
Gisselquist
Technology, LLC

The ZipCPU

A resource efficient

32–bit SoftCore CPU

Daniel E. Gisselquist, Ph.D.

Octbober, 2016



Overview

• Why do I need a ZipCPU?

• How has the ZipCPU been made resource efficient?

– Simplified bus

– Minimal instruction Set

– A simpler approach to Interrupts

• Enhancements to the basic simplified ZipCPU

• What performance can be expected?

Overview

2



Vision: SwiC
If what you needed was a CPU, you would’ve bought one.

• All of the CPU’s below are both cheaper and faster

ATmega128
PIC32

MSP430
TeensyLC

RPi3/ARM

Vision: SwiC

3



Vision: SwiC
But you bought an FPGA. Why?

• Because you had an application that needs lots of special

purpose, high speed, processing to complete in time

Example: NetFPGA SUME

Vision: SwiC

4



Vision: SwiC
Does your application have a need for any sequential logic?

• Yes, but there’s never enough room for it, and . . .

• Both industry solutions, MicroBlaze and NiOS-II, would

make your product vendor dependent

• What you need is a System within a Chip, or a SwiC!

This is therefore our goal and vision!

• A small core that can be added to a special purpose

application, without drawing away too many resources

• An Open Source core than can be adapted to any vendor’s

hardware

Vision: SwiC

5



Survey of CPUs
Feature NiOS µBlaze ECO–32 RISC-V OpenRISC LM32 ZipCPU

Open Architecture? No Yes Yes

Number of Instructions 86 129 61 50+ 48+ 62 26+

OpCode Bits 6–17 6–11 6 10 6–32 6 5+

Interrupt/Exception Vectors 1 6 2 9+ 14 32 None

Register Indirect plus displacement (bits) 16 12 16 14 (16)

Immediate direct addressing (bits) 16, using R0=0 18 (20)

Relative branching (bits) 16 26 (28) 21 26 21 18 (20)

Conditional branching (bits) 16 16 (18) 13 26 16 18 (20)

Register Size (bits) 32 32 (Opt. 64 Exts.) 32 32-bits

Special Purpose Registers 6 25 6 66+ 65+ 10 1 (x2)

General Purpose Registers 32 (but R0=0, others are unusable, . . . 24) 14 (x2)

8–bit data Yes No

16–bit data Yes No

32–bit data Yes Yes

64–bit data No Yes, by extension No No

32–bit floats Optional No Yes, by extension No Not yet

64–bit floats No Yes, by extension No No

Vector instructions No Not yet 64-bits, Ext No No

MMU Yes, but optional (In test)

Instruction Cache Yes, configurable Same

Data Cache Yes, configurable Not yet

T
o
b
e
re
ve
al
ed

at
O
R
C
O
N
F
20
16

Survey of CPUs

6



Survey of CPUs
Feature NiOS µBlaze ECO–32 RISC-V OpenRISC LM32 ZipCPU

Open Architecture? No Yes Yes

Number of Instructions 86 129 61 50+ 48+ 62 26+

OpCode Bits 6–17 6–11 6 10 6–32 6 5+

Interrupt/Exception Vectors 1 6 2 9+ 14 32 None

Register Indirect plus displacement (bits) 16 12 16 14 (16)

Immediate direct addressing (bits) 16, using R0=0 18 (20)

Relative branching (bits) 16 26 (28) 21 26 21 18 (20)

Conditional branching (bits) 16 16 (18) 13 26 16 18 (20)

Register Size (bits) 32 32 (Opt. 64 Exts.) 32 32-bits

Special Purpose Registers 6 25 6 66+ 65+ 10 1 (x2)

General Purpose Registers 32 (but R0=0, others are unusable, . . . 24) 14 (x2)

8–bit data Yes No

16–bit data Yes No

32–bit data Yes Yes

64–bit data No Yes, by extension No No

32–bit floats Optional No Yes, by extension No Not yet

64–bit floats No Yes, by extension No No

Vector instructions No Not yet 64-bits, Ext No No

MMU Yes, but optional (In test)

Instruction Cache Yes, configurable Same

Data Cache Yes, configurable Not yet

T
o
b
e
re
ve
al
ed

at
O
R
C
O
N
F
20
16

This is way too complex.

Something simpler is

needed: the ZipCPU

Survey of CPUs

7



Survey of CPUs
Feature NiOS µBlaze ECO–32 RISC-V OpenRISC LM32 ZipCPU

Open Architecture? No Yes Yes

Number of Instructions 86 129 61 50+ 48+ 62 26+

OpCode Bits 6–17 6–11 6 10 6–32 6 5+

Interrupt/Exception Vectors 1 6 2 9+ 14 32 None

Register Indirect plus displacement (bits) 16 12 16 14 (16)

Immediate direct addressing (bits) 16, using R0=0 18 (20)

Relative branching (bits) 16 26 (28) 21 26 21 18 (20)

Conditional branching (bits) 16 16 (18) 13 26 16 18 (20)

Register Size (bits) 32 32 (Opt. 64 Exts.) 32 32-bits

Special Purpose Registers 6 25 6 66+ 65+ 10 1 (x2)

General Purpose Registers 32 (but R0=0, others are unusable, . . . 24) 14 (x2)

8–bit data Yes No

16–bit data Yes No

32–bit data Yes Yes

64–bit data No Yes, by extension No No

32–bit floats Optional No Yes, by extension No Not yet

64–bit floats No Yes, by extension No No

Vector instructions No Not yet 64-bits, Ext No No

MMU Yes, but optional (In test)

Instruction Cache Yes, configurable Same

Data Cache Yes, configurable Not yet

Survey of CPUs

8



Vision

Build a simplified, open source, low–area, soft-core CPU

Goals
1. 32–bit

2. Pipelined

3. Wishbone

4. Threadable

(Supervisor mode)

Choices
1. Simplified Wishbone

• Single word size: 32–bits

• Only aligned accesses

• Only one bus for I/D

2. Simplified instruction set

3. No interrupt vectors–

interrupts just switch

modes

Vision

9



Full Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

SEL_O S0 S1 S2 S3 S4 S5 S6 S7

DATA_O D0 D1 D2 D3

TAG_O T0 T1 T2 T3

STALL_I

ACK_I

TAG_I T4 T5 T6

DATA_I D4 D5 D6

ERR_I

RTY_I

Wisbone B4, Pipeline mode

Let’s simplify this . . . can we remove anything we don’t

really need?

Full Wishbone

10



Simplified Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

SEL_O S0 S1 S2 S3 S4 S5 S6 S7

DATA_O D0 D1 D2 D3

TAG_O T0 T1 T2 T3

STALL_I

ACK_I

TAG_I T4 T5 T6

DATA_I D4 D5 D6

ERR_I

RTY_I

Wisbone B4, Pipeline mode

Let’s remove the wires we don’t need:

Avoid anciliary information (TAGS, CTI x)

Merge the LOCK and CYC lines together

Force all transactions to be 32–bits, so remove SEL lines

Ignore retries (RTY), we weren’t using them anyway

Simplified Wishbone

11



Simplified Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

DATA_O D0 D1 D2 D3

STALL_I

ACK_I

DATA_I D4 D5 D6

ERR_I

Minimal Wisbone B4, Pipeline mode

Let’s simplify our remaining logic:

Insist that STB be zero, rather than don’t care, if CYC is

zero

This simplifies a slave’s decode logic: if (CYC)&&(STB) be-

comes if (STB) in any bus slave/peripheral.

I would recommend this change to the

Wishbone standards body.

Simplified Wishbone

12



Simplified Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

DATA_O D0 D1 D2 D3

STALL_I

ACK_I

DATA_I D4 D5 D6

ERR_I

Simplified Wisbone B4, Pipeline mode

Transaction is complete when (CYC) returns to zero

Bus is idle after the last ACK

(STB)&&(!STALL) implies a transaction request took place

Devices that don’t stall only need to check STB

Master must set check both STB and STALL
Every request expects an ACK

All transactions use pipeline mode

Simplified Wishbone

13



CPU StructureCPU Structure

14



Register Set
Two register sets, only one set is active at any time

Supervisor Register Set User Register Set

sR0(LR) sR8 uR0(LR) uR8

sR1 sR9 uR1 uR9

sR2 sR10 uR2 uR10

sR3 sR11 uR3 uR11

sR4 sR12(FP) uR4 uR12(FP)

sR5 sSP uR5 uSP

sR6 sCC uR6 uCC

sR7 sPC uR7 uPC

Interrupts Disabled Interrupts Enabled

• Only the PC/CC registers have any special H/W purpose

• A special MOV instruction provides access to user regs

Register Set

15



Simplified Insns
012345678910111213141516171819202122232425262728293031

0 DR OpCode Cnd 0 18-bit Signed Immediate

1 BR 14-bit Signed Immediate
Standard

{

• 5–bit OpCode allows for 32 instructions

• 3–bit Condition allows every instruction to be conditional

• 4–bit Register code allows for up to 16 registers

• All instructions take either one or two registers

– OP.C #X+Rb,Ra

– OP.C #X,Ra

• This works until

– the supervisor needs access to the user registers, or

– you want to load a large number into a register

Simplified Insns

16



Instruction Set
012345678910111213141516171819202122232425262728293031

OpCode 0 18-bit Signed Immediate

DR Cnd 1 BR 14-bit Signed Immediate
Standard

{

0 5’hf A B 13-bit Signed Imm.MOV
{

4’hb 23-bit Signed ImmediateLDI
{

3’h7 11 xxx IgnoredNOOP Group
{

The entire instruction set was designed to keep decoding simple

Instruction Set

17



32 OpCodes

SUB

AND

ADD

OR

XOR

LSR

LSL

ASR

MPY

LDILO

MPYUHI

MPYSHI

BREV

POPC

ROL

MOV

ALU Instructions

CMP

TEST

LOD

STO

DIVU

DIVS

LDI

FPADD /NOOP

FPSUB /BREAK

FPMPY /LOCK

FPDIV

FPCVT

FPINT

Reserved

Reserved

Memory operations

Divide unit

Reserved for floating

point unit

32 OpCodes

18



Notable

Unusual Instructions

1. BREV (bit reverse)

2. TEST (AND sets cond)

3. CMP.x (sets cond if X)

4. ROL (rotate left)

5. POPC (pop count)

6. LDILO (Load imm, lo)

7. LOCK (for atomic access)

8. BRA (ADD #x,PC)

“Missing” Instructions

1. LB, SB, LH, SH

2. PUSH, POP

3. CALL, JSR, JAL, JALR

4. RETurn

5. ADDC, SUBC, SUBR

6. Compare and branch

7. Shift w/ carry

8. Compare and set

9. Set if zero

Notable

19



8 Conditions
ZipCPU supports eight conditions:

Code Meaning CC Bits Usage

3’b000 (Always)

3’b001 .LT N A < B (signed)

3’b010 .Z Z A = B

3’b011 .NZ !Z A 6= B

3’b100 .GT (!N)&(!Z) A > B (signed)

3’b101 .GE (!N) A ≥ B (signed)

3’b110 .C C A < B (unsigned)

3’b111 .V V On overflow

Any instruction can be executed conditionally

8 Conditions

20



Function Calls

There are no subroutine OpCodes (JSR, JAL, JALR, etc.)

• Such instructions require two writes to the register set: one

to store the PC, one to set the PC

• Solution: Function calls just take an extra instruction

MOV return lbl(PC),R0 ; This is the link instruction

BRA subroutine ; Implemented as an ADD #x,PC

return lbl:

• Returns are simply indirect jumps

JMP R0 ; Indirect branches cost 6-cycles

; Implemented as a MOV R0,PC

Function Calls

21



Interrupts
Traditionally, on an interrupt, most CPUs automatically:

1. PUSH CC

2. PUSH PC

3. LOD ITBL[INT],PC

attribute((interrupt,N))

void ISRN(void) {

// Save user context/stack

// Special purpose interrupt processing

// Restore user context/stack

// GCC ends this with an IRET instruction

}

void (*ITBL)[] = { ..., ISRN, ... };

Interrupts

22



Interrupts

1. PUSH CC

2. PUSH PC

3. LOD ITBL[INT],PC

This requires extra CPU

logic to support: special

purpose instructions and

registers may be required.

attribute((interrupt,N))

void ISRN(void) {

//

//

//

//

}

void (*ITBL)[] = { ..., ISRN, ... };

ISR coding can be a real

challenge to program for,

and traditionally requires

hand-optimized assembly.

Interrupts

23



Interrupts

ZipCPU’s approach to interrupts is . . . different:

• Only one interrupt line to the CPU

• No interrupt vectors, tables or “handler” functions

• ZipCPU just switches from user to supervisor mode

void entry(void) { // Supervisor entry function, on CPU reset

// Setup up user tasks

while(1) {

zip rtu(); // Return to userspace instruction

// Equivalent to OR #0x20,CC, sets GIE bit

// Handle interrupts, traps and exceptions

// Run scheduler, swap contexts?

}

}

Interrupts

24



Basic Enhancements
• Pipelined memory access

Recovers some of the missing data cache performance

• Early Branching

• 14’bit packed OpCodes (VLIW)

• Future VLIW triple operand decoder, one cycle instruction

– ADD Ra,Rb,Rc becomes MOV Ra,Rc | ADD Rb,Rc

– SUB Ra,Rb,Rc becomes MOV Rb,Rc | SUB Ra,Rc

– SUBR Ra,Rb,Rc becomes MOV Ra,Rc | SUB Rb,Rc

• Future MMU and data–cache

• Future FPU

Basic Enhancements

25



Pipelined Memory

Without pipelining:

Clk

CYC_O

STB_O

ADDR_O A0 A1 A2 A3 A4

DATA_O D0 D1 D2 D3 D4

ACK_I

Wisbone B4, Pipeline mode

Best case transfer time: 3N clocks

Pipelined Memory

26



Pipelined Memory

With pipelining:

Clk

CYC_O

STB_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

DATA_O D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

ACK_I

Best case transfer time: N + 2 clocks

ZipCPU supports pipelined LOD and STO instructions

Pipelined Memory

27



Pipelined Memory
To use the pipelined wishbone mode from a ZipCPU instruction:

• Requires adjacent instructions

– All must be either LODs or STOs

– All must use the same base address register

– All must have the same, or a more specific, condition

– Have incrementing (or identical) immediate offsets

• Example: Stack frame set up

SUB 3,SP ; Allocate stack space

STO R0,(SP) ; First offset is zero, avoids a stall

STO R1,1(SP) ; Second STO costs only one more clock

STO R2,2(SP) ; One more clock here

Pipelined Memory

28



Early Branching

C IA IC ID I1 I2 I3 I4 I5

DC C IA IC I1 I2 I3 I4

OP C IA I1 I2 I3

C IA I1 I2

C I1

Instruction cost: 6 clocks

Without special logic, branches cost a full pipeline stall

Early Branching

29



Early Branching

CLR I1 I2 I3 I4 I5 I6 I7 I8 I9

DC I1

OP I1

AL I1

I1

Instruction cost: 2 clocks

Early branching allows early detection of branch instructions, be-

fore the whole pipeline needs to be cleared.

Early Branching

30



Early Branching

• Three early branching instructions supported

LDI #x,PC 2–cycles

ADD #x,PC (BRA) 2–cycles

LOD (PC),PC (LJMP) 3–cycles

LJMP was an afterthought to support linking

• LDI #x,PC is hardly ever used

– The address must fit inside 23–bits (signed)

– The decision of which instruction (LDI vs LJMP) is made

before the absolute address is known

Perhaps I should recover this unused logic . . .

Early Branching

31



Benchmark
• We’ll use the Dhrystone benchmark

– It’s public domain, and doesn’t require floating point

• GCC compiled code

• Hand optimized assembly for the library routines:

– strcmp(), strcpy(), memcpy()

• Memory structure

– All memory placed in block RAM (8kW on S6LX25)

– 1kW I-Cache for CPU (when pipelined)

– No data cache (that’s gonna hurt)

• Accomplished via a XuLA2-LX25 SoC Verilator simulation

• Formula: DMIPS/MHz = 106 ·N/cycles/1757

Benchmark

32



Performance

Configuration 6-LUTs ∆LUTs CPU LUTs DMIPS/MHz

S6SoC (w/CPU, no pipelining) 2345

XuLA2 SoC, No CPU, Base System 2446

CPU (no-pipeline, w/ debug) 3725 1286 [1286]

Multiply 3965 233 [1519] 0.128

CPU (Pipelined, 1kW I-Cache) 4383 418 [1937] 0.465

Pipe Memory 4543 160 [2097] 0.613

Early Branching 4541 -2 [2095] 0.687

Divide (Optimized out of Dhrystone Benchmark) 4905 364 [2459]

VLIW 5030 125 [2584]

ZipSystem on XuLA2 board

Basic (2x PIC, 3x timers, 2x watchdogs, jiffies) 5615 585 [3169] 0.683

8x Performance Counters 6232 617 [3786]

DMA 6882 650 [4436] 0.744

XuLA2 Full up SoC (includes SD) 7372 490 [4926]

Performance

33



vs OpenRISC

DMIPS/MHz CPU

0.74 ZipCPU

0.97 OpenRISC

Why does OpenRISC score higher? Because Dhrys-

tone requires byte-wise string operations, and newlib

optimizes the strcpy, strcmp, and memmove functions

to operate on 4-bytes (32-bits) at a time when possi-

ble/aligned.

If we could pack the characters strings in the test, the

ZipCPU score would improve:

0.95 ZipCPU (Modified Dhrystone for packed strings)

vs OpenRISC

34



How’d we do?
Did we build a simplified,

• Simplified wishbone, instruction set, interrupt processing

open source,

• GNU General Public License (GPL), v3.0

low-area

• 1300-2600 LUTs

soft-core CPU?
Yes! The

Try it at: https://github.com/ZipCPU/zipcpu or

http://opencores.org/project,zipcpu

How’d we do?

35



Gisselquist
Technology, LLC

In all labour there is profit . . .
Prov 14:23a



Missing Conditions

Four common conditions are missing

Missing Condition Replacement

LTE A ≤ N + B CMP N+Rb,Ra/OP.LTE CMP -N+Ra,Rb /OP.GE

LEU A ≤ N + B (U) CMP N+Rb,Ra/OP.LEU CMP 1+N+Rb,Ra /OP.C

GEU A ≥ N + B (U) CMP N+Rb,Ra/OP.GEU CMP 1-N+Ra,Rb /OP.C

GTU A > N +B (U) CMP N+Rb,Ra/OP.GTU CMP -N+Ra,Rb /OP.C

Only one problem: what if the replacements overflow?

Missing Conditions

37



VLIW Instructions
012345678910111213141516171819202122232425262728293031

OpCode 0 18-bit Signed Immediate

DR Cnd 1 BR 14-bit Signed Immediate
Standard

{

0 5’hf A B 13-bit Signed Imm.MOV
{

4’hb 23-bit Signed ImmediateLDI
{

3’h7 11 xxx IgnoredNOOP Group
{

DR OpCode Cnd 0 Imm. —

1 BR —

1 4’hb 5’b Imm —

— — OpCode 0 Imm

— Cnd — DR 1 Reg

— — 4’hb 5’b Imm

VLIW















































VLIW instructions pack two instructions into one word, at the

cost of a smaller immediate range.

VLIW Instructions

38



Function Calls

GCC doesn’t optimize function calls very well:

MOV return lbl(PC),R0 ; Not somewhere else?

LJMP subroutine

return lbl:

BRA somewhere else

Neither does it optimize the returns well:

BRA.x subroutine complete ; Not JMP.x R0?

. . .

subroutine complete:

JMP R0

Function Calls

39



Branch Prediction
The ZipCPU has no branch prediction logic.

• Branch prediction can be done statically by the compiler

• Normal: conditional branch costs 6 cycles, exit costs one

loop:

; Work

BZ loop ; Suffers a full pipeline stall if taken

• Optimized: branch costs 3 cycles, exit costs 6

loop:

; Work

BNZ skip ; Full pipeline stall if taken

BRA loop ; Exploits early branching

skip:

Branch Prediction

40



Peripherals
• QSPI Flash controller

• Nearly internal

– Interrupt controller

– Timers, Counters, Jiffies, Watchdog timer, bus watchdog

– Direct Memory Access (DMA) Controller

• SDRAM controller (DDR3 work in progress)

• UART, GPIO, PWM, FMTX Hack, Real-Time Clock

• GPS NMEA processor, internal timestamp generator

• SD card interface (SPI only, SDIO work pending)

• OLEDrgb interface

• Ethernet (MII interface)

Peripherals

41



Challenges
• Lack of byte and halfword instructions

– This is slowing down the newlib port

• Lack of data cache

– This may be slowing down our overall performance

– The pipelined memory accesses are mitigating this

nicely, though

• Lack of an MMU (MMU is now built, and in test)

– This prevents the implementation of a proper O/S

– It also permits rogue programs access to system memory

and peripherals

Challenges

42



Performance

Digilent Inc.

CMod S6 Board

FPGA: Spartan 6, LX4

Clock: 80 MHz

CPU: Not pipelined

LUTs: 2,345/2,400 (98%)

RAM: 4 kW

Flash: 4 MW

Other Peripherals: Serial port, PWM audio controller,

GPIO, keypad, 2-line display, and more.

Operating System: Supports a small, preemptive multi-

tasking, pipe based Operating System, the ZipOS.

Performance

43



Performance

Xess

XuLA2-LX25

FPGA: Spartan 6, LX25

Clock: 80 MHz

CPU: All options on

LUTs: 7,372/15,032 (49%)

RAM: 8 kW

Flash: 256 kW

SDRAM: 8 MW

Other Peripherals: Serial port, PWM audio controller,

Flash, SDRAM, SD Card controller, RTC clock, ICAPE,

GPIO, and more.

Performance

44



ISA Lessons Learned

• ISAs should be designed with compiling/linking in mind

– Instructions that the compiler doesn’t understand or

expect won’t get used. (TEST, CMP.x, ROL, POPC)

ROL and POPC are ripe for repurposing.

– The linker needs relocatable JMP and LDI instructions

1. LOD (PC),PC; Addr, also known as long jump (LJMP)

2. BREV #x,Ra; LDILO #x,Ra, created from LDI #x,Ra

• GCC reverses branch conditions arbitrarily and at will

• Many programs depend upon 8-bit bytes

ISA Lessons Learned

45



Lessons Learned
• Fast 6= small LUT count

LUTs can be used to purchase speed.

• Von Neumann turns a single memory interface a bottle neck

– The Instruction cache mitigates this problem

• Interrupt handling, though different, is actually quite simple

• BUSERR and ILLegal instruction detection are necessary

– These are marked as optional within the code base

• S/W pipeline scheduling (delayed branching) gets in the

way of interrupt handling and debugger step execution

• MOV Rx,Rx is not a NOOP, as it might stall waiting for Rx

Lessons Learned

46



Future

• Memory Mangement Unit, integrating caches

– Integrated Data cache

– Integrated (somehow) with the Instruction cache

• Floating Point Unit

Will handle 32–bit, single precision floats only

• More peripherals

– Arty’s Ethernet

– DDR3 SDRAM controller, 128–bits/5ns

– SDIO SD card controller

– OLEDrgb interface

• Continued work on the ZipOS

Future

47


