
Gisselquist
Technology, LLC

REAL-TIME CLOCK

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

July 11, 2015

Gisselquist Technology, LLC Specification 2015/07/11

Copyright (C) 2015, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see ¡http://www.gnu.org/licenses/¿ for a copy.

www.opencores.com Rev. 0.1 ii

Gisselquist Technology, LLC Specification 2015/07/11

Revision History
Rev. Date Author Description

0.2 7/11/2015 Gisselquist Date interface added
0.1 5/25/2015 Gisselquist First Draft

www.opencores.com Rev. 0.1 iii

Gisselquist Technology, LLC Specification 2015/07/11

Contents

Page

1 Introduction . 1

2 Architecture . 2

3 Operation . 3
3.1 Time . 3
3.2 Count-down Timer . 3
3.3 Stopwatch . 3
3.4 Alarm . 4
3.5 Time Hacks . 4
3.6 Date . 4

4 Registers . 5
4.1 Clock Time Register . 5
4.2 Countdown Timer Register . 6
4.3 Stopwatch Register . 6
4.4 Alarm Register . 7
4.5 Clock Speed Register . 7
4.6 Time–hack time . 8
4.7 Date Register . 9

5 Wishbone Datasheet . 10

6 I/O Ports . 11

www.opencores.com Rev. 0.1 iv

Gisselquist Technology, LLC Specification 2015/07/11

Tables

Table Page

4.1. List of Registers . 5
4.2. Date Register . 5
4.3. Clock Time Register Bit Definitions . 6
4.4. Count–down Timer register . 6
4.5. Stopwatch Register . 7
4.6. Alarm Register . 7
4.7. Clock Speed Register . 8
4.8. Time Hack Time Register . 8
4.9. Time Hack Counter, High . 8
4.10. Time Hack Counter, Low . 9
4.11. Date Register Bit Definitions . 9

5.1. Wishbone Datasheet . 10

6.1. Wishbone I/O Ports . 11
6.2. Other I/O Ports . 12
6.3. Wishbone I/O Ports . 13

www.opencores.com Rev. 0.1 v

Gisselquist Technology, LLC Specification 2015/07/11

Preface

Every FPGA project needs to start with a very simple core. Then, working from simplicity, more
and more complex cores can be built until an eventual application comes from all the tiny details.

This real time clock began with one such simple core. All of the pieces to this clock are simple.
Nothing is inherently complex. However, placing this clock into a larger FPGA structure requires
a Wishbone bus, and being able to command and control an FPGA over a wishbone bus is an
achievement in itself. Further, the clock produces seven segment display output values and LED
output values. These are also simple outputs, but still take a lot of work to complete. Finally,
this clock will strobe an interrupt line. Reading and processing that interrupt line requires a whole
’nuther bit of logic and the ability to capture, recognize, and respond to interrupts. Hence, once
you get a simple clock working, you have a lot working.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.1 vi

Gisselquist Technology, LLC Specification 2015/07/11

1.

Introduction

This Real–Time Clock implements a twenty four hour clock, count-down timer, stopwatch and alarm.
It is designed to be configurable to adjust to whatever clock speed the underlying architecture is
running on, so with only minor changes should run on any fundamental clock rate from about 66 kHz
on up to 250 TeraHertz with varying levels of accuracy along the way.

Distributed with this clock is a similar Real–Time Date module. This second module can track
the day, month, and year while properly accounting for varying days in each month and leap years,
when they happen.

Together, the clock and date module offer a fairly full feature set of capability: date, time, alarms,
a countdown timer and a stopwatch, all features which are available from the wishbone bus.

Other interfaces exist as well.
Should you wish to investigate your clock’s stability or try to guarantee its fine precision accuracy,

it is possible to provide a time hack pulse to the clock and subsequently read what all of the internal
registers were set to at that time.

When either the count–down timer reaches zero or the clock reaches the alarm time (if set), the
clock module will produce an impulse which can be used as an interrupt trigger.

This clock will also provide outputs sufficient to drive an external seven segment display driver
and 16 LED’s.

Future enhancements may allow for button control and fine precision clock adjustment.
The layout of this specification follows the format set by OpenCores. This introduction is the first

chapter. Following this introduction is a short chapter describing how this clock is implemented,
Chapt. 2. Following this description, the Chapt. 3 gives a brief overview of how to operate the
clock. Most of the details, however, are in the registers and their definitions. These you can find
in Chapt. 4. As for the wishbone, the wishbone spec requires a wishbone datasheet which you can
find in Chapt. 5. That leaves the final pertinent information necessary for implementing this core
in Chapt. 6, the definitions and meanings of the various I/O ports.

As always, write me if you have any questions or problems.

www.opencores.com Rev. 0.1 1

Gisselquist Technology, LLC Specification 2015/07/11

2.

Architecture

Central to this real time clock architecture is a 48 bit sub–second register. This register is incre-
mented every clock by a user defined 32 bit value, CKSPEED. When the register turns over at the
end of each second, a second has taken place and all of the various clock (and date) registers are
adjusted.

Well, not quite but almost. The 48 bit register is actually split into a lower 40 bit register that
is common to all clock components, as well as separate eight bit upper registers for the clock, timer,
and stopwatch. In this fashion, these separate components can have different definitions for when
seconds begin and end, and with sufficient precision to satisfy most applications.

The next thing to note about this architecture is the format of the various clock registers:
Binary Coded Decimal, or BCD. Hence an 8’h59 refers to a value of 59, rather than 89. In this
fashion, setting the time to 24’h231520 will set it to 23 hours, 15 minutes, and 20 seconds. The
only exception to this BCD format are the subseconds fields found in the stopwatch and time hack
registers. Seconds and above are all encoded as BCD.

www.opencores.com Rev. 0.1 2

Gisselquist Technology, LLC Specification 2015/07/11

3.

Operation

3.1 Time

To set the time, simply write to the clock register the current value of the time. If the seconds hand
is written as zero, subsecond time will be cleared as well. The new clock value takes place one clock
period after the value is written to the bus.

To set only some parts of the time and not others, such as the minutes but not seconds or hours,
write all ’1’s to the seconds and hours. In this way, writing a 24’h3f17ff will set the minutes to
17, but not affect the rest of the clock.

This is also the way to adjust the display without adjusting time. Suppose you wish to switch
to display option ’1’, just write a 32’h013fffff to the register and the display will switch without
adjusting time.

3.2 Count-down Timer

To use the count down timer, set it to the amount of time you wish to count down for. When ready,
or even in the same cycle, enable the count–down timer by setting the RUN bit high. At this point
in time, the count–down timer is running. When it gets to zero, it will stop and trigger an interrupt.
You can tell if the alarm has been triggered by the TRIGGER bit being set. Any write to the timer
register will clear the alarm condition.

While the timer is running, writing a ’0’ to the timer register will stop it without clearing the
time remaining. In this state, writing to the register the RUN bit by itself will restart the timer,
while anything else will set the timer to a new value. Further, if the timer is stopped at zero, then
writing zero to the timer will reset the timer to the last start time it had.

3.3 Stopwatch

The stop watch supports three operations: start, stop, and clear. Writing a ’1’ to the stop watch
register will start the stopwatch, while writing a ’0’ will stop it. When it starts next, it will start
where it left off unless the register is cleared. To clear the register and set it back to zero, write a
’2’ to the register. This will effectively stop the register and clear it in one step. If the register is
already stopped, writing a ’3’ will clear and start it in one step. However, the register can only be
cleared while stopped. If the register is running, writing a ’3’ will have no effect.

www.opencores.com Rev. 0.1 3

Gisselquist Technology, LLC Specification 2015/07/11

3.4 Alarm

To set the alarm, just write the alarm time to the alarm register together with alarm enable bit.
As with the time register, setting any field, whether hours, minutes, or seconds, to 8’hff has no
effect on that field. Hence, the alarm may be activated by writing 25’h13fffff to the register and
deactivated by writing 25’h03fffff.

Once the alarm is tripped, the RTC core will generate an interrupt. Further, the tripped bit in
the alarm register will be set. To clear this bit and the alarm tripped condition, either disable the
alarm or write a ’1’ to this bit.

3.5 Time Hacks

For finer precision timing, the RTC module allows for setting a time hack and reading the value from
the device. On the clock following the time hack being high, the internal state, to include the time
and the 48 bit counter, will be recorded and may then be read out. In this fashion, it is possible to
capture, with as much precision as the device offers, the current time within the device.

It is the users responsibility to read the time hack registers before a subsequent time hack pulse
sets them to new values.

3.6 Date

The Real–Time Date module is really a separate module from the Real–Time Clock module, but
that doesn’t prevent it from working just like the others. To set the date, just write the new date
value to the address of the date. Further, as with the clock time, setting any particular field of the
date to all ones, such as setting the month to 8’hff, will cause that portion of the date to retain
it’s current value. In this way, one part of the date may be set and not others.

www.opencores.com Rev. 0.1 4

Gisselquist Technology, LLC Specification 2015/07/11

4.

Registers

This RTC clock module supports eight registers, as listed in Tbl. 4.1. Of these eight, the first four
have been so placed as to be the more routine or user used registers, while the latter four are more
lower level. Each register will be discussed in detail in this chapter.

Name Address Width Access Description

CLOCK 0 32 R/W Wall clock time register
TIMER 1 32 R/W Count–down timer
STPWTCH 2 32 R/W Stopwatch control and value
ALARM 3 32 R/W Alarm time, and setting

CKSPEED 4 32 R/W Clock speed control.
HACKTIME 5 32 R Wall clock time at last hack.
HACKCNTHI 6 32 R Wall clock time.
HACKCNTLO7 32 R Wall clock time.

Table 4.1: List of Registers

The Date module supports an additional register, listed in Tbl. 4.2. This register will be discussed

Name Address Width Access Description

DATE 0 32 R/W Calendar date register

Table 4.2: Date Register

after we discuss the time registers.

4.1 Clock Time Register

The various bit fields associated with the current time may be found in the CLOCK register, shown
in Tbl. 4.3. This register contains six clock digits: two each for hours, minutes, and seconds. Each
of these digits is encoded in Binary Coded Decimal (BCD). Therefore, 23 hours would be encoded
as 6’h23 and not 6’h17. Writes to each of the various subcomponent registers will set that register,
unless the write value is a 8’hff. The behaviour of the clock when non–decimal values are written,
other than all F’s, is undefined.

www.opencores.com Rev. 0.1 5

Gisselquist Technology, LLC Specification 2015/07/11

Bit # Access Description

28–31 R Always return zero.
24–27 R/W Seven Segment Display Mode.
22–23 R Always return zero.
16–21 R/W Current time, BCD hours
8–15 R/W Current time, BCD minutes
0–7 R/W Current time, BCD seconds

Table 4.3: Clock Time Register Bit Definitions

Separate from the time, however, is the seven segment display mode. Four values are currently
supported: 4’h0 to display the hours and minutes, 4’h1 to display the timer in minutes and seconds,
4’h2 to display the stopwatch in lower order minutes, seconds, and sixteenths of a second, and 4’h3
to display the minutes and seconds of the current time. In all cases, the decimal point will appear
to the right of the lowest order digit and will blink with the second hand. That is, the decimal will
be high for the second half of any second, and low at the top of the second.

4.2 Countdown Timer Register

The countdown timer register, whose bit–wise values are shown in Tbl. 4.4, controls the operation

Bit # Access Description

26–31 R Unused, always read as ’0’.
25 R/W Alarm condition. Write a ’1’ to clear.
24 R/W Running, stopped on ’0’
16–23 R/W BCD Hours
8–15 R/W BCD Minutes
0–7 R/W BCD Seconds

Table 4.4: Count–down Timer register

of the count–down timer. To use this timer, write some amount of time to the register, then write
zeros with bit 24 set. The register will then reach an alarm condition after counting down that
amount of time. (Alternatively, you could set bit 24 while writing the register, to set and start it in
one operation.) To stop the register while it is running, just write all zeros. To restart the register,
provided more than a second remains, write a 26’h1000000 to set it running again. Once the timer
alarms, the timer will stop and the alarm condition will be set. Any write to the timer register after
the alarm condition has been set will clear the alarm condition.

4.3 Stopwatch Register

The various bits of the stopwatch register are shown in Tbl. 4.5. Of note is the bottom bit that,

www.opencores.com Rev. 0.1 6

Gisselquist Technology, LLC Specification 2015/07/11

Bit # Access Description

24–31 R Hours
16–23 R Minutes
8–15 R Sub Seconds
1–7 R Sub Seconds
1 W Clear
0 R/W Running

Table 4.5: Stopwatch Register

when set, means the stop watch is running. Set this bit to ’1’ to start the stopwatch, or to ’0’ to
stop the stopwatch. Further, while the stopwatch is stopped, a ’1’ can be written to the clear bit.
This will zero out the stopwatch and set it back to zero.

4.4 Alarm Register

The various bits of the alarm register are shown in Tbl. 4.6. Basically, the alarm register consists a

Bit # Access Description

26–31 R Always reads zeros.
25 R/W Alarm tripped. Write a ’1’ to this register to clear any alarm

condition. (A tripped alarm will not trip again.)
24 R/W Alarm enabled
16–23 R Alarm time, BCD hours
8–15 R Alarm time, BCD minutes
0–7 R/W Alarm time, BCD Seconds

Table 4.6: Alarm Register

time and two more bits. The extra two bits encode whether or not the alarm is enabled, and whether
or not it has been tripped. The alarm will be tripped whenever it is enabled, and the time changes
to equal the alarm time. Once tripped, the alarm will stay in the alarmed or tripped condition until
either a ’1’ is written to the tripped bit, or the alarm is disabled.

As with the clock and timer registers, writing eight ones to any of the BCD fields when writing
to this register will leave those fields untouched.

4.5 Clock Speed Register

The actual speed of the clock is controlled by the CKSPEED register, shown in Tbl. 4.7. This register
contains a simple 32 bit unsigned value. To step the clock, this value is extended to 48 bits and
added to the fractional seconds value.

www.opencores.com Rev. 0.1 7

Gisselquist Technology, LLC Specification 2015/07/11

Bit # Access Description

0–31 R/W 48 bit counter time increment

Table 4.7: Clock Speed Register

This value should be set to 248 divided by the clock frequency of the controlling clock. Hence,
for a 100 MHz clock, this value would be set to 32’d2814750. For clocks near 100 MHz, this allows
adjusting speed within about 40 clocks per second. For clocks near 500 MHz, this allows time
adjustment to an accuracy of about about 800 clocks per second. In both cases, this is good enough
to maintain a clock with less than a microsecond loss over the course of a year. Hence, this RTC
module provides more logical stability than most hardware clocks on the market today.

4.6 Time–hack time

To support finer precision clock control, the time–hack capability exists. This capability consists of
three registers, the time–hack time register shown in Tbl. 4.8, and two registers (Tbls. 4.9 and 4.10)

Bit # Access Description

24–31 R BCD Hours.
16–23 R BCD Minutes.
8–15 R BCD seconds.
0–7 R Subseconds, encoded in 256ths of a second

Table 4.8: Time Hack Time Register

Bit # Access Description

0–31 R Upper 32 bits of the internal 40 bit counter.

Table 4.9: Time Hack Counter, High

capturing the contents of the 40 bit internal counter at the time of the hack.
The time–hack time register is perhaps the simplest to understand. This captures the time of

the time–hack in hours, minutes, seconds, and 8 fractional subsecond bits. The top 24 bits of this
register will match the bottom 24 bits of the clock time register at the time of the time hack. The
bottom eight bits are the top eight bits of the 48 bit subsecond time counter. The rest of those
48 bits may then be returned in the other two time hack counter registers.

At present, this functionality isn’t yet truly fully featured. Once fully featured, there will (should)
be a mechanism for adjusting this counter based upon information gleaned from the hack time.
Implementation details have to date prevented this portion of the design from being implemented.

www.opencores.com Rev. 0.1 8

Gisselquist Technology, LLC Specification 2015/07/11

Bit # Access Description

24–31 R Bottom 8 bits of the internal 40 bit counter.
0–23 R Always read as ’0’.

Table 4.10: Time Hack Counter, Low

4.7 Date Register

The year, month, and day of month fields may all be found within the DATE register of the Real–
Time Date module, shown in Tbl. 4.11. Further, according to the common calendar convention, the

Bit # Access Description

30–31 R Always return zero.
16–29 R/W Four digit BCD year
13–15 R Always return zero.
8–12 R/W Two digit BCD month
6–7 R Always return zero.
0–5 R/W Two digit BCD day of month

Table 4.11: Date Register Bit Definitions

minimum day and month are one and not zero.

www.opencores.com Rev. 0.1 9

Gisselquist Technology, LLC Specification 2015/07/11

5.

Wishbone Datasheet

Tbl. 5.1 is required by the wishbone specification, and so it is included here. The big thing to notice

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Faster than 66 kHz

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i wb cyc CYC I

i wb stb STB I

i wb we WE I

i wb addr ADR I

i wb data DAT I

o wb ack ACK O

o wb stall STALL O

o wb data DAT O

Table 5.1: Wishbone Datasheet

is that both the real time clock and the real time date modules act as wishbone slaves, and that all
accesses to the registers of either module are 32–bit reads and writes. The address bus does not offer
byte level, but rather 32–bit word level resolution. Select lines are not implemented. Bit ordering is
the normal ordering where bit 31 is the most significant bit and so forth. Although the stall line is
implemented, it is always zero. Access delays are a single clock, so the clock after a read or write is
placed on the bus the i wb ack line will be high.

www.opencores.com Rev. 0.1 10

Gisselquist Technology, LLC Specification 2015/07/11

6.

I/O Ports

The I/O ports for this clock are shown in Tbls. 6.1 and Tbl. 6.2. Tbl. 6.1 reiterates the wishbone

Port Width Direction Description

i clk 1 Input System clock, used for time and wishbone interfaces.
i wb cyc 1 Input Wishbone bus cycle wire.
i wb stb 1 Input Wishbone strobe.
i wb we 1 Input Wishbone write enable.
i wb addr 5 Input Wishbone address.
i wb data 32 Input Wishbone bus data register for use when writing (con-

figuring) the core from the bus.
o wb ack 1 Output Return value acknowledging a wishbone write, or signi-

fying valid data in the case of a wishbone read request.
o wb stall 1 Output Indicates the device is not yet ready for another wish-

bone access, effectively stalling the bus.
o wb data 32 Output Wishbone data bus, returning data values read from the

interface.

Table 6.1: Wishbone I/O Ports

I/O values just discussed in Chapt. 5, and so need no further discussion here.
This clock is designed for command and control via the wishbone. No other registers, beyond

the wishbone bus, are required. However, several other may be valuable. These other registers are
listed in Tbl. 6.2. We’ll discuss each of these in turn.

First of the other I/O registers is the o sseg register. This register encodes which outputs of
a seven segment display need to be turned on to represent the value of the clock requested. This
register consists of four eight bit bytes, with the highest order byte referencing the highest order
display segment value. In each byte, the low order bit references a decimal point. The other bits
are ordered around the zero, with the top bit being the top bar of a ’0’, the next highest order bit
and so on following the zero clockwise. The final bit of each byte, the bit in the two’s place, encodes
whether or not the middle line is to be displayed. When either timer or alarm is triggered, this
display will blink until the triggering conditions are cleared.

This output is expected to be the input to a seven segment display driver, rather than being the
output to the display itself.

www.opencores.com Rev. 0.1 11

Gisselquist Technology, LLC Specification 2015/07/11

Port Width Direction Description

o sseg 32 Output Lines to control a seven segment display, to be sent to
that display’s driver. Each eight bit byte controls one
digit in the display, with the bottom bit in the byte con-
trolling the decimal point.

o led 16 Output Output LED’s, consisting of a 16–bit counter counting
from zero to all ones each minute, and synchronized with
each minute so as to create an indicator of when the next
minute will take place when only the hours and minutes
can be displayed.

o interrupt 1 Output A pulsed/strobed interrupt line. When the clock needs
to generate an interrupt, it will set this line high for one
clock cycle.

o ppd 1 Output A ‘pulse per day’ signal which can be fed into the real–
time date module. This line will be high on the clock
before the stroke of midnight, allowing the date module
to turn over to the next day at exactly the same time
the clock module turns over to the next day.

i hack 1 Input When this line is raised, copies are made of the internal
state registers on the next clock. These registers can
then be used for an accurate time hack regarding the
state of the clock at the time this line was strobed.

Table 6.2: Other I/O Ports

www.opencores.com Rev. 0.1 12

Gisselquist Technology, LLC Specification 2015/07/11

The next output lines are the 16 lines of the o led bus. When connected with 16 LED’s, these
lines will create a counting display that will count up to each minute, synchronized to the minute.
When either timer or alarm has triggered, all of the LED’s will flash together until the triggered
condition is reset.

The third other line is the o interrupt line. This line will be strobed by the RTC module any
time the alarm is triggered or the timer runs out. The line will not remain high, but neither will it
trigger a second time until the underlying interrupt is cleared. That is, the timer will only trigger
once until cleared as will the alarm, but the alarm may trigger after the timer has triggered and
before the timer clears.

As a fourth additional line, the clock module produces a one pulse per day signal, o ppd. This
signal is designed to be the only necessary coordinated input between the clock and date module.
Feeding it straight into the date module will keep the two synchronized.

The final other I/O line is a simple input line. This line is expected to be strobed for one clock
cycle any time a time hack is required. For example, should you wish to read and synchronize to a
GPS PPS signal, strobe the device with the PPS (after dealing with any metastability issues), and
read the time hacks that are produced.

The real–time date module has a similar set of I/O ports to the clock. These are listed in Tbl. 6.3.
There are two big things to notice. The first is the i ppd signal. This should be connected straight

Port Width Direction Description

i clk 1 Input The system clock.
i ppd 1 Input The one pulse per day strobe from the clock module.
i wb cyc 1 Input Wishbone bus cycle.
i wb stb 1 Input Wishbone strobe.
i wb we 1 Input Wishbone write enable.
i wb data 32 Input Wishbone bus data register for use when writing (con-

figuring) the core from the bus.
o wb ack 1 Output Equal to the bus cycle line anded with the strobe line,

and delayed by one clock—essentially acknowledging any
wishbone access.

o wb stall 1 Output Fixed to zer.
o wb data 32 Output Wishbone data bus, returning data values read from the

interface.

Table 6.3: Wishbone I/O Ports

from the clock module’s o ppd signal into this module. The second difference is the lack of any
address lines. This is appropriate since the date module provides a single register only.

www.opencores.com Rev. 0.1 13

