
Gisselquist
Technology, LLC

The ZipCPU

2017 Status Update

Daniel E. Gisselquist, Ph.D.

September, 2017



ZipCPU Changes
• Now supports 8-bit bytes

The wishbone select lines have been returned to the bus.

• Instruction set

– New opcodes: LW, LH, LB, SW, SH, SB, . . .

These replace the old LOD and STO instructions.

– Removed: rotate-left (ROL) and population count (POPC)

– Compressed Instruction Set (CIS)

Packs two 16-bit instructions into one 32-bit word.

• Double Prefetch

– New optional low-logic pipelined fetch unit that fetches

two instructions at a time

• Newlib now runs on the ZipCPU

ZipCPU Changes

2



Stressing Case

Digilent Inc.

CMod S6 Board

FPGA: Spartan 6, LX4

Clock: 80 MHz

CPU: Partial pipeline

LUTs: 2,400/2,400 (100%)

RAM: 4 kW

Flash: 4 MW

The processor now runs about 4x faster on the S6/LX4.

• Prefetch and instruction decode stages are now pipelined

• Flash is simpler, and runs at 40 80 MHz SPI clock

• Prefetches two instructions at once (84 clocks → 29)

• 16-bit compressed instruction set (CIS) extension

• Can play 4x4x4 tic-tac-toe over UART using Newlib

Stressing Case

3



Survey of CPUs
Feature NiOS µBlaze ECO–32 RISC-V OpenRISC LM32 ZipCPU

Open Architecture? No Yes Yes

Number of Instructions 86 129 61 50+ 48+ 62 26+ 28+

OpCode Bits 6–17 6–11 6 10 6–32 6 5+

Interrupt/Exception Vectors 1 6 2 9+ 14 32 None

Register Indirect plus displacement (bits) 16 12 16 14 (18)

Immediate direct addressing (bits) 16, using R0=0 18 (20)

Relative branching (bits) 16 26 (28) 21 26 21 18 (20)

Conditional branching (bits) 16 16 (18) 13 26 16 18 (20)

Register Size (bits) 32 32 (Opt. 64 Exts.) 32 32-bits

Special Purpose Registers 6 25 6 66+ 65+ 10 1 (x2)

General Purpose Registers 32 (but R0=0, others are unusable, . . . 24) 14 (x2)

8–bit data Yes No Yes

16–bit data Yes No Yes

32–bit data Yes Yes

64–bit data No Yes, by extension No Yes, not native

32–bit floats Optional No Yes, by extension No Not yet

MMU Yes, but optional (Still in test)

Instruction Cache Yes, configurable Same

Data Cache Yes, configurable Not integrated

Survey of CPUs

4



Survey of CPUs
Feature NiOS µBlaze ECO–32 RISC-V OpenRISC LM32 ZipCPU

Open Architecture? No Yes Yes

Number of Instructions 86 129 61 50+ 48+ 62 26+ 28+

OpCode Bits 6–17 6–11 6 10 6–32 6 5+

Interrupt/Exception Vectors 1 6 2 9+ 14 32 None

Register Indirect plus displacement (bits) 16 12 16 14 (18)

Immediate direct addressing (bits) 16, using R0=0 18 (20)

Relative branching (bits) 16 26 (28) 21 26 21 18 (20)

Conditional branching (bits) 16 16 (18) 13 26 16 18 (20)

Register Size (bits) 32 32 (Opt. 64 Exts.) 32 32-bits

Special Purpose Registers 6 25 6 66+ 65+ 10 1 (x2)

General Purpose Registers 32 (but R0=0, others are unusable, . . . 24) 14 (x2)

8–bit data Yes No Yes

16–bit data Yes No Yes

32–bit data Yes Yes

64–bit data No Yes, by extension No Yes, not native

32–bit floats Optional No Yes, by extension No Not yet

MMU Yes, but optional (Still in test)

Instruction Cache Yes, configurable Same

Data Cache Yes, configurable Not integrated

The big difference:

8-bit byte support

Survey of CPUs

5



The ZipCPU
Remains a simplified

• Simplified wishbone, instruction set, interrupt processing

open source,

• GNU General Public License (GPL), v3.0

low-area

• 1300-2600 LUTs

soft-core CPU?
Yes! The

Try it at: https://github.com/ZipCPU/zipcpu or

http://opencores.org/project,zipcpu

The ZipCPU

6



Gisselquist
Technology, LLC

In all labour there is profit . . .
Prov 14:23a



Backups

8



Performance

Xess

XuLA2-LX25

FPGA: Spartan 6, LX25

Clock: 80 MHz

CPU: All options on

LUTs: 7,735/15,032 (51%)

RAM: 8 kW

Flash: 256 kW

SDRAM: 8 MW

Other Peripherals: Serial port, PWM audio controller,

Flash, SDRAM, SD Card controller, RTC clock, GPIO, and

more.

Performance

9



Performance

Configuration 6-LUTs ∆LUTs CPU LUTs

S6SoC (w/CPU, no pipelining) 2345 2400

XuLA2 SoC, No CPU, Base System 2446 2559

CPU (no-pipeline, w/ debug) 3725 3893 1286 1344 [1286 1344]

4-clock Multiply 3965 4073 233 180 [1519 1514]

CPU (Double-fetch) 4051 (-22) (1492)

CPU (Pipelined, 1kW I-Cache) 4383 4446 418 373 [1937 1887]

Pipe Memory 4543 4563 160 117 [2097 2004]

Early Branching 4541 4543 -2 -20 [2095 1984]

Divide (Optimized out of Dhrystone Benchmark) 4905 4988 364 445 [2459 2429]

VLIW CIS 5030 5076 125 88 [2584 2517]

ZipSystem on XuLA2 board

Basic (2x PIC, 3x timers, 2x watchdogs, jiffies) 5615 5900 585 824 [3169 3341]

8x Performance Counters 6232 6545 617 645 [3786 3986]

DMA 6882 7216 650 671 [4436 4657]

XuLA2 Full up SoC (includes SD) 7372 7735 490 519 [4926 5176]

Performance

10



32 OpCodes

SUB

AND

ADD

OR

XOR

LSR

LSL

ASR

BREV

LDILO

MPYUHI

MPYSHI

MPY

MOV

DIVU

DIVS

ALU Instructions

CMP

TEST

LW

SW

LH

SH

LB

SB

LDI

FPADD

FPSUB

FPMPY /BREAK

FPDIV /LOCK

FPI2F /SIM

FPF2I /NOOP

Memory operations

Divide unit Reserved for floating

point unit

32 OpCodes

11



From last year

• Why do I need a ZipCPU?

• How has the ZipCPU been made resource efficient?

– Simplified bus

– Minimal instruction Set

– A simpler approach to Interrupts

• Enhancements to the basic simplified ZipCPU

• What performance can be expected?

From last year

12



Vision: SwiC
If what you needed was a CPU, you would’ve bought one.

• All of the CPU’s below are both cheaper and faster

ATmega128
PIC32

MSP430
TeensyLC

RPi3/ARM

Vision: SwiC

13



Vision: SwiC
But you bought an FPGA. Why?

• Because you had an application that needs lots of special

purpose, high speed, processing to complete in time

Example: NetFPGA SUME

Vision: SwiC

14



Vision: SwiC
Does your application have a need for any sequential logic?

• Yes, but there’s never enough room for it, and . . .

• Both industry solutions, MicroBlaze and NiOS-II, would

make your product vendor dependent

• What you need is a System within a Chip, or a SwiC!

This is therefore our goal and vision!

• A small core that can be added to a special purpose

application, without drawing away too many resources

• An Open Source core than can be adapted to any vendor’s

hardware

Vision: SwiC

15



Vision

Build a simplified, open source, low–area, soft-core CPU

Goals
1. 32–bit

2. Pipelined

3. Wishbone

4. Threadable

(Supervisor mode)

Choices
1. Simplified Wishbone

• Single word size: 32–bits

• Only aligned accesses

• Only one bus for I/D

2. Simplified instruction set

3. No interrupt vectors–

interrupts just switch

modes

Vision

16



Full Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

SEL_O S0 S1 S2 S3 S4 S5 S6 S7

DATA_O D0 D1 D2 D3

TAG_O T0 T1 T2 T3

STALL_I

ACK_I

TAG_I T4 T5 T6

DATA_I D4 D5 D6

ERR_I

RTY_I

Wisbone B4, Pipeline mode

Let’s simplify this . . . can we remove anything we don’t

really need?

Full Wishbone

17



Simplified Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

SEL_O S0 S1 S2 S3 S4 S5 S6 S7

DATA_O D0 D1 D2 D3

TAG_O T0 T1 T2 T3

STALL_I

ACK_I

TAG_I T4 T5 T6

DATA_I D4 D5 D6

ERR_I

RTY_I

Wisbone B4, Pipeline mode

Let’s remove the wires we don’t need:

Avoid anciliary information (TAGS, CTI x)

Merge the LOCK and CYC lines together

Force all transactions to be 32–bits, so remove SEL lines

Ignore retries (RTY), we weren’t using them anyway

Simplified Wishbone

18



Simplified Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

DATA_O D0 D1 D2 D3

STALL_I

ACK_I

DATA_I D4 D5 D6

ERR_I

Minimal Wisbone B4, Pipeline mode

Let’s simplify our remaining logic:

Insist that STB be zero, rather than don’t care, if CYC is

zero

This simplifies a slave’s decode logic: if (CYC)&&(STB) be-

comes if (STB) in any bus slave/peripheral.

I would recommend this change to the

Wishbone standards body.

Simplified Wishbone

19



Simplified Wishbone
Clk

CYC_O

STB_O

WE_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7

DATA_O D0 D1 D2 D3

STALL_I

ACK_I

DATA_I D4 D5 D6

ERR_I

Simplified Wisbone B4, Pipeline mode

Transaction is complete when (CYC) returns to zero

Bus is idle after the last ACK

(STB)&&(!STALL) implies a transaction request took place

Devices that don’t stall only need to check STB

Master must set check both STB and STALL
Every request expects an ACK

All transactions use pipeline mode

Simplified Wishbone

20



CPU StructureCPU Structure

21



Register Set
Two register sets, only one set is active at any time

Supervisor Register Set User Register Set

sR0(LR) sR8 uR0(LR) uR8

sR1 sR9 uR1 uR9

sR2 sR10 uR2 uR10

sR3 sR11 uR3 uR11

sR4 sR12(FP) uR4 uR12(FP)

sR5 sSP uR5 uSP

sR6 sCC uR6 uCC

sR7 sPC uR7 uPC

Interrupts Disabled Interrupts Enabled

• Only the PC/CC registers have any special H/W purpose

• A special MOV instruction provides access to user regs

Register Set

22



Simplified Insns
012345678910111213141516171819202122232425262728293031

0 DR OpCode Cnd 0 18-bit Signed Immediate

1 BR 14-bit Signed Immediate
Standard

{

• 5–bit OpCode allows for 32 instructions

• 3–bit Condition allows every instruction to be conditional

• 4–bit Register code allows for up to 16 registers

• All instructions take either one or two registers

– OP.C #X+Rb,Ra

– OP.C #X,Ra

• This works until

– the supervisor needs access to the user registers, or

– you want to load a large number into a register

Simplified Insns

23



Notable

Unusual Instructions

1. BREV (bit reverse)

2. TEST (AND sets cond)

3. CMP.x (sets cond if X)

4. ROL (rotate left)

5. POPC (pop count)

6. LDILO (Load imm, lo)

7. LOCK (for atomic access)

8. BRA (ADD #x,PC)

“Missing” Instructions

1. LB, SB, LH, SH

2. PUSH, POP

3. CALL, JSR, JAL, JALR

4. RETurn

5. ADDC, SUBC, SUBR

6. Compare and branch

7. Shift w/ carry

8. Compare and set

9. Set if zero

Notable

24



8 Conditions
ZipCPU supports eight conditions:

Code Meaning CC Bits Usage

3’b000 (Always)

3’b001 .Z Z A = B

3’b010 .LT N A < B (signed)

3’b011 .C C A < B (unsigned)

3’b100 .V V On overflow

3’b101 .NZ (!Z) A 6= B

3’b110 .GE (!N) A ≥ B (signed)

3’b111 .NC (!C) A ≥ B (unsigned)

U
p
d
at
ed

in
20
17

Any instruction can be executed conditionally

8 Conditions

25



Function Calls

There are no subroutine OpCodes (JSR, JAL, JALR, etc.)

• Such instructions require two writes to the register set: one

to store the PC, one to set the PC

• Solution: Function calls just take an extra instruction

MOV return lbl(PC),R0 ; This is the link instruction

BRA subroutine ; Implemented as an ADD #x,PC

return lbl:

• Returns are simply indirect jumps

JMP R0 ; Indirect branches cost 6-cycles

; Implemented as a MOV R0,PC

Function Calls

26



Interrupts

ZipCPU’s approach to interrupts is . . . different:

• Only one interrupt line to the CPU

• No interrupt vectors, tables or “handler” functions

• ZipCPU just switches from user to supervisor mode

void entry(void) { // Supervisor entry function, on CPU reset

// Setup up user tasks

while(1) {

zip rtu(); // Return to userspace instruction

// Equivalent to OR #0x20,CC, sets GIE bit

// Handle interrupts, traps and exceptions

// Run scheduler, swap contexts?

}

}

Interrupts

27



Pipelined Memory

Without pipelining:

Clk

CYC_O

STB_O

ADDR_O A0 A1 A2 A3 A4

DATA_O D0 D1 D2 D3 D4

ACK_I

Wisbone B4, Pipeline mode

Best case transfer time: 3N clocks

Pipelined Memory

28



Pipelined Memory

With pipelining:

Clk

CYC_O

STB_O

ADDR_O A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

DATA_O D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

ACK_I

Best case transfer time: N + 2 clocks

ZipCPU supports pipelined LOD and STO instructions

Pipelined Memory

29



Early Branching

c � �
P � B C IA I B IC ID C � � I1 I2 I3 I4 I5

DC B C IA I B IC C � � I1 I2 I3 I4

OP B C IA I B C � � I1 I2 I3

A � U B C IA C � � I1 I2

W B B C C � � I1

Instruction cost: 6 clocks

Without special logic, branches cost a full pipeline stall

Early Branching

30



Early Branching

� � �
� 	 
 � CLR I1 I2 I3 I4 I5 I6 I7 I8 I9

DC 
 � I1

OP 
 � I1

AL� 
 � I1

 
 
 � I1

Instruction cost: 2 clocks

Early branching allows early detection of unconditional branch

instructions, before the whole pipeline needs to be cleared.

Early Branching

31



Early Branching

• Three early branching instructions supported

LDI #x,PC 2–cycles

ADD #x,PC (BRA) 2–cycles

LOD (PC),PC (LJMP) 3–cycles

LJMP was an afterthought to support linking

• LDI #x,PC is hardly ever used

– The address must fit inside 23–bits (signed)

– The decision of which instruction (LDI vs LJMP) is made

before the absolute address is known

Perhaps I should recover this unused logic . . .

Early Branching

32



CIS Instructions
012345678910111213141516171819202122232425262728293031

OpCode 0 18-bit Signed Immediate

DR Cnd 1 BR 14-bit Signed Immediate
Standard

{

4’hb 23-bit Signed ImmediateLDI
{

DR Op 0 Imm. —

1 BR Imm —

— - DR Op 0 Imm

— - 1 BR Imm

CIS



























CIS instructions pack two instructions into one word, at the cost

of a smaller immediate range.

CIS Instructions

33


