
Gisselquist
Technology, LLC

WBUART32

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) ieee.org

January 7, 2017

Gisselquist Technology, LLC Specification 2017/01/07

Copyright (C) 2016–2017, Gisselquist Technology, LLC.
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

www.opencores.com Rev. 0.1 ii

Gisselquist Technology, LLC Specification 2017/01/07

Revision History
Rev. Date Author Description

0.2 1/03/2017 D. Gisselquist Added test-bench information
0.1 8/26/2016 D. Gisselquist Initial Draft Specification

www.opencores.com Rev. 0.1 iii

Gisselquist Technology, LLC Specification 2017/01/07

Contents

Page

1 Introduction . 1

2 Architecture . 2

3 Operation . 4

4 Registers . 6
4.1 Setup Register . 6
4.2 FIFO Register . 7
4.3 RX DATA Register . 8
4.4 TX DATA Register . 8

5 Clocks . 9

6 Wishbone Datasheet . 10

7 I/O Ports . 12

www.opencores.com Rev. 0.1 iv

Gisselquist Technology, LLC Specification 2017/01/07

Figures

Figure Page

4.1. SETUP Register fields . 7
4.2. RXDATA Register fields . 7
4.3. RXDATA Register fields . 8
4.4. TXDATA Register fields . 8

www.opencores.com Rev. 0.1 v

Gisselquist Technology, LLC Specification 2017/01/07

Tables

Table Page

4.1. UART Registers . 6
4.2. Parity setup . 7

5.1. Clock Requirements . 9

6.1. Wishbone Datasheet . 10

7.1. RXUART port list . 13
7.2. TXUART port list . 13
7.3. WBUART port list . 13

www.opencores.com Rev. 0.1 vi

Gisselquist Technology, LLC Specification 2017/01/07

Preface

It may be that building a UART is a mandatory coming of age task for any HDL designer. The
task is simple, easy, and there’s not all that much to it. This project comes out of some of my first
experiences with Verilog.

Since then, it has been augmented with quite a few useful capabilities for simulating a UART
connection when using Verilator. It is this, perhaps unusual, addition to the core set that makes
this core worth taking note of.

I hope you find it useful.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.1 vii

Gisselquist Technology, LLC Specification 2017/01/07

1.

Introduction

The Universal Asynchronous Serial Transport, or UART, has become quite the common protocol
between devices. It is simple to wire up, easy to use, and easy to process. This core provides one
implementation of the logic necessary to use such a communications scheme.

While you are likely to find many UART examples out there, this particular UART implementa-
tion offers something many of these other examples do not: a Verilator simulation capability. This
will allow the user to connect, via a TCP/IP port or a telnet application, to the UART of their
desired chip. As a result, full two-way interaction can be had between a simulation and a terminal
or other port. Indeed, this may even be sufficient to connect a CPU, capable of running Linux, to
a terminal to verify that yes it can truly run Linux–all within Verilator.

As a final addition, there are three files in the test bench section which can be used as top–level
design files to prove whether or not the serial port on a given circuit board works.

www.opencores.com Rev. 0.1 1

Gisselquist Technology, LLC Specification 2017/01/07

2.

Architecture

The HDL portion of the core itself consists of four basic files: rxuart.v, txuart.v, ufifo.v and
wbuart.v. These are, respectively, the receive UART code, the transmit UART code, a fairly
generic FIFO, and a fully wishbone compliant UART peripheral. This latter files demonstrates one
example of how the receiver, transmitter, and FIFOs may be connected to a Wishbone bus. A fifth
file, wbuart-insert.v, demonstrates how the rxuart.v and txuart.v files may be included into a
module implementing a simpler interface.

Each of the core files, rxuart.v and txuart.v, are fully capable. They each accept a 29–bit
setup value specifying baud rate, the number of bits per byte (between 5 and 8), whether or not
parity is used, whether that parity is even, odd, or fixed mark or fixed space. This setup register
will be discussed further in Chap.4.

A further note on the rxuart.v module is in order. This module double latches the input, in
the proper two buffer fashion to avoid problems with metastability. Then, upon the detection of the
start bit (i.e. a high to low transition), the port waits a half of a baud, and then starts its baud clock
so as to sample in the middle of every baud following. The result of this is a timing requirement:
after N + 2 baud intervals (N + 3 if parity is used), where N is the number of bits per byte, this
calculated middle sample must still lie within the associated bit period. This leaves us with the
criteria that,

∣

∣

∣

∣

(N + 2)

(

fSYS

fBAUD

− CKS

)∣

∣

∣

∣

<
fSYS

2fBAUD

, . (2.1)

where fSYS is the system clock frequency, fBAUD is the baud rate or frequency, CKS is the number of
clocks per baud as set in the configuration register, and N is the number of bits per byte. What
this means is that, for transmission rates where fBAUD approaches fSYS, the number of data rates
that can actually be synthesized becomes limited.

Connecting to either txuart.v or rxuart.v is quite simple. Both files have a data port and a
strobe. To transmit, set the data and strobe lines. Drop the strobe line as soon as the strobe is
asserted and the busy line is not. Likewise, to connect to the rxuart.v port, there is a data and a
strobe. This time, though, these two wires are outputs of the receive module as opposed to inputs.
When the strobe is high, the data is valid. It will only be high for one clock period. If you wish to
connect this output to a bus, a register will be needed to hold the strobe high until the data is read.
Also, while the strobe is high, the o frame err will indicate whether or not there was a framing
error (i.e., no stop bit), and o parity err will indicate whether or not the parity matched. Finally,
the o break line will indicate whether the receiver is in a “break” state,

The tx busy line may be inverted and connected to a transmit interrupt line. In a similar fashion,
the rx stb line, or the bus equivalent of rx ready, may be used for receive interrupt lines–although
it will need to be latched as both wbuart.v and wbuart-insert.v demonstrate.

www.opencores.com Rev. 0.1 2

Gisselquist Technology, LLC Specification 2017/01/07

An simple example of how to put this configuration together is found in wbuart-insert.v. In
this example given, the rx data register will have only the lower eight bits set if the data is valid,
higher bits will be set upon error conditions, and cleared automatically upon the next byte read. In
a similar fashion, the tx data register can be written to with a byte in order to transmit that byte.
Writing bit nine will place the transmitter into a “break” condition, only cleared by writing a zero
to that bit later. Reading from the tx data register can also be used to determine if the transmitter
is busy (via polling), whether it is currently in a break condition, or even what bit is currently being
placed to the output port.

A more comprehensive example of how these UART modules may be used together can be found
in wbuart.v. This file provides a full wishbone interface allowing interaction with the core using
four registers: a setup register, receive register and transmit register as before, as well as a FIFO
health register through which the size and fill of the FIFO can be queried.

The C++ simulation portion of the code revolves around the file bench/cpp/uartsim.cpp and
its associated header. This file defines a class, UARTSIM, which can be used to connect the UART
to a TCP/IP stream. When initialized, this class takes, as input, the TCP/IP port number that
the class is to connect with. Setting the port to zero connects the UART to the standard input and
output file facilities. Once connected, using this simulator is as simple as calculating the receive
input bit from the transmit output bit when the clock is low, and the core takes care of everything
else.

Finally, there are a series of example files found in the bench/verilog directory. helloworld.v

presents an example of a simple UART transmitter sending the “Hello, World \r\n” message over
and over again. This example uses only the txuart.v module, and can be simulated in Verilator.
A second test file, linetest.v, works by waiting for a line of data to be received, after which it
parrots that line back to the terminal. This tests both txuart.v and rxuart.v. A third test file,
speechfifo.v tests both the wishbone interface as well as the FIFO, by filling the UART, 10 samples
at a time, with text from Abraham Lincoln’s Gettysburg address. All three of these files have an
internal option to define OPT STANDALONE. If and when defined, they may be used as top–level files
as part of a UART test.

www.opencores.com Rev. 0.1 3

Gisselquist Technology, LLC Specification 2017/01/07

3.

Operation

To use the core, a couple of steps are required. First, wire it up. The rxuart.v and txuart.v files
may be wired up for use individually, or using an example such as wbuart-insert.v. Alternatively,
the wbuart.v file may be connected to a straight 32–bit wishbone bus. Second, set the UART
configuration register. This is ideally set by setting the INITIAL SETUP parameter of rxuart, txuart
or even wbuart.v Alternatively, you can write to the setup register at a later time, as is done with
the speechfifo.v bench test.

From a simulation standpoint, it will also need to be “wired” up in your C++ main Verilator
file. Somewhere, internal to the top–level Verilator C++ simulation file, you’ll want to have some
setup lines similar to,

#include "uartsim.h" // Tell compiler about UARTSIM
...
UARTSIM *uartsim; // Declare a variable to hold the simulator
uartsim = new UARTSIM(ip port); // Create/initialize it with your TCP/IP port #
uartsim->setup(setup register value); // Tell it the line coding to expect

and then another set of lines within your clocked section that look something like,

if (!clk)

tb->i uart rx = uartsim(tb->o uart tx);

You should be able to find several examples of this in the helloworld.cpp, linetest.cpp, and
speechtest.cpp files. These C++ implementations, though, are also complicated by the need for a
self–contained testing program to be able to capture and know what was placed onto the standard
input and output streams, hence many of them fork() into two processes so that one process can
verify the output of the other. Both speechtest.cpp and linetest.cpp allow a -i option to run
in an interactive mode without forking. Either way, forking the simulation program shouldn’t be
needed for normal usages of these techniques, but you may find it helpful to know should you examine
this code or should you wish to build your own test file that proves its own output.

To use the transmitter, set the i stb and i data wires. Drop the strobe line any time after
(i stb)&&(!o busy).

To use the receiver, grab the data any time o stb is true.
From the standpoint of the bus, there are two ways to handle receiving and transmitting: polling

and interrupt based, although both work one character at a time. To poll, repeatedly read the
receive data register until only bits from the bottom eight are set. This is an indication that the
byte is valid. Alternatively, you could wait until the an interrupt line is set and then read. In the

www.opencores.com Rev. 0.1 4

Gisselquist Technology, LLC Specification 2017/01/07

wbuart-insert.v example as well as the wbuart.v implementation, the o uart rx int line will be
set (rx int for wbuart-insert.v), and automatically cleared upon any read. To write, one can read
from the transmit data register until the eighth bit, the tx busy bit, is cleared, and then transmit.
Alternatively, this negation of this bit may be connected to an interrupt line, o uart tx int. Writing
to the port while the transmitter is idle will start it transmitting. Writing to the port while it is
busy will fill a one word buffer that will get sent as soon as the port is idle for one clock.

www.opencores.com Rev. 0.1 5

Gisselquist Technology, LLC Specification 2017/01/07

4.

Registers

The wbuart core supports four registers, shown in Tbl. 4.1. We’ll cover the format of all of these
registers here, as they are defined by wbuart.v.

4.1 Setup Register

The setup register is perhaps the most critical of all the registers. This is shown in Fig.4.1. It is
designed so that, for any 8N1 protocol (eight data bits, no parity, one stop bit), all of the upper bits
will be set to zero so that only the number of clocks per baud interval needs to be set. The top two
bits are unused, making this a 30–bit number.1 The other fields are: N sets the number of bits per
word. A value of zero corresponds to 8–bit words, a value of one to seven bit words, and so forth
up to a value of three for five bit words. S determines the number of stop bits. Set this to one for
two stop bits, or leave it at zero for a single stop bit. P determines whether or not a parity bit is
used (1 for parity, 0 for no parity), while F determines whether or not the parity is fixed. Tbl. 4.2
lists out the various values possible here.

The final portion of this register is the baud CLKS. This is the number of ticks of your ssytem
clock per baud interval,

CLKS =
fSYS

fBAUD

.

Rounding to the nearest integer is recommended. Hence, if you have a system clock of 100 MHz and
wish to achieve 115,200 Baud, you would set CLKS to

CLKSExample =
100 · 106

115200

Clocks per Second

Baud Intervals per Second
≈ 868 Clocks per Baud Interval

1The top two bits are ideally suited for adding in a user configurable hardware flow control: one for flow control

in use, zero otherwise, but this is only a future upgrade possibility as of this writing.

Name Address Width Access Description

SETUP 2’b00 30 R/W UART configuration/setup register.
FIFO 2’b01 32 R Returns size and status of the FIFOs
RX DATA 2’b10 13 R Read data, reads from the UART.
TX DATA 2’b11 15 (R/)W Transmit data: writes send out the UART.

Table 4.1: UART Registers

www.opencores.com Rev. 0.1 6

Gisselquist Technology, LLC Specification 2017/01/07

012345678910111213141516171819202122232425262728293031

00 N S P FT Baud CLKS

Figure 4.1: SETUP Register fields

P F T Setting

1 0 0 Odd parity
1 0 1 Even parity
1 1 0 Parity bit is a Space (1’b0)
1 1 1 Parity bit is a Mark (1’b1)
0 No parity

Table 4.2: Parity setup

Changes to this setup register will take place in the transmitter as soon as the transmitter is idle
and ready to accept another byte.

Changes to this setup register in rxuart.v also take place between bytes. However, within the
wbuart.v context, any changes to the setup register will also reset the receiver and receive FIFO
together. Once reset, the receiver will insist on a minimum of sixteen idle baud intervals before
receiving the next byte.

4.2 FIFO Register

The FIFO register is a read–only register containing information about the status of both receive
and transmit FIFOs within it. The transmit FIFO information is kept in the upper 16–bits, and the
receiver FIFO information in the lower 1-bits, as shown in Fig. 4.2. We’ll discuss each of these bits
individually.

The LGLN field indicates the log base two of the FIFO length. Hence an LGLN field of four would
indicate a FIFO length of sixteen values. The FIFO fill indicates the current level of fill. The H bit
will be true if the FIFO is half full, and the Z bit will be true if the FIFO is non-empty.

The H and Z bits also mirror the interrupt bits generated by wbuart.v. Interrupts will be
generated any time the FIFO is half full (on receive), or less than half full (on transmit). The same
logic applies for the Z bit.

Writes to this register are quietly ignored.

012345678910111213141516171819202122232425262728293031

LGLN TX Fill H Z

LGLN RX Fill H Z

Figure 4.2: RXDATA Register fields

www.opencores.com Rev. 0.1 7

Gisselquist Technology, LLC Specification 2017/01/07

012345678910111213141516171819202122232425262728293031

19’h00 EB F P S RWORD

-

Figure 4.3: RXDATA Register fields

012345678910111213141516171819202122232425262728293031

17’h00 H Z ECOB S TWORD

3’h0

Figure 4.4: TXDATA Register fields

4.3 RX DATA Register

Fig. 4.3 breaks out the various bit fields of the receive data register used in wbuart.v. In particular,
the B field indicates that the receive line is in a break condition. The F and P fields indicate that a
frame error or parity error has been detected. These bits are not self clearing, but rather are cleared
by writing to 1’s to them. The S field will be false when the RWORD is valid. Hence, if (RWORD &

0x0ff) is zero there is a word ready to be received without error.
The E bit is an error bit. When set, it indicates that the FIFO has overflowed sometime since

the last reset. This bit is also a reset bit. In other words, writing a 1’b0 to this bit will command
a receive reset: clearing the FIFO, and waiting for the line to be idle before receiving another byte.
This bit is not implemented in wbuart-insert.v, but exists in the wbuart.v implementation.

4.4 TX DATA Register

Fig. 4.4 breaks out the various bit fields of the transmit data register used in wbuart.v. The C field
indicates whether or not the receive data line is high or low, the O field indicates the same for the
transmit line. These aren’t particularly useful or valuable, but the C bit doesn’t fit in the receive
data register since it would violate the error condition detector. These two bits are thrown in here
for whatever useful purpose one might find. The B field, when set, sends a break condition down
the wire. Further, writes to the TXDATA register while in a break condition and with the B field
clear, will clear the transmitter from any break condition without transmitting anything. The S

field is similar to the RXDATA strobe register. It is a read–only bit that will be true any time the
transmitter is busy. It will be clear only when the transmitter is idle.

The final three bits, H, Z, and E, are present only in wbuart.v. These bits indicate H if the
FIFO is at least half full, Z if the FIFO is empty, and E if the FIFO has experienced an overflow
condition since the last reset. Writing a 1’b1 to the E bit will reset the transmit FIFO, both clearing
any error indication in the FIFO as well as clearing the FIFO itself.

To use the transmitter, simply write a byte to the TXDATA register with the upper 24–bits clear
to transmit.

www.opencores.com Rev. 0.1 8

Gisselquist Technology, LLC Specification 2017/01/07

5.

Clocks

The UART has been tested with a clock as fast as 200 MHz (Tbl. 5.1). It should be able to use
slower clocks, but only subject to the ability to properly set the baud rate as shown in Eqn. (2.1)
on Page 2.

I do not recommend using this core with a baud rate greater than a quarter of the system clock
rate.

Name Source Rates (MHz) Description
Max Min

i clk (System) 200 MHz System clock

Table 5.1: Clock Requirements

www.opencores.com Rev. 0.1 9

Gisselquist Technology, LLC Specification 2017/01/07

6.

Wishbone Datasheet

Tbl. 6.1 is required by the wishbone specification in order to declare the core as wishbone compliant,

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, pipeline reads supported
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints None.

Signal Names

wbuart.v wbuart-insert.v WB Equivalent
i clk i wb clk CLK I

i rst RST I

i wb cyc i wb cyc CYC I

i wb stb i wb stb STB I

i wb we i wb we WE I

i wb addr i wb addr ADR I

i wb data i wb data DAT I

o wb ack o wb ack ACK O

o wb stall o wb stall STALL O

o wb data o wb data DAT O

Table 6.1: Wishbone Datasheet

and so it is included here. It references the connections used in wbuart.v as well as those exemplified
by wbuart-insert.v. The big thing to notice is that this core acts as a wishbone slave, and that
all accesses to the core registers are 32–bit reads and writes to this interface—not the 8–bit reads or
writes that might otherwise be expected.

What this table doesn’t show is that all accesses to the port take a single clock for wbuart-insert.v,
or two clocks for wbuart.v. That is, if the i wb stb line is high on one clock, the i wb ack line will
be high the next for single clock access, or the clock after that for two clock access. Further, the
o wb stall line is tied to zero.

Also, this particular wishbone implementation assumes that if i wb stb, then i wb cyc will be
high as well. Hence it only checks whether or not i wb stb is true to determine if a transaction

www.opencores.com Rev. 0.1 10

Gisselquist Technology, LLC Specification 2017/01/07

has taken place. If your bus does not meet this requirement, you’ll need to AND i wb stb with
i wb cyc before using the core.

www.opencores.com Rev. 0.1 11

Gisselquist Technology, LLC Specification 2017/01/07

7.

I/O Ports

In it’s simplest form, the UART offers simply two I/O ports: the i uart rx line to receive, and the
o uart tx line to transmit. These lines need to be brought to the outside of your design. Within
Verilator, they need to be connected inside your Verilator test bench, as in:

if (!clk)

tb->i uart rx = uartsim(tb->o uart tx);

A more detailed discussion of the connections associated with these modules can begin with
Tbl. 7.1, detailing the I/O ports of the UART receiver, Tbl. 7.2, detailing the I/O ports of the
UART transmitter, and Tbl. 7.3 detailing the non–wishbone I/O ports of the wishbone controller.

www.opencores.com Rev. 0.1 12

Gisselquist Technology, LLC Specification 2017/01/07

Port Width Direction Description

i clk 1 Input The system clock
i reset 1 Input A positive, synchronous reset
i setup 30 Input The 30–bit setup register
i uart 1 Input The input wire from the outside world.
o wr 1 Output True if a word was received. At this time, o data,

o break, o parity err, and o frame err will also be
valid.

o data 8 Output The received data, valid if o wr

o break 1 Output True in the case of a break condition
o parity err 1 Output True if a parity error was detected
o frame err 1 Output True if a frame error was detected
o ck uart 1 Output A synchronized copy of i uart

Table 7.1: RXUART port list

Port Width Direction Description

i clk 1 Input The system clock
i reset 1 Input A positive, synchronous reset
i setup 30 Input The 30–bit setup register
i break 1 Input Set to true to place the transmit channel into a break

condition
i wr 1 Input An input strobe. Set to one when you wish to transmit

data, clear once it has been accepted
i data 8 Input The data to be transmitted, ignored unless

(i wr)&&(!o busy)

o uart 1 Output The wire to be connected to the external port
o busy 1 Output True if the transmitter is busy, false if it will receive data

Table 7.2: TXUART port list

Port W Direction Description

i uart rx 1 Input The receive wire coming from the external port
o uart tx 1 Output The transmit wire to be connected to the external port
o uart rx int 1 Output True if a byte may be read from the receiver
o uart tx int 1 Output True if the transmitter is idle
o uart rxfifo int 1 Output True if the receive FIFO is half full
o uart txfifo int 1 Output True if the transmit FIFO is half empty

Table 7.3: WBUART port list

www.opencores.com Rev. 0.1 13

	Introduction
	Architecture
	Operation
	Registers
	Setup Register
	FIFO Register
	RX_DATA Register
	TX_DATA Register

	Clocks
	Wishbone Datasheet
	I/O Ports

