URL
https://opencores.org/ocsvn/versatile_library/versatile_library/trunk
Subversion Repositories versatile_library
[/] [versatile_library/] [trunk/] [rtl/] [verilog/] [memories.v] - Rev 90
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, memories //// //// //// //// Description //// //// memories //// //// //// //// //// //// To Do: //// //// - add more memory types //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `ifdef ROM_INIT /// ROM `define MODULE rom_init module `BASE`MODULE ( adr, q, clk); `undef MODULE parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(addr_width-1):0] adr; output reg [(data_width-1):0] q; input clk; reg [data_width-1:0] rom [mem_size-1:0]; parameter memory_file = "vl_rom.vmem"; initial begin $readmemh(memory_file, rom); end always @ (posedge clk) q <= rom[adr]; endmodule `endif `ifdef RAM `define MODULE ram // Single port RAM module `BASE`MODULE ( d, adr, we, q, clk); `undef MODULE parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d; input [(addr_width-1):0] adr; input we; output reg [(data_width-1):0] q; input clk; reg [data_width-1:0] ram [mem_szie-1:0]; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk) begin if (we) ram[adr] <= d; q <= ram[adr]; end endmodule `endif `ifdef RAM_BE `define MODULE ram_be module `BASE`MODULE ( d, adr, be, re, we, q, clk); `undef MODULE parameter data_width = 32; parameter addr_width = 6; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d; input [(addr_width-1):0] adr; input [(data_width/8)-1:0] be; input re; input we; output reg [(data_width-1):0] q; input clk; //E2_ifdef SYSTEMVERILOG logic [data_width/8-1:0][7:0] ram[0:mem_size-1];// # words = 1 << address width //E2_else reg [data_width-1:0] ram [mem_size-1:0]; wire [data_width/8-1:0] cke; //E2_endif parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; generate if (memory_init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate //E2_ifdef SYSTEMVERILOG // use a multi-dimensional packed array //to model individual bytes within the word always_ff@(posedge clk) begin if(we) begin // note: we should have a for statement to support any bus width if(be[3]) ram[adr][3] <= d[31:24]; if(be[2]) ram[adr][2] <= d[23:16]; if(be[1]) ram[adr][1] <= d[15:8]; if(be[0]) ram[adr][0] <= d[7:0]; end if (re) q <= ram[adr]; end //E2_else assign cke = {data_width/8{we}} & be; genvar i; generate for (i=0;i<data_width/8;i=i+1) begin : be_ram always @ (posedge clk) if (cke[i]) ram[adr][(i+1)*8-1:i*8] <= d[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk) if (re) q <= ram[adr]; //E2_endif // Function to access RAM (for use by Verilator). function [31:0] get_mem; // verilator public input [addr_width-1:0] addr; get_mem = ram[addr]; endfunction // get_mem // Function to write RAM (for use by Verilator). function set_mem; // verilator public input [addr_width-1:0] addr; input [data_width-1:0] data; ram[addr] = data; endfunction // set_mem endmodule `endif `ifdef ACTEL // ACTEL FPGA should not use logic to handle rw collision `define SYN /*synthesis syn_ramstyle = "no_rw_check"*/ `else `define SYN `endif `ifdef DPRAM_1R1W `define MODULE dpram_1r1w module `BASE`MODULE ( d_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b ); `undef MODULE parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; input clk_a, clk_b; reg [(addr_width-1):0] adr_b_reg; reg [data_width-1:0] ram [mem_szie-1:0] `SYN; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk_a) if (we_a) ram[adr_a] <= d_a; always @ (posedge clk_b) adr_b_reg <= adr_b; assign q_b = ram[adr_b_reg]; endmodule `endif `ifdef DPRAM_2R1W `define MODULE dpram_2r1w module `BASE`MODULE ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b ); `undef MODULE parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; output reg [(data_width-1):0] q_a; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [mem_szie-1:0] `SYN; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) q_b <= ram[adr_b]; endmodule `endif `ifdef DPRAM_2R2W `define MODULE dpram_2r2w module `BASE`MODULE ( d_a, q_a, adr_a, we_a, clk_a, d_b, q_b, adr_b, we_b, clk_b ); `undef MODULE parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; input [(data_width-1):0] d_b; output reg [(data_width-1):0] q_a; input we_b; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [mem_size-1:0] `SYN; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) begin q_b <= ram[adr_b]; if (we_b) ram[adr_b] <= d_b; end endmodule `endif `ifdef DPRAM_MIXED_WIDTH_2R2W `define MODULE dpram_mixed_width_2r2w module `BASE`MODULE ( d_a, q_a, adr_a, be_a, we_a, clk_a, d_b, q_b, adr_b, be_b, we_b, clk_b ); `undef MODULE parameter data_width = 32; parameter addr_width = 8; parameter data_width_ratio = 2; parameter b_data_width = data_width * data_width_ratio; parameter b_addr_width = addr_width ; endmodule `endif `ifdef DPRAM_BE_2R2W `define MODULE dpram_be_2r2w module `BASE`MODULE ( d_a, q_a, adr_a, be_a, we_a, clk_a, d_b, q_b, adr_b, be_b, we_b, clk_b ); `undef MODULE parameter a_data_width = 32; parameter a_addr_width = 8; parameter b_data_width = 64; parameter b_addr_width = 7; //parameter mem_size = (a_addr_width>b_addr_width) ? (1<<a_addr_width) : (1<<b_addr_width); parameter mem_size = 1024; input [(a_data_width-1):0] d_a; input [(a_addr_width-1):0] adr_a; input [(b_addr_width-1):0] adr_b; input [(a_data_width/4-1):0] be_a; input we_a; output [(b_data_width-1):0] q_b; input [(b_data_width-1):0] d_b; output reg [(a_data_width-1):0] q_a; input [(b_data_width/4-1):0] be_b; input we_b; input clk_a, clk_b; reg [(b_data_width-1):0] q_b; generate if (a_data_width==32 & b_data_width==64) begin : inst32to64 wire [63:0] tmp; `define MODULE dpram_2r2w `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram0 ( .d_a(d_a[7:0]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a & be_a[0] & !adr_a[0]), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram1 ( .d_a(d_a[7:0]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram2 ( .d_a(d_a[15:8]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram3 ( .d_a(d_a[15:8]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram4 ( .d_a(d_a[23:16]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram5 ( .d_a(d_a[23:16]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram6 ( .d_a(d_a[31:24]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `BASE`MODULE # (.data_width(8), .addr_width(b_addr_width-3)) ram7 ( .d_a(d_a[31:24]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); `undef MODULE /* reg [7:0] ram0 [mem_size/8-1:0]; wire [7:0] wea, web; assign wea = we_a & be_a[0]; assign web = we_b & be_b[0]; always @ (posedge clk_a) if (wea) ram0[adr_a] <= d_a[7:0]; always @ (posedge clk_a) q_a[7:0] <= ram0[adr_a]; always @ (posedge clk_a) if (web) ram0[adr_b] <= d_b[7:0]; always @ (posedge clk_b) q_b[7:0] <= ram0[adr_b]; */ end endgenerate /* generate for (i=0;i<addr_width/4;i=i+1) begin : be_rama always @ (posedge clk_a) if (we_a & be_a[i]) ram[adr_a][(i+1)*8-1:i*8] <= d_a[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk_a) q_a <= ram[adr_a]; genvar i; generate for (i=0;i<addr_width/4;i=i+1) begin : be_ramb always @ (posedge clk_a) if (we_b & be_b[i]) ram[adr_b][(i+1)*8-1:i*8] <= d_b[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk_b) q_b <= ram[adr_b]; */ /* always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) begin q_b <= ram[adr_b]; if (we_b) ram[adr_b] <= d_b; end */ endmodule `endif // Content addresable memory, CAM `ifdef FIFO_1R1W_FILL_LEVEL_SYNC // FIFO `define MODULE fifo_1r1w_fill_level_sync module `BASE`MODULE ( `undef MODULE d, wr, fifo_full, q, rd, fifo_empty, fill_level, clk, rst ); parameter data_width = 18; parameter addr_width = 4; // write side input [data_width-1:0] d; input wr; output fifo_full; // read side output [data_width-1:0] q; input rd; output fifo_empty; // common output [addr_width:0] fill_level; input rst, clk; wire [addr_width:1] wadr, radr; `define MODULE cnt_bin_ce `BASE`MODULE # ( .length(addr_width)) fifo_wr_adr( .cke(wr), .q(wadr), .rst(rst), .clk(clk)); `BASE`MODULE # (.length(addr_width)) fifo_rd_adr( .cke(rd), .q(radr), .rst(rst), .clk(clk)); `undef MODULE `define MODULE dpram_1r1w `BASE`MODULE # (.data_width(data_width), .addr_width(addr_width)) dpram ( .d_a(d), .adr_a(wadr), .we_a(wr), .clk_a(clk), .q_b(q), .adr_b(radr), .clk_b(clk)); `undef MODULE `define MODULE cnt_bin_ce_rew_q_zq_l1 `BASE`MODULE # (.length(addr_width+1), .level1_value(1<<addr_width)) fill_level_cnt( .cke(rd ^ wr), .rew(rd), .q(fill_level), .zq(fifo_empty), .level1(fifo_full), .rst(rst), .clk(clk)); `undef MODULE endmodule `endif `ifdef FIFO_2R2W_SYNC_SIMPLEX // Intended use is two small FIFOs (RX and TX typically) in one FPGA RAM resource // RAM is supposed to be larger than the two FIFOs // LFSR counters used adr pointers `define MODULE fifo_2r2w_sync_simplex module `BASE`MODULE ( `undef MODULE // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_fill_level, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_fill_level, // common clk, rst ); parameter data_width = 8; parameter addr_width = 5; parameter fifo_full_level = (1<<addr_width)-1; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; output [addr_width-1:0] a_fill_level; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; output [addr_width-1:0] b_fill_level; input clk; input rst; // adr_gen wire [addr_width:1] a_wadr, a_radr; wire [addr_width:1] b_wadr, b_radr; // dpram wire [addr_width:0] a_dpram_adr, b_dpram_adr; `define MODULE cnt_lfsr_ce `BASE`MODULE # ( .length(addr_width)) fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .rst(rst), .clk(clk)); `BASE`MODULE # (.length(addr_width)) fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .rst(rst), .clk(clk)); `BASE`MODULE # ( .length(addr_width)) fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .rst(rst), .clk(clk)); `BASE`MODULE # (.length(addr_width)) fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .rst(rst), .clk(clk)); `undef MODULE // mux read or write adr to DPRAM assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr} : {1'b1,a_radr}; assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr} : {1'b0,b_radr}; `define MODULE dpram_2r2w `BASE`MODULE # (.data_width(data_width), .addr_width(addr_width+1)) dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk), .d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk)); `undef MODULE `define MODULE cnt_bin_ce_rew_zq_l1 `BASE`MODULE # (.length(addr_width), .level1_value(fifo_full_level)) a_fill_level_cnt( .cke(a_rd ^ a_wr), .rew(a_rd), .q(a_fill_level), .zq(a_fifo_empty), .level1(a_fifo_full), .rst(rst), .clk(clk)); `BASE`MODULE # (.length(addr_width), .level1_value(fifo_full_level)) b_fill_level_cnt( .cke(b_rd ^ b_wr), .rew(b_rd), .q(b_fill_level), .zq(b_fifo_empty), .level1(b_fifo_full), .rst(rst), .clk(clk)); `undef MODULE endmodule `endif `ifdef FIFO_CMP_ASYNC `define MODULE fifo_cmp_async module `BASE`MODULE ( wptr, rptr, fifo_empty, fifo_full, wclk, rclk, rst ); `undef MODULE parameter addr_width = 4; parameter N = addr_width-1; parameter Q1 = 2'b00; parameter Q2 = 2'b01; parameter Q3 = 2'b11; parameter Q4 = 2'b10; parameter going_empty = 1'b0; parameter going_full = 1'b1; input [N:0] wptr, rptr; output fifo_empty; output fifo_full; input wclk, rclk, rst; `ifndef GENERATE_DIRECTION_AS_LATCH wire direction; `endif `ifdef GENERATE_DIRECTION_AS_LATCH reg direction; `endif reg direction_set, direction_clr; wire async_empty, async_full; wire fifo_full2; wire fifo_empty2; // direction_set always @ (wptr[N:N-1] or rptr[N:N-1]) case ({wptr[N:N-1],rptr[N:N-1]}) {Q1,Q2} : direction_set <= 1'b1; {Q2,Q3} : direction_set <= 1'b1; {Q3,Q4} : direction_set <= 1'b1; {Q4,Q1} : direction_set <= 1'b1; default : direction_set <= 1'b0; endcase // direction_clear always @ (wptr[N:N-1] or rptr[N:N-1] or rst) if (rst) direction_clr <= 1'b1; else case ({wptr[N:N-1],rptr[N:N-1]}) {Q2,Q1} : direction_clr <= 1'b1; {Q3,Q2} : direction_clr <= 1'b1; {Q4,Q3} : direction_clr <= 1'b1; {Q1,Q4} : direction_clr <= 1'b1; default : direction_clr <= 1'b0; endcase `define MODULE dff_sr `ifndef GENERATE_DIRECTION_AS_LATCH `BASE`MODULE dff_sr_dir( .aclr(direction_clr), .aset(direction_set), .clock(1'b1), .data(1'b1), .q(direction)); `endif `ifdef GENERATE_DIRECTION_AS_LATCH always @ (posedge direction_set or posedge direction_clr) if (direction_clr) direction <= going_empty; else direction <= going_full; `endif assign async_empty = (wptr == rptr) && (direction==going_empty); assign async_full = (wptr == rptr) && (direction==going_full); `BASE`MODULE dff_sr_empty0( .aclr(rst), .aset(async_full), .clock(wclk), .data(async_full), .q(fifo_full2)); `BASE`MODULE dff_sr_empty1( .aclr(rst), .aset(async_full), .clock(wclk), .data(fifo_full2), .q(fifo_full)); `undef MODULE /* always @ (posedge wclk or posedge rst or posedge async_full) if (rst) {fifo_full, fifo_full2} <= 2'b00; else if (async_full) {fifo_full, fifo_full2} <= 2'b11; else {fifo_full, fifo_full2} <= {fifo_full2, async_full}; */ /* always @ (posedge rclk or posedge async_empty) if (async_empty) {fifo_empty, fifo_empty2} <= 2'b11; else {fifo_empty,fifo_empty2} <= {fifo_empty2,async_empty}; */ `define MODULE dff `BASE`MODULE # ( .reset_value(1'b1)) dff0 ( .d(async_empty), .q(fifo_empty2), .clk(rclk), .rst(async_empty)); `BASE`MODULE # ( .reset_value(1'b1)) dff1 ( .d(fifo_empty2), .q(fifo_empty), .clk(rclk), .rst(async_empty)); `undef MODULE endmodule // async_compb `endif `ifdef FIFO_1R1W_ASYNC `define MODULE fifo_1r1w_async module `BASE`MODULE ( `undef MODULE d, wr, fifo_full, wr_clk, wr_rst, q, rd, fifo_empty, rd_clk, rd_rst ); parameter data_width = 18; parameter addr_width = 4; // write side input [data_width-1:0] d; input wr; output fifo_full; input wr_clk; input wr_rst; // read side output [data_width-1:0] q; input rd; output fifo_empty; input rd_clk; input rd_rst; wire [addr_width:1] wadr, wadr_bin, radr, radr_bin; `define MODULE cnt_gray_ce_bin `BASE`MODULE # ( .length(addr_width)) fifo_wr_adr( .cke(wr), .q(wadr), .q_bin(wadr_bin), .rst(wr_rst), .clk(wr_clk)); `BASE`MODULE # (.length(addr_width)) fifo_rd_adr( .cke(rd), .q(radr), .q_bin(radr_bin), .rst(rd_rst), .clk(rd_clk)); `undef MODULE `define MODULE dpram_1r1w `BASE`MODULE # (.data_width(data_width), .addr_width(addr_width)) dpram ( .d_a(d), .adr_a(wadr_bin), .we_a(wr), .clk_a(wr_clk), .q_b(q), .adr_b(radr_bin), .clk_b(rd_clk)); `undef MODULE `define MODULE fifo_cmp_async `BASE`MODULE # (.addr_width(addr_width)) cmp ( .wptr(wadr), .rptr(radr), .fifo_empty(fifo_empty), .fifo_full(fifo_full), .wclk(wr_clk), .rclk(rd_clk), .rst(wr_rst) ); `undef MODULE endmodule `endif `ifdef FIFO_2R2W_ASYNC `define MODULE fifo_2r2w_async module `BASE`MODULE ( `undef MODULE // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_clk, a_rst, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_clk, b_rst ); parameter data_width = 18; parameter addr_width = 4; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; input a_clk; input a_rst; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; input b_clk; input b_rst; `define MODULE fifo_1r1w_async `BASE`MODULE # (.data_width(data_width), .addr_width(addr_width)) vl_fifo_1r1w_async_a ( .d(a_d), .wr(a_wr), .fifo_full(a_fifo_full), .wr_clk(a_clk), .wr_rst(a_rst), .q(b_q), .rd(b_rd), .fifo_empty(b_fifo_empty), .rd_clk(b_clk), .rd_rst(b_rst) ); `BASE`MODULE # (.data_width(data_width), .addr_width(addr_width)) vl_fifo_1r1w_async_b ( .d(b_d), .wr(b_wr), .fifo_full(b_fifo_full), .wr_clk(b_clk), .wr_rst(b_rst), .q(a_q), .rd(a_rd), .fifo_empty(a_fifo_empty), .rd_clk(a_clk), .rd_rst(a_rst) ); `undef MODULE endmodule `endif `ifdef FIFO_2R2W_ASYNC_SIMPLEX `define MODULE fifo_2r2w_async_simplex module `BASE`MODULE ( `undef MODULE // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_clk, a_rst, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_clk, b_rst ); parameter data_width = 18; parameter addr_width = 4; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; input a_clk; input a_rst; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; input b_clk; input b_rst; // adr_gen wire [addr_width:1] a_wadr, a_wadr_bin, a_radr, a_radr_bin; wire [addr_width:1] b_wadr, b_wadr_bin, b_radr, b_radr_bin; // dpram wire [addr_width:0] a_dpram_adr, b_dpram_adr; `define MODULE cnt_gray_ce_bin `BASE`MODULE # ( .length(addr_width)) fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .q_bin(a_wadr_bin), .rst(a_rst), .clk(a_clk)); `BASE`MODULE # (.length(addr_width)) fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .q_bin(a_radr_bin), .rst(a_rst), .clk(a_clk)); `BASE`MODULE # ( .length(addr_width)) fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .q_bin(b_wadr_bin), .rst(b_rst), .clk(b_clk)); `BASE`MODULE # (.length(addr_width)) fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .q_bin(b_radr_bin), .rst(b_rst), .clk(b_clk)); `undef MODULE // mux read or write adr to DPRAM assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr_bin} : {1'b1,a_radr_bin}; assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr_bin} : {1'b0,b_radr_bin}; `define MODULE dpram_2r2w `BASE`MODULE # (.data_width(data_width), .addr_width(addr_width+1)) dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk), .d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk)); `undef MODULE `define MODULE fifo_cmp_async `BASE`MODULE # (.addr_width(addr_width)) cmp1 ( .wptr(a_wadr), .rptr(b_radr), .fifo_empty(b_fifo_empty), .fifo_full(a_fifo_full), .wclk(a_clk), .rclk(b_clk), .rst(a_rst) ); `BASE`MODULE # (.addr_width(addr_width)) cmp2 ( .wptr(b_wadr), .rptr(a_radr), .fifo_empty(a_fifo_empty), .fifo_full(b_fifo_full), .wclk(b_clk), .rclk(a_clk), .rst(b_rst) ); `undef MODULE endmodule `endif `ifdef REG_FILE `define MODULE reg_file module `BASE`MODULE ( `undef MODULE a1, a2, a3, wd3, we3, rd1, rd2, clk ); parameter data_width = 32; parameter addr_width = 5; input [addr_width-1:0] a1, a2, a3; input [data_width-1:0] wd3; input we3; output [data_width-1:0] rd1, rd2; input clk; `ifdef ACTEL reg [data_width-1:0] wd3_reg; reg [addr_width-1:0] a1_reg, a2_reg, a3_reg; reg we3_reg; reg [data_width-1:0] ram1 [(1<<addr_width)-1:0] `SYN; reg [data_width-1:0] ram2 [(1<<addr_width)-1:0] `SYN; always @ (posedge clk or posedge rst) if (rst) {wd3_reg, a3_reg, we3_reg} <= {(data_width+addr_width+1){1'b0}}; else {wd3_reg, a3_reg, we3_reg} <= {wd3,a3,wd3}; always @ (negedge clk) if (we3_reg) ram1[a3_reg] <= wd3; always @ (posedge clk) a1_reg <= a1; assign rd1 = ram1[a1_reg]; always @ (negedge clk) if (we3_reg) ram2[a3_reg] <= wd3; always @ (posedge clk) a2_reg <= a2; assign rd2 = ram2[a2_reg]; `else `define MODULE dpram_1r1w `BASE`MODULE # ( .data_width(data_width), .addr_width(addr_width)) ram1 ( .d_a(wd3), .adr_a(a3), .we_a(we3), .clk_a(clk), .q_b(rd1), .adr_b(a1), .clk_b(clk) ); `BASE`MODULE # ( .data_width(data_width), .addr_width(addr_width)) ram2 ( .d_a(wd3), .adr_a(a3), .we_a(we3), .clk_a(clk), .q_b(rd2), .adr_b(a2), .clk_b(clk) ); `undef MODULE `endif endmodule `endif
Go to most recent revision | Compare with Previous | Blame | View Log