2009 ORSoC Page 7 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Dual clock true dual port RAM

A dual port memory with two read/write sides with individual clocks.

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_sc_dw.v

Module name versatile_fifo_dual_port_ram_sc_dw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

q_a output

adr_a input

we_a input

clk_a input

B side

d_a input

q_b output

adr_b output

we_b input

clk_b input

Read and write pointers
The read and write pointer are two instances of the same type of counters.

For FIFO implementations with two clock domains gray counter must be used to
avoid glitches on the FIFO flags.

For FIFO implementations with one clock domain either binary or LFSR counters
could be used. LFSR counters have one state shorter cycle but require less area
and have no carry chains. LFSR should be used when low area usage and/or
high performance is important, binary when memory depth is most important.

Note:
For gray type counter an optional binary count output can be used as write
address while the gray output is used for FIFO full and empty indications.

For all different counter types use Versatile counter. IP can be found at
OpenCores.org together with information on how to build application specific
implementations.

FIFO flag generation
There are two different cases, one or two clock domains. For two clock
domains the compare logic will be asynchronous.

Programmable flags for FIFO with two clock domains are not supported in the
current release of versatile FIFO but might be included in future releases.

Back to TOC Copyright © 2009 ORSoC Page 8 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

FIFO with one clock domain can have an optional up/down counter that keep
track of number of words currently in FIFO. From this counter additional FIFO
flags can be generated.

Asynchronous compare

The write pointer holds the next address to write to.

The read pointer holds the current address to read from.

When the write pointer equals the read pointer the FIFO is either empty or full.
We need something to distinguish empty or full condition. The memory can be
divided into four quadrants. The MSB of the pointers will have the following bit
pattern (gray code):

Quadrant Pattern

Q1 00

Q2 01

Q3 11

Q4 10

We use signal direction to indicate whether FIFO is filling up or going empty.

• direction = 1 when write pointer is one quadrant behind read pointer

• direction = 0 when read pointer is one quadrant behind write pointer

• direction = 0 upon reset, in this case FIFO is empty

Direction set condition

write pointer read pointer direction_set

Q1 00 Q2 01 1

Q2 01 Q3 11 1

Q3 11 Q4 10 1

Q4 10 Q1 00 1

default 0

Direction clear condition

write pointer read pointer direction_clr

Q1 00 Q4 10 1

Q2 01 Q1 00 1

Q3 11 Q2 01 1

Q4 10 Q3 11 1

default 0

An SR-type flip-flop is used to generate signal direction.

Setting of direction is synchronous to write clock, clearing is synchronous to
read clock. Dual flip-flops clocked by write clock with asynchronous reset from

Back to TOC Copyright © 2009 ORSoC Page 9 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

async empty synchronize FIFO flag. Analogous for empty flag.

Single clock dual port RAM

Filename versatile_fifo_async_cmp.v

Module name versatile_fifo_async_cmp

Parameters default value

ADDR_WIDTH 4

IO signals

wptr, rptr input

fifo_empty, fifo_full output

wclk, rclk, rst input

Back to TOC Copyright © 2009 ORSoC Page 10 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Chapter 3 Example implementations

SD FLASH controller

This example is a SD FLASH controller with a wishbone interface. We want to
have FIFO queues for the following

1. commands going from wishbone to SD card

2. command response going from SD card to wishbone

3. write data going from wishbone to SD card

4. read data going from SD card to wishbone

The wishbone side will have on clock domain and the SD card side an other.
This makes it possible to run the SD card at maximum specified speed.

All FIFO queues should share the same memory resource. The length of the
queues should be 512 bytes each.

The FIFO module will have the following IO signals:

Single clock dual port RAM

Filename sd_flash_fifo.v

Module name sd_flash_fifo

wishbone side signals

wb_adr_i[1:0] to select FIFO queue

wb_dat_i, wb_dat_o data buses

wb_re, wb_we read and write enable

fifo1_full, fifo2_empty, fifo3_full,
fifo4_empty

FIFO flags

wb_clk wishbone clock

SD side signals

sd_adr_i[1:0] to select FIFO queue

sd_dat_i, sd_dat_o data buses

sd_re, sd_we read and write enable

fifo1_empty, fifo2_full, fifo3_empty,
fifo4_full

FIFO flags

sd_clk sd clock

Back to TOC Copyright © 2009 ORSoC Page 11 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Submodules

The design will use the following modules

1. read and write pointers, 8 instances
9 bit gray counter with binary outputs
define file: sd_counter_defines.v
outfile : sd_counter.v

2. async compare, 4 instances

3. dual port memory; dual clock, dual way
2048 x 8

To generate design

make sd

Back to TOC Copyright © 2009 ORSoC Page 12 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Recommended Resources
ORSoC – http://www.orsoc.se

ORSoC is a fabless ASIC design & manufacturing services company, providing
RTL to ASIC design services and silicon fabrication service. ORSoC are
specialists building complex system based on the OpenRISC processor
platform.

Open Source IP – http://www.opencores.org

Your number one source for open source IP and other FPGA/ASIC related
information.

Back to TOC Copyright © 2009 ORSoC Page 13 / 13

http://www.opencores.org/
http://www.orsoc.se/
http://www.orsoc.se/
http://www.opencores.org/

	Chapter 1 Introduction
	Asynchronous FIFO implementation
	Synchronous FIFO implementation
	Multiple FIFO implementation

	Chapter 2 FIFO building blocks
	Dual port memory
	Single clock dual port RAM
	Single clock true dual port RAM
	Dual clock dual port RAM
	Dual clock true dual port RAM

	Read and write pointers
	FIFO flag generation
	Asynchronous compare

	Chapter 3 Example implementations
	SD FLASH controller
	Submodules

	Recommended Resources

