
Specification of Viterbi HDL Code Generator

PART I

Introduction

Mikael Johnson

Electronic Engineering

Department of Tsinghua University

27th May 2004

Abstract

Viterbi algorithm is the most likelihood decode algorithm of convolution code. Viterbi

decoder means the VLSI implementation of Viterbi algorithm. In the area of communi-

cation, convolution code is very popular, so how to improve the performance and reduce

the power and area of the decoder is important. In the other hand, different protocols use

different convolution code and varied applications have different requirement for through-

put, area and power. So design of reusable Viterbi decoder is important, too. In present

project, a reusable Viterbi decoder was carried out. This decoder adopted the Process

Element (PE) technique, which made it easy to adjust the throughput of the decoder

by increasing or decreasing the number of PE. By the method of Same Address Write

Back (SAWB), we reduced the number of registers to half in contrast with the method of

ping-pong.

This decoder supported punctured convolution code and was data-driven, which means

the circuit was able to work under different data rate and avoid those invalid operations.

The core parameters, such as the generation words of convolution code, the number

of PE, the depth of TBU and maybe the radix of buttfly, are all configurable. Some

programs have been developed in Perl to generate the Verilog code from these parameters

automatically. A radix-2 four-buttfly 64-state punctured (4, 1, 6) Viterbi decoder has

been generated and has been successfully simulated and synthesized under some CMOS

process.

2

Contents

1 Basic Ideal 4

1.1 Process Element . 4

1.2 Coordinate of State . 4

1.3 Same Address Write Back (S.A.W.B) . 5

1.4 Division of States . 7

3

1 Basic Ideal

1.1 Process Element

PE, Process Element, was one of the most popular architecture in digital signal process.

The PE architecture of Viterbi decoder has been introduced in these papers[1, 2]. Fig1 is

the basic structure of PE in Viterbi decoder. which consists of PMU, ACSU, BMU and

Figure 1: Structure of PE

LRU. By assembling different numbers of PE, we can get the state-serial, part parallel or

full parallel structrue of Viterbi decoder. And because the PMU is scattered into each

PE, this structure is more area efficient than that structure of only one PE.

1.2 Coordinate of State

In order to make two or more PE work together, we should send the appropriate state to

the appropriate PE at the appropriate time. On this purpose, we can regard the binary

presentation of each state as a coordinate and give special “meanings” to each bit. Look

at such a binary presentation of state[2]

S = [XuXu−1 · · ·X1, YwYw−1 · · ·Y1, ZvZv−1 · · ·Z1] ,
Xi, Yi, Zi ∈ {0, 1}

u,w, v ∈ N, u + w + v = m
(1)

In eq.1 m is the depth of convolution coding. So, we define such a rule named “The Rule

of PE” to explain the “meanings”:

The Rule of PE When [XuXu−1 · · ·X1, YwYw−1 · · ·Y1, ZvZv−1 · · ·Z1] is the bi-

nary presentation of state S, S should be sent to the port [ZvZv−1 . . . Z1] of PE [YwYw−1 . . . Y1]

4

at time [XuXu−1 . . . X1].

Let Slice = [XuXu−1 . . . X1] , Identity = [YwYw−1 . . . Y1] , Path = [ZvZv−1 . . . Z1], so

Slice, Identity and Path indicate the time of calculating path metric, the ID of PE

executing this calculation and the input port of PE respectively. u, v and w are three

important parameters in the Rule of PE, because they determine the total slices for

calculating(2u),the radix of buttfly(2v) and the total number of PE(2w) respectively.

Based on eq1 and the Rule of PE, we can use binary presentation of state as the co-

ordinate of it.

1.3 Same Address Write Back (S.A.W.B)

Usually there are two ways to design PMU: one is ping-pong method and the other is

S.A.W.B. The later means write the new path metric back to where we read the old

path metric from. It cost less storage unit than the method of ping-pong, which uses

two same ram or register file to storage the new path metric and the old path metric

respectively. By the method of S.A.W.B we reduce the storage units, but because it

changes the storage address of path metric, we need some address transformation unit

and more routing network. So being aware of the state flow graph in PE is very important

when we adopt S.A.W.B method. Fig2 demonstrates the state flow in PE.

Figure 2: State Flow

In fig2 Path0 and Path1 are two in-ports of Radix-2 buttfly; ID is the number of PE;

Slice0 and Slice1 are the taps. Si, Ri, Qi, Pi and Oi indicate the states at each in-port or

5

out-port of submoudles of PE respectively, i ∈ {0, 1, . . . , 2m − 1}. Code is the covolution

code through the noise channel.

Firstly we define some operations:

Si = [XuXu−1 . . . X1, YwYw−1 . . . Y1, ZvZv−1 . . . Z1]

Shufflev(Si) = [ZvZv−1 . . . Z1, XuXu−1 . . . X1, YwYw−1 . . . Y1]

Γv
u+w(Si) = [Shufflev(XuXu−1 . . . X1, , YwYw−1 . . . Y1), ZvZv−1 . . . Z1]

= [YvYv−1 . . . Y1XuXu−1 . . . Xv+1, XvXv−1 . . . X1YwYw−1 . . . Yv+1, ZvZv−1 . . . Z1]

Because of the ACS operation in ACSU, Ri is not the same of Si and there exists a

transformation between Si and Ri as following:

Ri = Shufflev (Si)

= [ZvZv−1 . . . Z1, XuXu−1 . . . X1, YwYw−1 . . . Y1] (2)

Eq2 is determined by the ACS operation in ACSU. From it we can see the least w bits of

Ri are always equal to [YwYw−1 . . . Y1], the ID of PE.

Let’s look at state Oi and leave Qi and Pi for later. Oi is transformed from Ri through

LRU1, PMU and LRU2. The least w bits of Oi should be [YwYw−1 . . . Y1], supposing that

LRU1, PMU and LRU2 only reschedule the sequence of state flow and not change the

set of states. Because the out-ports of PE are connected to certain in-ports of another

PE, Oi should be certain Si at certain in-port of certain PE with the same slice. That

indicates the most u bits of Oi should be [XuXu−1 . . . X1], the slice of Si. Any more, Oi

is rearranged from Ri and so the set of Oi and the set of Ri should be same. All above,

we appoint such value to Oi:

Oi = [XuXu−1 . . . X1, ZvZv−1 . . . Z1, YwYw−1 . . . Y1] (3)

= [Shuffleu (ZvZv−1 . . . Z1, XuXu−1 . . . X1) , YwYw−1 . . . Y1]

= Γu
v+u(ZvZv−1 . . . Z1, XuXu−1 . . . X1, YwYw−1 . . . Y1)

Eq3 meets all the requirements described above. Maybe there exist some other appoint-

ment of Qi, but eq3 maybe the simplest.

6

Further more if < S >j denotes the address of state S at cycle j (cycle is the time

during which we calculate the path metric of all states), then < Ri >j+1=< Oi >j is

directly derived from the define of S.A.W.B. And based on eq2, eq3 we can write out the

address transformation caused by S.A.W.B :

< S >j+1 = S.A.W.B(< S >j)

= < Γu
v+u(S) >j (4)

Finally, Qi and Pi are determined by Ri and Oi respectively. If there are no LRU1 or

LRU2, Qi and Pi will be equal to Ri and Oi respectively. Because LRU1 or LRU2 is not

a storage unit, it rerouting the in-ports into out-ports, how to choice the value of Qi and

Pi is determined by what structure of the PMU. We will determined the value of Qi and

Pi in the next section.

1.4 Division of States

In PMU we will use register file for path-metric storage. If we use only one register file

for read and write, we will need a register file with two read and two write ports for

radix-2 buttfly. But this kind of register file is very complicated and not area-efficient, so

we decide to divide the set of all states calculated by each PE into different subsets. If

we use Radix-2v buttfly, we will divide these states into 2v subsets and storage them the

same number of register files.

On this purpose, we should distinguish between the Qi with the same slice and between

the Pi with the same slice, too. In another words, if we use function Θ to distinguish

between different Qi and between different Pi, it should satisfied this:

Class Rule: ∀ Qj, Qk ∈ {Qi|Qi with the same slice } and Qj 6= Qk, we have

Θ(Qj) 6= Θ(Qk); ∀ Pj, Pk ∈ {Pi|Pi with the same slice } and Pj 6= Pk, we have Θ(Pj) 6=

Θ(Pk), too.

In order to make problem simple, we provide that u is multiple of v. It is not difficult

to be satisfied for v = 1. With provision of this, we divide the binary presentation of state

7

into u
v

groups each having v bits. Then we sum these u
v

groups with mod-2v-add. From

the sum we could divide set {Q} or {P} into 2v subsets. It is not hard to be validated.

So LRU1 reroutes Ri into Qi and LRU2 reroutes Pi into Oi with the right order which is

determined by the Class Rule.

References

[1] Montse Boo, Francisco Arguello, Javier D.Bruguera, Ramon Doallo, and Emilio

L.Zapata. High-Performance VLSI Architecture for the Viterbi Algorithm. IEEE

Trans. Communications, 45(2), February 1997.

[2] F.Arguello, J.D.Bruguera, R.Doallo, and E.L.Zapata. Parallel Architecture for Fast

Transforms with Trigonometric Kernel. IEEE Trans. Parallel and Distributed Systems,

5(10), October 1994.

8

